营造保护生态环境的功能化多孔新材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业的快速发展引发一系列的环境问题,如何有效地保护环境成为人们关注的焦点。本文致力于设计和合成新型的功能性多孔材料并将其用于环境保护领域。为了满足中温下捕获二氧化碳的需求,采用共沉淀法、多层镀饰法制备了氧化镁基的多孔复合材料,并深入探究了结构-性能之间的联系,再通过溶胶-凝胶法合成了自支撑的多孔MgO;针对环境中的有机污染物,研究了g-C3N4光催化剂的形成过程,通过简单的方法调控反应历程或者以金属盐作为模板合成高活性的多孔g-C3N4材料。主要研究内容如下:
     1.试用协同共沉淀技术制备介孔MgO-Al2O3二氧化碳捕获剂,同步完成介孔Al2O3载体的合成与MgO镀饰,不仅使大量的MgO负载在多孔材料上,而且保持着较高比表面和孔体积。考察镁铝比例对于所得材料介孔结构和孔分布的影响,确定最佳组成配比和合成程序,调控合成参数促成MgO以微晶形式分散-插入氧化铝载体骨架中,用EDX等手段表征MgO在复合材料中的分布。探究不同组分的样品在中高温下的二氧化碳捕获性能,由于在实际条件下工业烟气中含有8-17%体积分数的水蒸汽,我们还评估了水汽对样品活性的影响。复合材料在150-400℃温度区间和水汽存在下能有效地捕获二氧化碳,最高在200℃时可以达到131mg g-1
     2.将MgO通过原位镀饰和浸渍法等手段引入到介孔氧化硅分子筛载体上,调控MgO的分布、使之首先形成均匀钝化层,再引入一定量的MgO形成高活性的纳米粒子。研究MgO分布状态与二氧化碳吸附性能的关联,并计算了MgO的吸附效率,发现多层修饰法能有效地提高MgO的活性,后负载的氧化镁其二氧化碳吸附效率最高可达92%。为了消减载体的重量,用氢氧化钠溶液浸蚀氧化镁负载的氧化硅材料,提升二氧化碳吸附量。
     3.溶胶-凝胶法合成多孔泡沫状氧化镁。研究模板剂胶束与发泡剂之间的配伍以及造孔协同作用,确定最佳比例并探索造孔机理;考察焙烧温度、焙烧气氛、升温速率以及载气流量对于最终孔结构的影响,表征所得材料的晶相和比表面积,并采用SEM和TEM技术观察材料的微观形貌和晶格参数。测定多孔氧化镁材料的机械强度,并研究孔结构和表面状态对于二氧化碳吸附性能的影响。所得氧化镁材料在100℃和200℃时的二氧化碳吸附量分别可达115和78mg g-1,预示着潜在的应用前景
     4.利用Le Chatelier原理,改变半封闭反应体系的“窗口”大小、以控制前驱体的反应过程,从而调节产物的结构参数,最终制备出高比表面的多孔g-C3N4材料。用光催化降解甲基橙(MO)评估样品的光催化活性,发现其性能远远超过传统合成的g-C3N4材料。另外,采用ZnCl2为模板合成多孔g-C3N4材料,考察ZnCl2的用量对产物孔结构的影响。光催化降解MO的实验表明,样品能大量吸附MO,并且具有较高的光催化活性。鉴此,我们提出了吸附促进光催化的反应模式。
The rapid development of industry leads to a series of environmental problem, and how to effectively protect environment with the social development has become the focus of people's attention. This thesis is devoted to design and synthesize novel functional porous materials that are used in environmental protection. In order to directly capture CO2from industrial flue gas, we synthesize MgO-loaded porous materials though co-precipitation and muti-coating methods, and explore the relationship between structure and performance. Based on this, self-supporting porous MgO is synthesized by using sol-gel method. Furthermore, we study the formation process of g-C3N4material, and prepare porous g-C3N4with enhanced activity though controlled thermal reaction and ZnCl2template.
     1. A novel MgO-based porous adsorbent has been synthesized in a facile co-precipitation method for the first time, in order to provide a candidate for trapping CO2in flue gas at high temperature. The resulting composite exhibits a mesoporous structure with a wide pore size distribution, due to the even dispersion and distribution of microcrystalline MgO in the framework of alumina to form a concrete-like structure. These sorbents can capture CO2at high temperature (150-400℃), possessing high reactivity and stability in cyclic adsorption-desorption processes, providing competitive candidates to control CO2emission.
     2. MgO is loaded in the pore of mesoporous silica though in situ coating and impregnation methods. Firstly, we adjust the distribution of pre-coated MgO and make it forming even passivation layer, then, a given amount of MgO is introduced in the in situ coated MgO/SBA-15material by impregnation method. We assess the CO2adsorption capacities of these materials at different temperature and calculate the adsorptive efficiency based on some hypotheses, finding that muti-coating method can improve the activity of MgO. In order to decress the mass of carrier, MSn-x samples are corroded with NaOH solution, and the obtained materials show much higher CO2adsorption capacities.
     3. A new preparative route of porous magnesia is reported in this paper to fabricate pores in magnesia through in situ carbonization. New foam-like magnesia materials were synthesized via one-pot pathway using P123and PEO as templates and magnesium nitrate as precursor, forming the as-made Mg2+-block-polymer-rich composites at first. These composites were converted to magnesia-carbon monolith in the calcination under nitrogen, and then formed the foam-like MgO after the succeeding calcination in air to remove carbon species. Foam-like magnesia samples possess the interconnected porous architecture and cavity, and their framework were constructed by nano-crystalline MgO; they have the large surface area (101-130m2g-1) and pore volume (0.24-0.36cm3g-1) as well as multiple-length-scale porosity (macro-and mesopores). Apart from the advantage of synthesis, this porous magnesia exhibits a considerably high capacity in the CO2adsorption in the temperature range of25℃-200℃.
     4. Porous g-C3N4was synthesized by a facile template-free method to control the reaction of polymer according to Le Chatelier's principle. The resulting porous g-C3N4material has high Brunauer-Emmett-Teller (BET) surface area (201-209m2g-1) and large pore volume (0.50-0.52m3g-1), and shows a ten times enhanced photocatalytic activity for methyl orange (MO) photodegradation under visible light (λ>420nm) irradiation. Moreover, Porous g-C3N4materials are also synthesized by using ZnCl2as a template, and the adding amount of ZnCl2obviously affects the pore structure of products. Photodegradation of MO experiment shows that porous can adsorb lots of MO, leading to an enhanced photocatalytic activity of porous g-C3N4
引文
[1]徐如人,庞文琴,于吉红,霍启升,陈接胜,《分子筛与多孔材料化学》,科学出版社,2004,第一版。
    [2]Z. Y. Yuan, B. L. Su, J. Mater. Chem.2006,16,663.
    [3]S. Polarz, B. Smarsly, J. Nanosci. Nanotech.2002,2,581.
    [4]M. E. Davis, Nature 2002,417,813.
    [5]B. J. Scott, G. Wirnsberger, G. D. Stucky, Chem. Mater.2001,13,3140.
    [6]A. Taguchi, F. Schiith, Micropor. Mesopor. Mater.2005,77,1.
    [7]A. Stein, Adv. Mater.2003,15,763.
    [8]T. Ohsuna, Y. Horikawa, K. Hiraga, Chem. Mater.1998,10,688.
    [9]S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001,42,169
    [10]H. Nishihara, S. R. Mukai, D. Yamashita, H. Tamon, Chem. Mater.2005,17,683.
    [11]A. F. Cronstedt, Kongl. Svenska Vetenskaps Acad. Handlinger 1756,17,120.
    [12]R. J. Argauer, G. R. Landolt, U. S. Patent,1972,3,702,866.
    [13]C. T. Cresge, M. E. Leonowicz, W. J. Roth, J. C. Vartali, J. S. Beck, Nature,1992,359,710.
    [14]S. Subramoney, Adv. Mater.1998,10,1157.
    [15]T. Kyotani, Carbon 2000,38,269.
    [16]M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater.2000,12,1961.
    [17]S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001,412,169.
    [18]F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, D. Zhao, J. Am. Chem. Soc.2005,127, 13508.
    [19]Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem., Int. Ed.2005,44,7053.
    [20]G. Ferey, Chem. Soc. Rev.2008,37,191.
    [21]U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 2006,16,626.
    [22]S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem.2004,116,2388.
    [23]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998,279,548.
    [24]R. K. Her, The chemistry of silica:Wiley,1971.
    [25]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Nat. Mater.2003,2,159.
    [26]S. Polarz, M. Antonietti, Chem. Commun.2002,2593.
    [27]Z. L. Yang, Y. F. Lu, Z. Z. Yang, Chem. Commun.2009,2270.
    [28]V. Meynen, P. Cool, E.F. Vansant, Micropor. Mesopor. Mater.2009,125,170.
    [29]A. B. Bourlinos, M. A. Karakassides, D. Petridis, J. Phys. Chem. B 2000,104,4375.
    [30]B. Z. Tian, X Y. Liu, C. Z. Yu, F. Gao, Q. Luo, S. H. Xie, B. Tu, D. Y. Zhao, Chem. Commun.2002,1186.
    [31]S. Kawi, M. W. Lai, Chem. Commun.1998,1407.
    [32]A. Imhof, D J Pine, Nature 1997,389,948.
    [33]S. A. Johnson, P. J. Ollivier, T. E. Mallouk, Science 1999,283,963.
    [34]A. B. Fuertes, M. Sevilla, S. Alvanez, T. Valdes-Solis, P. Tartaj,Adv. Funct. Mater.2007,17, 2321.
    [35]Z. X. Wu, Y. Meng, D. Y. Zhao, Microporous Mesoporous Mater.2010,128,165.
    [36]D. H. Choi, R. Ryoo, J. Mater. Chem.2010,20,5544.
    [37]R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999,103,7743.
    [38]J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, Chem. Commun.1999,2177.
    [39]S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc.2000,122,10712.
    [40]A. H. Lu, F. Schuth, Adv. Mater.2006,18,1793.
    [41]J. Roggenbuck, G. Koch, M. Tiemann, Chem. Mater.2006,18,4151.
    [42]H. J. Wang, H. Y.Jeong, M. Imura, L. Wang, L. Radhakrishnan, N. Fujita, T. Castle, O. Terasaki, Y.Yamauchi, J. Am. Chem. Soc.2011,133,14526.
    [43]X. H. Sun, Y. F. Shi, P. Zhang, C. M. Zheng, X. Y. Zheng, F. Zhang, Y. C. Zhang, N. J. Guan, D. Y. Zhao, G. D. Stucky,J. Am. Chem. Soc.2011,133,14542.
    [44]A. Sellinger, P. M. Weiss, A. Nguyen, Y. F. Lu, R. A. Assink, W. L. Gong, C. J. Brinker, Nature 1998,394,256.
    [45]冯利邦,王顺花,杨妹娟,化学进展,2008,20,1896。
    [46]C. J. Brinker, Y. F. Lu, A. Sellinger, H. Fan, Adv. Mater.1999,11,579.
    [47]Y. F. Shi, Y. Wan, R. L. Liu, B. Tu, D. Y. Zhao, J. Am. Chem. Soc.2007,129,9522.
    [48]Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, J.1. Zink, Nature 1997,389,364.
    [49]D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, C. Sanchez, Adv. Funct. Mater.2004,14,309.
    [50]H. J. Shin, R. Ryoo, Z. Liu, O. Terasaki, J. Am. Chem. Soc.2001,123,1246.
    [51]G. J. D. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev.2002,102,4093.
    [52]E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez, J. Am. Chem. Soc. 2003,125,9770.
    [53]D. Grosso, A. R. Balkenende, P. A. Albouy, A. Ayral, H. Amenitsch, F. Babonneau, Chem. Mater.2001,13,1848.
    [54]Y. Wan, H. Yang, D. Zhao, Ace. Chem. Res.2006,39,423.
    [55]D. Y. Zhao, P. D. Yang, N. Melosh, J. L. Feng, B. F. Chmelka, G. D. Stucky, Adv. Mater. 1998,10,1380.
    [56]H. M. Yang, X. H. Su, A. D. Tang, Mater. Res. Bull.2007,42,1357.
    [57]J. Kavinchan, T. Thongtem, S. Thongtem, Mater. Lett.2010,64,2388.
    [58]H. Wang, J. M. Zhu, J. J. Zhu, L. M. Yuan, H. Y. Chen, Langmuir 2003,19,10993.
    [59]姚云峰,张迈生,杨燕生,物理化学学报2001,1117。
    [60]B. L. Newalkar, S. Komarneni, H. Katsuki, Phys. Chem. Chem. Phys.2000,2,2389.
    [61]颜学武,韩小伟,曹毅,魏一伦,朱建华,无机化学学报,2002,18,1101。
    [62]Y. Jiang, Y. J. Zhu, J. Phys. Chem. B 2005,109,4361.
    [63]W. D. Shi, Y. Yan, Y. Xu, Chem. Eng. J 2013,215,740.
    [64]R. Eluri, B. Paul, Mater. Lett.2012,76,36.
    [65]L. Hashemi, A. Morsali, Crystengcomm 2012,14,779.
    [66]X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang, Appl. Phys. Lett.2008,92, 173117.
    [67]甄开吉,王国甲,毕颖丽,李荣生,阚秋斌,《催化作用基础》,科学出版社,2005,第三版。
    [68]H. Shokrollahi, Powder Technol.2013,235,953.
    [69]E. Reverchon, J. Supercrit. Fluid.1999,15,1.
    [70]C. C. Chen. P. Liu, C. H. Lu, Chem. Eng. J 2008,144,509.
    [71]H. S. Potdar, K. W. Jun, J. W. Bae, S. M. Kim, Y. J. Lee, Appl. Catal. A-Gen.2007,321, 109.
    [72]L. B. Sun, J. Yang, J. H. Kou, F. N. Gu, Y. Chun, Y. Wang, J. H. Zhu, Z. G. Zou, Angew. Chem., Int. Ed.,2008,47,3418.
    [73]M. Hartmann, Angew. Chem. Int. Ed.2004,43,5880.
    [74]B. J. Schoeman, J. Sterte, J. E. Ottersted, Zeolites 1994,14,110.
    [75]M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature 1988,331,698.
    [76]C. C. Freyhard, M. Tsapatsis, R. F. Lobo, K. J. Balkus, Nature 1996,381,295.
    [77]K. G. Strohmaier, D. W. Vaughan, J. Am. Chem. Soc.2003,125,16035.
    [78]谢荣国,席珍强,马向阳,袁俊,杨德仁,材料科学与工程,2002,20,507.
    [79]W. Y. Lin, S. J. Chen, Y. Sun, W. Q. Pang, J. Chem. Soc. Chem. Commun.1995,2367.
    [80]Q. W. Li, H. Yan, Y. Cheng, J. Zhang, Z. F. Liu, J. Mater. Chem.2002,12,1179.
    [81]E. Knozinger, O. Diwald, M. Sterrer, J. Mol. Catal. A:Chem.2000,162,83.
    [82]D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nature Mater.2003,2,386.
    [83]X. W. Lou, D. Deng, J. Y. Lee, L. A. Archer, J. Mater. Chem.2008,18,4397.
    [84]M. R. Raupach, G. Marland, P. Ciais, C. Le Quere, J. G. Canadell, G. Klepper, C. B. Field, Proc. Natl. Acad. Sci. U. S. A.2007,104,10288.
    [85]K. M. K. Yu, I. Curcic, J. Gabriel, S. C. E. Tsang, ChemSusChem 2008,1,893.
    [86]M. G. Plaza, C. Pevida, B. Arias, M. D. Casal, C. F. Martin, J. Fermoso, F. Rubiera, J. J. Pis, J. Environ. Eng.2009,135,426.
    [87]F. M. Orr, Jr., Energy Environ. Sci.2009,2,449.
    [88]R. Steeneveldt, B. Berger, T. A. Torp, Chem. Eng. Res. Des.2006,84,739.
    [89]J. Blarney, E. J. Anthony, J. Wang, P. S. Fennel, Prog. Energy Combust. Sci.2010,36,260.
    [90]D. P. Harrison, Greenh. Gas Con. Techn.7,2005,2,1101.
    [91]S. Choi, J. H. Drese, C. W. Jones, ChemSusChem,2009,2,796.
    [92]T. C. Dragea,O. Kozynchenkob, C. Pevidac, M. G. Plazac, F. Rubierac, J. J. Pisc, C. E.Snapea, S. Tennisonb, Energy Proc.2009,I,599.
    [93]A. Arenillas, K. M. Smith, T. C. Drage, C. E. Snape, Fuel 2005,84,2204.
    [94]S. Sircar, T. C. Golden, M. B. Rao, Carbon 1996,34,1.
    [95]M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, M. Meyyappan, Chem. Phys. Lett.2003, 576,761.
    [96]S. C. Hsu, C. Lu, F. Su, W. Zeng, W. Chen, Chem. Eng. Sci.2010,65,1354.
    [97]C. Lu, H. Bai, B. Wu, F. Su, J. F. Hwang, Energy Fuels,2008,22,3050.
    [98]F. Su, C. Lu, W. Cnen, H. Bai, J. F. Hwang, Sci. Total Environ.2009,407,3017.
    [99]D. Saha, S. Deng, J. Colloid Interface Sci.2010,345,402.
    [100]V. Yu. Yakovlev, A. A. Fomkin, A. V. Tvardovski, J. Colloid Interface Sci.2003,268,33.
    [101]M. L. Gray, Y. Soong, K. J. Champagne Jr., P. Toochinda, S. S. C. Chuang, Fuel Chem. Div. Prepr.2002,47,64.
    [102]A. Arenillas, F. Rubiera, J. B. Parra, C. O. Ania, J. J. Pis, Appl. Surf. Sci.2005,252,619.
    [103]T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo, C. E. Snape, Fuel,2007,86, 22.
    [104]P. J. M. Carrott, J. M. V. Nabais, M. M. L. Ribeiro Carrott, J. A. Pajares, Carbon 2001,39, 1543.
    [105]A. Arenillas, T. C. Drage, K. Smith, C. E. Snape, J. Anal. Appl. Pyrolysis 2005,74,298.
    [106]C. Pevida, M. G. Plaza, B. Arias, J. Fermoso, F. Rubiera, J. J. Pis, Appl. Surf. Sci.2008, 254,7165.
    [107]J. Przepiorski, M. Skrodzewicz, A. W. Morawski, Appl. Surf. Sci.2004,225,235.
    [108]M. Mercedes Maroto-Valer, Z. Tang, Y. Zhang, Fuel Process. Technol.2005,86,1487.
    [109]M. L. Gray, Y. Soong, K. J. Champagne, J. Baltrus, R. W. Stevens, Jr., P. Toochinda, S. S. C. Chuang, Sep. Purif. Technol.2004,35,31.
    [110]Q. Wang, J. Z. Luo, Z. Y. Zhong, A. Borgna, Energy Environ. Sci.2011,4,42
    [11]G. P. Hao, W. C. Li, D. Qian, A. H. Lu, Adv. Mater.2010,22,853.
    [112]M. Mercedes Maroto-Valer, Z. Lu, Y. Zhang, Z. Tang, Waste Manage.2008,28,2320.
    [113]M. G. Plaza, C. Pevida, C. F. Martin, J. Fermoso, J. J. Pis, F. Rubiera, Sep. Purif. Technol. 2010,71,102.
    [114]P. A. Jacobs, F. H. Van Cauwelaert, E. F. Vansant, J. B. Uytterhoeven, J. Chem. Soc. Faraday Trans. J,1973,69,1056.
    [115]T. Montanari, G. Busca, Vib. Spectrosc.2008,46,45.
    [116]R. Hernandez-Huesca, L. Diaz, G. Aguilar-Armenta, Sep. Purif. Technol.1999,15,163.
    [117]P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd, Adsorption 2008,14,575.
    [118]Z.Liang, M.Marshall, A. L. Chaffee, Energy Proc.2009,I,1265.
    [119]E. Diaz, E. Munoz, A. Vega, S. Ordocnez, Ind. Eng. Chem. Res.2008,47,412.
    [120]J. Merel, M. Clausse, F. Meunier, Ind. Eng. Chem. Res.2008,47,209.
    [121]S. K. Wirawan, D. Creaser, Microp. Mesop. Mater.2006,91,196.
    [122]J. Zhang, R. Singh, P. A. Webley, Microp. Mesop. Mater.2008,111,478.
    [123]P. J. E. Harlick, F. H. Tezel, Microp. Mesop. Mater.2004,76,71.
    [124]R. V. Siriwardane, M. S. Shen, E. P. Fisher, J. A. Poston, Energy Fuels 2001,15,279.
    [125]T. Inui, Y. Okugawa, M. Yasuda, Ind. Eng. Chem. Res.1988,27,1103.
    [126]D. Ko, R. Siriwardane, L. T. Biegler, Ind. Eng. Chem. Res.2003,42,339.
    [127]X. Xu, C. Song, J. M. Andresen, B. G. Miller, A. W. Scaroni, Microp. Mesop. Mater.2003, 62,29.
    [128]K. S. Walton, M. B. Abney, M. D. LeVan, Microp. Mesop. Mater.2006,91,78.
    [129]T. Yamazaki, M. Katoh, S. Ozawa, Y. Ogino, Mol. Phys.1993,80,313.
    [130]S. K. Wirawan and D. Creaser, Sep. Purif. Technol.2006,52,224.
    [131]E. Gallei, G. Stumpf, J. Colloid Interface Sci.1976,55,415.
    [132]F. Brandani, D. M. Ruthven, Ind. Eng. Chem. Res.2004,43,8339.
    [133]R. R. Bottoms, US patent,1783901,1930.
    [134]S. Mamum, R. Nilsen, H. F. Svendsen, O. Juliussen, J. Chem. Eng. Data 2005,50,630.
    [135]T. Tsuda, T. Fujiwara, Y. Takteani, T. Saeguas, Chem. Lett.1992,21,2161.
    [136]S. Lee, T. P. Filburn, M. Gray, J. W. Park, H. J. Song, Ind. Eng. Chem. Res.2008,47, 7419.
    [137]M. Schladt, T. P. Fiburn, J. J. Helble, Ind. Eng. Chem. Res.2007,46,1590.
    [138]R. A. Khatri, S. S. C. Chuang, Y. Soong, M. Gray, Energy Fuels 2006,20,1514.
    [139]A. C. C. Chang, S. S. C. Chuang, M. Gray, Y. Soong, Energy Fuel,2003,17 (2),468.
    [140]Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Energy Fuels 2002,16, 1463.
    [141]M. B. Yue, Y. Chun, Y. Cao, X. Dong, J. H. Zhu, Adv. Fund. Mater.2006,16,1717.
    [142]M. B. Yue, L. B. Sun,Y. Cao, Y. Wang, Z. J. Wang, J. H. Zhu, Chem. Eur. J.2008,14, 3442.
    [143]G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A. H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, Energy Environ. Sci.2011,4,444.
    [144]F. Y. Chang, K. J. Chao, H. H. Cheng, C. S. Tan, Sep. Purif. Technol.2009,70,87.
    [145]P. J. E. Harlick, A. Sayari, Ind. Eng. Chem. Res.2007,46,446.
    [146]S. H. Liu, C. H. Wu, H. K. Lee, S. B. Liu, Top. Catal.2010,55,210.
    [147]J. H. Drese, S. Choi, R. P. Lively, W. J. Koros, D. J. Fauth, M. L. Gray, C. W. Jones, Adv. Funct. Mater.2009,19,3821.
    [148]T. L. Chew, A. L. Ahmad, S. Bhatia, Adv. Colloid Interface Sci.2010,153,43.
    [149]A. Simon, T. Cohen-Bouhacina, M. C. Porte, J. P. Aime, C. Baquey, J. Colloid Interface Sci.2002,251,278.
    [150]Y. Tang, K. Landskron, J. Phys. Chem. C 2010,114,2494.
    [151]P. D. Vaidya, E. Y. Kenig, Ind. Eng. Chem. Res.2008,47,34.
    [152]P. J. E. Harlick, A. Sayari, Ind. Eng. Chem. Res.2006,45,3248.
    [153]H. Lepaumier, D. Picq, P. L. Carrette, Ind. Eng. Chem. Res.2009,48,9068.
    [154]J. B. Lee, C. K. Ryu, J. I. Baek, J. H. Lee, T. H. Eom, S. H. Kim, Ind. Eng. Chem. Res. 2008,47,4465.
    [155]C. K. Yi, S. H. Jo, Y. Seo, S. D. Park, K. H. Moon, J. S. Yoo, J. B. Lee, C. K. Ryu, Stud. Surf. Sci. Catal.2006,159,501.
    [156]Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green, W. J. McMichael, Energy Fuels 2004, 18,569.
    [157]S. C. Lee, J. C. Kim, Catal. Surv. Asia 2007,11,171.
    [158]C. Zhao, X. Chen, C. Zhao, Int. J. Greenh. Gas Con.2010,4,655.
    [159]V. E. Sharonov, A. G. Okunev, Y. I. Aristov, React. Kinet. Catal. Lett.2004,82,363.
    [160]C. Zhao, X. Chen, C. Zhao, Chemosphere 2009,75,1401.
    [161]C. Zhao, X. Chen, C. Zhao, Y. Liu, Energy Fuels 2009,23,1766.
    [162]C. K. Yi, S. H. Jo, Y. Seo, J. B. Lee, C, K. Ryu, Int. J. Greenh, Gas Con.2007,1,31.
    [163]C. K. Yi, S. H. Jo, H. J. Ryu, Y. W. Yoo, J. B. Lee, C. K. Ryu, Greenh. Gas Con. Tech. 2005,2,1765.
    [164]H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, lnd. Eng. Chem. Res.1998,37,185.
    [165]A. G. Okunev, V. E. Sharonov, Y. I. Aistov, V. N. Parmon, React. Kinet. Catal. Lett.2000, 71(2),355.
    [166]G. Ferey, Chem. Soc. Rev.2008,37,191.
    [167]U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre,J. Mater. Chem. 2006,16,626.
    [168]S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem.2004,116,2388.
    [169]S. R. Batten, R. Robson, Angew. Chem. Int. Ed.1998,37,1460.
    [170]G. Ferey, Dalton Trans.2009,4400.
    [171]G. Ferey, Chem. Soc. Rev.2008,37,191.
    [172]S. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey, J. Am. Chem. Soc. 2005,127,13519.
    [173]D. Li, K. Kaneko, Chem. Phys. Lett.2001,335,50.
    [174]K. S. Walton, A. R. Millward, D. Dubbeldam, H. Frost, J. J. Low, O. M. Yaghi, R. Q. Snurr, J. Am. Chem. Soc.2008,130,406.
    [175]J. Moellmer, E. B. Celer, R. Luebke, A. J. Cairns, R. Staudt, M. Eddaoudi, M. Thommes, Microp. Mesop. Mater.2010,129,345.
    [176]A. Demessence, D. M. D'Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc.2009,131, 8784.
    [177]A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc.2005,127,17998.
    [178]P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, G. Ferey, Langmuir 2008,24,7245.
    [179]D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed.2010,49,6058.
    [180]J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J. S. Chang, Adv. Mater.2007,19,1830.
    [181]D. G. Samsonenko, H. Kim, Y. Y. Sun, G. H. Kim, H. S. Lee, K. Kim, Chem. Asian J.2007, 2,484.
    [182]J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc.2010,132,38.
    [183]Y. S. Bae, A. M. Spokoyny, O. K. Farha, R. Q. Snurr, J. T. Hupp, C. A. Mirkin, Chem. Commun.2010,46,3478.
    [184]Y. S. Bae, O. K. Farha, J. T. Hupp, R. Q. Snurr, J. Mater. Chem.2009,19,2131.
    [185]Y. S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp, R. Q. Snurr, Chem. Commun.2008,4135.
    [186]J. W. Yoon, Y. K. Seo, Y. K. Hwang, J. S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P. L. Llewellyn, C. Serre, P. Horcajada, J. M. Greneche, A. E. Rodrigues, G. Ferey, Angew. Chem. Int. Ed.2010,49,5949.
    [187]P. D. C. Dietzel, V. Besikiotis, R. Blom, J. Mater. Chem.2009,19,7362.
    [188]S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc.2008,130,10870.
    [189]Z. Q. Wang, S. M. Cohen, Chem. Soc. Rev.2009,38,1315.
    [190]R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc.2009,131,3875.
    [191]O. K. Farha, K. L. Mulfort, J. T. Hupp, Inorg. Chem.2008,47,10223.
    [192]G. R. Williams and D. O'Hare, J. Mater. Chem.2006,16,3065.
    [193]V. Rives and S. Kannan, J. Mater. Chem.2000,10,489.
    [194]Y. Ding, E. Alpay, Trans IChemE 2001,79,45.
    [195]M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, J. Cornejo, Appl. Clay Sci.2001, 18,17.
    [196]Z. Yong, V. Mata, A. E. Rodriguez, Ind. Eng. Chem. Res.2001,40,204.
    [197]N. D. Hutson, S. A. Speakman, E. A. Payzant, Chem. Mater.2004,16,4135.
    [198]F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 1991,11,173.
    [199]W. Kagunya, Z. Hassan, W. Jones, Inorg. Chem.1996,35,5970.
    [200]K. U. Kaneda, S. Ueno, K. Ebitani, Curr Top. Catal.1997,1,91.
    [201]M. R. Othman, Z. Helwani, Martunus, W. J. N. Fernando, Appl. Organomet. Chem.2009, 23,335.
    [202]N. D. Hutson, S. A. Speakman, E. A. Payzant, Chem. Mater.2004,16,4135.
    [203]H. T. J. Reijers, S. E. A. Valster-Schiermeier, P. D. Cobden, R. W. van den Brink, Ind. Eng. Chem. Res.2006,45,2522.
    [204]W. Yang, Y. Kim, P. K. T. Liu, M. Sahimi, T. T. Tsotsis, Chem. Eng. Sci.2002,57,2945.
    [205]M. K. Ram Reddy, Z. P. Xu, G. Q. Lu, J. C. Diniz da Costa, Ind. Eng. Chem. Res.2008,47, 2630.
    [206]Z. Yong, A. E. Rodrigues, Energy Convers. Manage.2002,43,1865.
    [207]C. H. Wu, Y. P. Chang, S. Y. Chen, D. M. Liu, C. T. Yu, B. L. Pen, J. Nanosci. Nanotechnol.2010,10,4716.
    [208]M. S. San Roman, M. J. Holgado, C. Jaubertie, V. Rives, Solid State Sci.2008,10,1333.
    [209]A. L. Mackenzie, C. T. Fishel, R. J. Davis, J. Catal.1992,138,547.
    [210]T. Horiuchi, H. Hidaka, T. Fukui, Y. Kubo, M. Horio, K. Suzuki, T. Mori, Appl. Catal. A 1998,167,195.
    [211]S. Walspurger, L. Boels, P. D. Cobden, G. D. Elzinga, W. G. Haije, R. W. van den Brink, ChemSusChem 2008,1,643.
    [212]K. B. Lee, A. Verdooren, H. S. Caram, S. Sircar, J. Colloid Interface Sci.2007,308,30.
    [213]E. Oliveira, C. Grande, A. Rodrigues, Sep. Purif. Technol.2008,62,137.
    [214]A. D. Ebner, S. P. Reynolds, J. A. Ritter, Ind. Eng. Chem. Res.2007,46,1737.
    [215]J. I. Yang, J. N. Kim, Korean J. Chem. Eng.2006,23,77.
    [216]S. P. Reynolds, A. D. Ebner, J. A. Ritter, Environ. Prog.2006,25,334.
    [217]N. D. Hutson, B. C. Attwood, Adsorption 2008,14,781.
    [218]Y. Lwin, F. Abdullah, J. Therm. Anal. Calorim.2009,97,885.
    [219]X. P. Wang, J. J. Yu, J. Cheng, Z. P. Hao, Z. P. Xu, Environ. Sci. Technol.2008,42,614.
    [220]B.B. Sakadjian, M.V. Iyer, H. Gupta, L.S. Fan, Ind. Eng. Chem. Res.2007,46,35.
    [221]M. K. R. Reddy, Z. P. Xu, G. Q. Lu, J. C. Diniz da Costa, Ind. Eng. Chem. Res.2008,47, 7357.
    [222]B. Feng, H. An, E. Tan, Energy Fuels 2007,21,426.
    [223]J. C. Hu, K. K. Zhu, L. F. Chen, C. Kulbel, R. Richards, J. Phys. Chem. C 2007,111, 12038.
    [224]Z. Liu, J. A. C. Concepcion, M. Mustian, M. D. Amiridis, Appl. Catal. A:Gen.2006,302, 232.
    [225]M. Bhagiyalakshmi, J. Y. Lee, H. T. Jang, Int. J Greenh. Gas Con.2010,451.
    [226]Z. Zhao, H. Dai,, Y. Du, J. Deng, L. Zhang, F. Shi, Mat. Chem. Phys.2011,128,348.
    [227]S. W. Bian, J. Baltrusaitis, P. Galhotra, V. H. Grassian, J. Mater.Chem.2010,20,8705.
    [228]M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, M. M., Peng, H. T. Jang, Fuel 2011,90 1662.
    [229]L. Li, X. Wen, X. Fu, F. Wang, N.Zhao, F. Xiao, W. Wei, Y. Sun, Energy Fuels 2010,24, 5773.
    [230]A. Hassanzadeh, J. Abbasian, Fuel 2010,89,1287.
    [231]S. C. Lee, H. J. Chae, S. J. Lee, B. Y. Choi, C. K. Yi, J. B. Lee,C. K. Ryu, J. C. Kim, Environ. Sci. Technol.2008,42,2736.
    [232]D. Wolf, M. B. Chassonnery, M. Hohenberger, A. van Veen, M. Baerns, Catal. Today 1998,40,147.
    [233]R. V. Siriwardane, R. W. Stevens, Ind. Eng. Chem. Res.2009,48,2135.
    [234]Z. S. Li, N. S. Cai, Y. Y. Huang, H. J. Han, Energy Fuels 2005,19,1447.
    [235]F. Zeman, Int. J. Greenh. Gas Con.2008,2,203.
    [236]J. C. Abanades, E. J. Anthony, D. Y. Lu, C. Salvador, D. Alvarez, AIChE J.2004,50,1614.
    [237]R. Barker, J. Appl. Chem. Biotechnol 2007,23,733.
    [238]S. K. Bhatia, D. D. Perlmutter, AIChE J.1983,29,79.
    [239]A. I. Lysikov, A. N. Salanov, A. G. Okunev, Ind. Eng. Chem.Res.2007,46,4633.
    [240]J. C. Abanades, D. Alvarez, Energy Fuels 2003,17,308.
    [241]J. C. Abanades, Chem. Eng. J.2002,90,303.
    [242]P. Sun, J. R. Grace, C. J. Lim, E. J. Anthony, AIChE J.2007,53,2432.
    [243]H. Lu, A. Khan, S. E. Pratsinis, P. G. Smirniotis, Energy Fuels 2009,23,1093.
    [244]L. Li, D. L. King, Z. Nie, C. Howard, Ind. Eng. Chem. Res.2009,48,10604.
    [245]E. Bouquet, G. Leyssens, C. Schonnenbeck, P. Gilot, Chem. Eng. Sci.2009,64,2136.
    [246]D. Alvarez, J. C. Abanades, Energy Fuels 2004,19,270.
    [247]J. Blarney, E. J. Anthony, J. Wang, P. S. Fennel, Prog. Energy Combust. Sci.2010,36, 260.
    [248]D. Mess, A. F. Sarofim, J. P. Longwell, Energy Fuels,1999,13,999.
    [249]D. Alvarez, J. C. Abanades, Ind. Eng. Chem. Res.2005,44,5608.
    [250]V. Manovic, E. J. Anthony, Ind. Eng. Chem. Res.2010,49,6916.
    [251]S. Wang, S. Yan, X. Ma, J. Gong, Energy Environ. Sci.2011,4,3805.
    [252]R. Barker, J. Appl. Chem. Biotechnol.1974,24,221.
    [253]N. Florin, A. Harris, Chem. Eng. Sci.2009,64,187.
    [254]H. Lu, P. G. Smirniotis, F. O. Ernst, S. E. Pratsinis, Chem. Eng. Sci.2009,64,1936.
    [255]H. Lu, E. P. Reddy, P. G. Smirniotis, Ind. Eng. Chem. Res.2006,45,3944.
    [256]H. Lu, A. Khan, P. G. Smirniotis, Ind. Eng. Chem. Res.2008,47,6216.
    [257]H. Gupta, L. S. Fan, Ind. Eng. Chem. Res.2002,41,4035.
    [258]D. Dasgupta, K. Mondal, T. Wiltowski, Int. J. Hydrogen Energy 2008,33,303.
    [259]V. Manovic, E. J. Anthony, Environ. Sci. Technol.,2007,41,1420.
    [260]V. Manovic, D. Lu, E. Anthony, Fuel 2008,87,3344.
    [261]Y. J. Li, C. S. Zhao, C. R. Qu, L. B. Duan, Q. Z. Li, C. Liang, Chem. Eng. Sci.2008,31, 237.
    [262]Y. Li, C. Zhao, H. Chen, L. Duan, X. Chen, Fuel 2010,89,642.
    [263]J. E. Readman, R. Blom, Phys. Chem. Chem. Phys.2005,7,1214.
    [264]K. O. Albrecht, K. S. Wagenbach, J. A. Satrio, B. H. Shanks, T. D. Wheelock, Ind. Eng. Chem. Res.2008,47,7841.
    [265]M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, H. Ohya, Appl. Energy 2001,69,225.
    [266]Z. S. Li, N. S. Cai, Y. Y. Huang, H. Han, Energy Fuels 2005,19,1447.
    [267]Z. S. Li, N. S. Cai, Y. Y. Huang, Ind. Eng Chem. Res.2006,45,1911.
    [268]C. S. Martavaltzi, A. A. Lemonidou, Ind. Eng. Chem. Res.2008,47,9537.
    [269]B. Feng, W. Liu, X. Li, H. An, Energy Fuels 2006,20,2417.
    [270]L. Y. Li, D. L. King, Z. M. Nie, X. S. Li, C. Howard, Energy Fuels 2010,24,3698.
    [271]K. Nakagawat, T. Ohashi, J. Electrochem. Soc.1998,145,1344.
    [272]R. T. Xiong, J. I. Ida, Y. S. Lin, Chem. Eng. Sci.2003,58,4377.
    [273]D. J. Fauth, E. A. Frommell, J. S. Hoffman, Fuel Process Tech.2005,86(1503.
    [274]P. Heriberto, B. Pedro, Chem. Mater.2005,17,1704.
    [275]王银杰,其鲁,王祥云,无机化学学报,2003,19,5314.
    [276]E. O. Fernandez, H. K. Rusten, H. A. Jakobsen, M. Ronning, A. Holmen, D. Chen, Catal. Today 2005,106,41.
    [277]H. Pfeiffer, C. V_azquez, V. H. Lara, P. Bosch, Chem. Mater.2007,19,922.
    [278]J. I. Ida, Y. S. Lin, Environ. Sci. Technol.2003,37,1999.
    [279]B. N. Nair, T. Yamaguchi, H. Kawamura, S. I. Nakao, J. Am. Ceram. Soc.2004,87,68.
    [280]E. O. Fernandez, M. Ronning, T. Grande, D. Chen, Chem. Mater.2006,18,1383.
    [281]A. L. Ortiz, N. G. P. Rivera, A. R. Rojas, D. L. Gutierrez, Sep. Sci. Technol.2005,39, 3559.
    [282]王银杰,其鲁,杜柯,北京大学学报,2005,41,501.
    [283]王银杰,其鲁,汪卫军,无机化学学报,2006,22,1118.
    [284]H. Pfeiffer, E. Lima, P. Bosch, Chem. Mater.2006,18,2642.
    [285]M. Y. V. Enriqueza, G. Gonzalezb, H. Pfeiffer, J. Solid State Chem.2007,180,2485.
    [286]M. E. Bretado, V. G. Velderrain, D. L. Gutierrez, V. C. Martinez, A. L. Ortiz, Catal. Today 2005,863,107.
    [287]M. Kato, S. Yoshikawa, K. Nakagawa, J. Mater. Sci. Lett.2002,21,485.
    [288]C. Gauer, W. Heschel, J. Mater. Sci.,2006,41,2405.
    [289]K. Essaki, M. Kato, H. Uemoto, J. Mater. Sci.2005,40,1573.
    [290]M. T. Rodriguez, H. Pfeiffer, Thermochim. Acta 2008,473,92.
    [291]M. Wang, C. G. Lee, Energy Convers. Manage.2009,50,636.
    [292]L. M. P. Romero, H. Pfeiffer, Chem. Lett.2008,37,862.
    [293]A. Fujishima, K. Honda, Nature 1972,238,3738.
    [294]S. Chakrabarti, K. DuttaB, J. Hazard. Mater. B 2004,112,269.
    [295]M. P. Reddy, A. Venugopal, M. Subrahmanyam, Appl. Catal. B Env.2007,69,164.
    [296]M. Hara, T. Takata, J. N. Kondo, K. Domen, Catal. Today 2004,90,313.
    [297]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,293,269.
    [298]K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature,2006, 440,295.
    [299]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev.1995,95,735.
    [300]张立艳,张英锋,马子川,化学世界2010,4,247
    [301]X. Y. Chen, T. Yu, X. X. Fan, H. T. Zhang, Z. S. Li, J. H. Ye, Z. G. Zhou, Appl. Surf. Sci. 2007,253,8500.
    [302]K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater.1998,10,3825.
    [303]H. Kato, A. Kudo, Chem. Phy. Lett.1998,295,487.
    [304]Z. S. Li, T. Yu, Z. G. Zou, J. H. Ye, Appl. Phy. Let.2007,68,280.
    [305]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,293,269.
    [306]W. Y. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem.1994,98,136695.
    [307]Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 2001,414,625.
    [308]Z. G. Zou, J. H. Ye, R. Abe, H. Arakawa, Catal. Lett.2000,68,235.
    [309]Z. G. Zou, J. H. Ye, H. Arakawa, Catal. Lett.2001,75,209.
    [310]Z. G. Zou, J. H. Ye, H. Arakawa, Chem. Mater.2001,13,1765.
    [311]Z. G. Zou, J. H. Ye, H. Arakawa, J. Phy. Chem. B 2002,106,517.
    [312]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.Carlsson, K. Domen, M. Antonietti, Nat. Mater.2009,8,76.
    [313]X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc.2009,131,1680
    [314]Y. Xia, R. Mokaya, Chem. Mater.2003,15,3879.
    [315]F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem.2006,118,4579; Angew. Chem. Int. Ed.2006,45,4467.
    [316]M. Tomkiewicz Catal. Today 2000,58,115.
    [317]C. Fan, J. Xiao, Y. Ding, Chin. Sci. Bull.2001,46,265.
    [318]G. Pecchi, P. Reyes, P. Sanhueza, J. Villasenor, Chemosphere 2001,43,141.
    [319]Z. Wei, F. Yin, J. Tan, W. Z. Tang, W. Hou, Chem. Bull.2001,64,76.
    [1]M. Jaroniec, L. A. Solovyov, Langmuir,2006,22,6757.
    [2]S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009,25,10397.
    [3]Y. Guo, S. Chu, S. C. Yan, Y. Wang, Z. G. Zou, Chem. Commun.2010,46,7325.
    [4]S. C. Yan, S. B. Lv, Z. S. Li, Z. G. Zou, Dalton Trans.2010,39,1488.
    [5]M. B. Yue, Y. Chun, Y. Cao, X. Dong, J. H. Zhu, Adv. Funct. Mater.2006,16,1717.
    [1]S. A. Freeman, J. Davis, G. T. Rochelle, Int. J. Greenh. Gas Con.2007,4,756.
    [2]U. E. Aronu, H. F. Svendsen, K. A. Hoff, Int. J. Greenh. Gas Con.2010,4,771.
    [3]M. L. Gray, Y. Soong, K. J. Champagne, J. Baltrus, R. W. Stevens, P. Toochinda, S. S. C. Chuang, Sep. Purif. Technol.2004,35,31.
    [4]M. B. Yue, L. B. Sun, Y. Cao, Y. Wang, Z. J. Wang, J. H. Zhu, Chem. Eur. J.2008,14,3442.
    [5]Y. Zhao, Y. H. Han, T. Z. Ma, T. X. Guo, Environ. Sci. Technol.2011,45,4060.
    [6]X. S. Yin, S. P. Li, Q. H. Zhang, J. G. Yu, J. Am. Ceram. Soc.2010,93,2837.
    [7]P. C. Lin, C. W. Huang, C. T. Hsiao, H. Teng, Environ. Sci. Technol.2008,42,2748.
    [8]S. C. Lee, H. J. Chae, S. J. Lee, B. Y. Choi, C. K. Yi, J. B. Lee, C. K. Ryu, J. C. Kim, Environ. Sci. Technol.2008,42,2736.
    [9]A. Zukal, J. Mayerova, J. Cejka, Phys. Chem. Chem. Phys.2010,12,5240.
    [10]X. S. Yin, Q. H. Zhang, J. G. Yu, Inorg. Chem.2011,50,2844.
    [11]K. Wang, X. Guo, P. F. Zhao, F. Z. Wang, C. G. Zheng, J. Hazard. Mater.2011,189,301.
    [12]J. C. Abanades, E. S. Rubin, E. J. Anthony, Ind. Eng. Chem. Res.2004,43,3462.
    [13]H. Gupta, L. S. Fan, Ind. Eng. Chem. Res.2002,41,4035.
    [14]B. B. Sakadjian, M. V. Iyer, H. Gupta, L. S. Fan, Ind. Eng. Chem. Res.2007,46,35.
    [15]L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. K. Xiao, W. Wei, Y.H. Sun, Energy Fuels 2010, 24,5773.
    [16]A. Hassanzadeh, J. Abbasian,Fuel2010,89,1287.
    [17]M. Bhagiyalakshmi, J. Y. Lee, H. T. Jang, Int. J. Greenh. Gas Con.2010,4,51.
    [18]L. B. Sun, W. H. Tian, X. Q. Liu, J. Phys. Chem. C 2009,113,19172.
    [19]R. Philipp, K. Fujimoto, J. Phys. Chem.1992,96,9035.
    [20]M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, P. M. Mei, H. T. Jang, Fuel 2011,90,1662.
    [21]D. Wolf, M. Barre-Chassonnery, M. Hohenberger, Catal Today 1998,40,147.
    [22]Y. M. Wang, Z.Y. Wu, Y. L. Wei, J. H. Zhu, Micrpor. Mesopor. Mater.2005,84,127.
    [23]L. B. Sun, J. Yang, J. H. Kou, F. N. Gu, Y. Chun, Y. Wang, J. H. Zhu, Z. G. Zou, Angew. Chem. Int. Ed.2008,47,3418.
    [24]Y. L. Wei, Y. M. Wang, J. H. Zhu, Z. Y. Wu, Adv. Mater.2003,15,1943.
    [25]M. Chatterjee, T. Iwasaki, Y. Onodera, T. Nagase, H. Hayashi, T. Ebina, Chem. Mater. 2000,12,1654.
    [26]Z. Y. Wu, Q. Jiang, Y. M. Wang, H. J. Wang, L. B. Sun, L. Y. Shi, J. H. Xu, Y. Wang, Y. Chun, J. H. Zhu, Chem. Mater.2006,18,4600.
    [27]Y. L. Wei, Y. M. Wang, J. H. Zhu, Z. Y. Wu, Adv. Mater.2003,15,1943.
    [28]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998,279,548.
    [29]Y. Xu, Q. Jiang, Y. Cao, Y. L. Wei, Z. Y. Yun, J. H. Xu, Y. Wang, C. F. Zhou, Y. Y. Shi, J. H. Zhu, Adv. Fund. Mater.2004,14,1113.
    [1]H. Ishizuki, T. Taira, Opt. Lett.2005,30,2918.
    [2]A. Kawakami, Y. Uzawa, Z. Wang, Appl. Phys. Lett.2003,83,3954.
    [3]G. Moussavi, A. Yazdanbakhsh, M. Heidarizad, J. Hazard. Mater.2009,171,907.
    [4]S. C. Lee, H. J. Chae, S. J. Lee, B.Y. Choi, C. K. Yi, J. B. Lee, C. K. Ryu, J. C. Kim, Environ. Sci. Technol.2008,42,2736.
    [5]A. Hassanzadeh, J. Abbasian, Fuel 2010,89,1287.
    [6]M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras, F. J. Urbano, J. Catal. 1996,161,829.
    [7]V. K. Diez, C. R. Apesteguia, J. I. Di Cosimo, J. Catal.2006,240,235.
    [8]J. Schwank, S. Galvagno, G. Parravano, J. Catal.1980,63,415.
    [9]K. T. Ranjit, K. J. Klabunde, Chem. Mater.2005,17,65.
    [10]T. Selvamani, A. Sinhamahapatra, D. Bhattacharjya, I. Mukhopadhyay, Mater. Chem. Phys. 2011,129,853.
    [11]X. Y. Yu, T. Luo, Y. Jia, Y. X. Zhang, J. H. Liu, X. J. Huang, J. Phys. Chem. C 2011,115, 22242.
    [12]S. Veldurthi, C. H. Shin, O S. Joo, K. D. Jung, Micropor. Mesopor. Mater.2012,152,31.
    [13]R. M. Richards, A. M. Volodin, A. F. Bedilo, K. J. Klabunde, Phys. Chem. Chem. Phys. 2003,5,4299.
    [14]R. Richards, W. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, K. J. Klabunde, J. Am. Chem. Soc.2000,122,4921.
    [15]E. Knozinger, O. Diwald, M. Sterrer, J. Mol. Catal. A-Chem.2000,162,83.
    [16]J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc.2005,127,1096.
    [17]J. Roggenbuck, G. Koch, M. Tiemann, Chem. Mater.2006,18,4151.
    [18]H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater.2006,54,1791.
    [19]Z. X. Zhao, H. X. Dai, Y. C. Du, J. G. Deng, L. Zhang, F. J. Shi, Mater. Chem. Phys.2011, 128,348.
    [20]R. Q. Sun, L. B. Sun, Y. Chun, Q. H. Xu, H. Wu, Micropor. Mesopor. Mater.2008,111,314.
    [21]M. Kruk, M. Jaroniec, Chem. Mater.2001,13,3169.
    [22]T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, Micropor. Mesopor. Mater.2008,109,84.
    [23]N. Clament Sagaya Selvam, R. Thinesh Kumar, L. John Kennedy, J. Judith Vijaya, J. Alloys Compd.2011,509,9809.
    [24]Y. F. Hao, G. W. Meng, C. H. Ye, X. R. Zhang, L. D. Zhang, J. Phys. Chem. B 2005,109, 11204.
    [25]M. Verziu, B. Cojocaru, J. C. Hu, R. Richards, C. Ciuculescu, P. Filip, V. I. Parvulescu, Green Chem.2008,10,373.
    [26]L. Kumari, W. Z. Li, C. H. Vannoy, R. M. Leblanc, D. Z. Wang, Ceram. Int.2009,35, 3355.
    [27]F. L. Deepak, P. Saldanha, S. R. C. Vivekchand, A. Govindaraj, Chem. Phys. Lett.2006, 417,535.
    [28]J. M. Montero, D. R. Brown, P. L. Gai, A. F. Lee, K. Wilson, Chem. Eng. J.2010,161,332.
    [29]J. C. Hu, K. Zhu, L. F. Chen, C. Kulbel, R. Richards, J. Phys. Chem. C2007,111,12038.
    [30]L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. K. Xiao, W. Wei, Y. H. Sun, Energy Fuels 2010, 24,5773.
    [31]Y. L. Wei, Y. M. Wang, J. H. Zhu, Z. Y. Wu, Adv. Mater.2003,15,1943.
    [32]M. Bhagiyalakshmi, J. Y. Lee, H. T. Jang, Inter. J. Greenh. Gas Con.2010,4,51.
    [33]M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, M. M. Peng, H. T. Jang, Fuel 2011,90, 1662.
    [34]S. C. Lee, H. J. Chae, S. J. Lee, B.Y. Choi, C. K. Yi, J. B. Lee, C. K. Ryu, J. C. Kim, Environ. Sci. Technol.2008,42,2736.
    [35]Y. Zhou, L. Gao, F. N. Gu, J. Y. Yang, J. Yang, F. Wei, Y. Wang, J. H. Zhu, Chem. Eur. J. 2009,15,6748.
    [36]S. W. Bian, J. Baltrusaitis, P. Galhotra, V. H. Grassian, J. Mater. Chem.2010,20,8705.
    [1]Y. I. Kim, S. Salim, M. J. Huq, T. E. Mallouk, J. Am. Chem. Soc.1991,113,9561.
    [2]O. Khaselev, J. A.Turner, Science 1998,280,425.
    [3]H. Kato, A. Kudo, J. Phys. Chem. B 2002,106,5029.
    [4]N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A.2006,103,15729.
    [5]H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, Chem. Rev.2001,101,953.
    [6]A. Kudo, Y. Miseki, Chem. Soc. Rev.2009,38,253.
    [7]S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein 1, Science 2009,324,74.
    [8]A. J. Esswein, D. G. Nocera, Chem. Rev.2007,107,4022.
    [9]F. E. Osterloh, Chem. Mater.2008,20,35.
    [10]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater.2009,8,76.
    [11]X. C. Wang, X. F. Chen, A. Thomas, X. Z. Fu, M. Antonietti, Adv. Mater.2009,21,1609.
    [12]H. Yan, Y. Huang, Chem. Commun.2011,47,4168.
    [13]G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu, H. M. Cheng, J. Am. Chem. Soc.2010,132,11642.
    [14]Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 2011,115,7355.
    [15]G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu, H. M. Cheng, J. Am. Chem. Soc.2010,132,11642.
    [16]Y. Wang, X. Wang, M. Antonietti,Y. Zhang, ChemSusChem 2010,3,435.
    [17]F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem., Int. Ed.2006,45, 4467.
    [18]S. S. Park, S. W. Chu, C. Xue, D. Zhao, C. S. Ha, J. Mater. Chem.2011,21,10801.
    [19]M. Groenewolt, M. Antonietti, Adv. Mater.2005,17,1789.
    [20]B. V. Lotsch, W. Schnick, Chem. Mater.2006,18,1891.
    [21]S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009,25,10397.
    [22]H. J. Yan, Chem. Commun.2012,48,3430.
    [23]M. Kruk, M. Jaroniec, Chem. Mater.2001,13,3169.
    [24]J. D. Hong, X. Y. Xia, Y. S. Wang, R. Xu, J. Mater. Chem.2012,22,15006.
    [25]Z. Hu, M. P. Srinivasan, Micropor. Mesopor. Mater.2001,43,267.
    [26]N. R. Khalili, M. Campbell, G. Sandi, J. Golas, Carbon 2000,38,1905.
    [27]Z. L. Zhu, A. Li, L. Yan, F. Q. Liu, Q. X. Zhang, J. Colloid Inter. Sci.2007,316,628.
    [28]B.V. Lotsch, W. Schnick, Chem. Eur. J.2007,13,4956.
    [29]H. Hattori, Chem. Rew.1995,95,537.
    [30]A. Sayari. S. Hamoudi, Chem. Mater.2001,13,3151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700