固液泵的数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液两相流离心泵广泛应用于疏浚、冶金、化工、水利、土建和环保等行业,由于输送的是固液两相流,目前主要存在磨损严重、效率偏低等问题,导致寿命短、可靠性差,虽然很多学者做了这方面研究,对离心泵内部的流动结构和流动规律也有了一些认识,但是由于其流动复杂性,许多流动现象的流场结构和产生机理仍不清楚,因此还需做大量的研究工作。为了揭示泵内部固液两相流动的规律,研究固液两相流对泵外特性的影响和磨损规律,本文采用数值模拟与试验研究相结合的方法,建立了固液离心泵的几何模型,应用Fluent计算流体力学分析软件,对其内部固液两相流场进行数值模拟,分析了泵内部速度场和压力场、固液浓度的变化和分布规律以及不同颗粒浓度和粒径对固液泵性能的影响,并在试验研究基础上采用数值仿真的方法对固液泵进行了初步的优化,并提出了一些固液泵优化的措施,为固液两相流泵的设计和改进提供了依据。
     本文的主要工作如下:
     1.系统概述了国内外学者在固液两相流泵方面的研究成果及现状。
     2.利用Pro/E三维实体造型软件进行叶轮、蜗壳实体造型,在Gambit中进行网格划分后导入Fluent进行了清水和固液两相流数值模拟,并对结果进行了分析。
     3.设计并搭建了固液两相流泵试验回路,进行了不同颗粒浓度和直径的固液两相流输送试验,取得了有参考价值的试验数据和结果,可为后续的固液泵的优化设计提供一定的依据。
     4.通过数值模拟结果与试验数据综合对比分析,结合前人在固液泵设计及优化方面的成果,采用数值模拟的方法对固液泵进行了初步的优化,取得了一定的效果,说明采用数值方法改善固液泵性能是可行的。
The solid-liquid two-phase centrifugal pump is widely used in dredging, metallurgy, chemical industry, water conservancy, construction and environmental protection industries. For the solid-liquid two-phase flow transporting, there exist two main problems: serious wear and tear, low efficiency, leading to short life and low reliability. Although many scholars have done research in this area, there are many problems to be solved due to the complexity of the internal flow. In order to reveal its internal law of the solid-liquid two-phase flow, a combination way of numerical simulation and experimental research was adopted in this paper. The geometric model of the solid-liquid centrifugal pump was build, and the computational fluid dynamics analysis software Fluent was applied to simulate the internal solid-liquid two-phase flow field. The solid-liquid concentration, speed and pressure changes and distribution in its internal flow field were researched ,as well as the impaction of different particle concentration and particle size on the properties of solid-liquid pumps. The solid-liquid two-phase centrifugal pump was optimized preliminarily based on the test results. Some optimizing measures of the solid-liquid pump were proposed, which provided the basis for the design and improvement of the solid-liquid two-phase pump.
     The main work is outlined as following:
     1. The research results and the status in solid-liquid two-phase pump of the domestic and foreign scholars were summarized.
     2.The 3D modeling software Pro/E was used to model the impeller and volute. After meshing in the Gambit, the models were imported into Fluent. The numerical simulation for the water and solid-liquid two-phase flow was carried out, and the results were analyzed.
     3. A test loopof the solid-liquid two-phase flow pump was designed and built. The solid-liquid two-phase flow transport experiments were carried out on the conditions of the different particle concentration and diameter. The important test data and results were obtained for the subsequent optimization of the solid-liquid pump.
     4. A comprehensive comparative analysis between the numerical results and the experimental data was made. Combining with the design and optimization results of the predecessors’in the solid-liquid pump, a preliminary optimization of the centrifugal pump had done by numerical simulation method. Some meaningful results were achieved. It was indicated that using numerical method to improve the performance of solid-liquid pump was feasible.
引文
[1]倪福生,杨年浩,孙丹丹.固液两相流泵的研究进展[J].矿山机械,2006,34(2):67-69.
    [2]杨敏官等.离心泵叶轮中固液两相流动的数值模拟[J].水泵技术,2005(4):31-34.
    [3]陈次昌,金树德,袁寿其.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.
    [4] Elghobashi S E,Abou-Arab T W.A two-equation turbulence closure for two-phase flows[J].Phys Fluids,1993,26-31.
    [5] Xian Y,Clark H.M,Hawthorne H M.Modeling Slurry Particle Dynamics in Carioles Erosion Tester[J].Wear, 1999,225-229.
    [6] Zhao H.X, Yamamoto M, Matsumura M. Slurry Erosion Properties of Ceramic Coatings and Functionally Gradient Materials[J]. Wear, 1995, 186-187.
    [7]张维聚.离心泵的浆体特性[J].水泵技术,1990(1):53-57.
    [8]马振宗,赵敬亭,许洪元.离心泵输送高含砂水流时特性变化的实验研究[J].水泵技术,1989(4):25-28.
    [9]陈涟,黄建德.含砂水对清水离心泵性能的影响[J].机电设备,1997(1):33-36.
    [10]李效贤.超声多普勒流量计在固液两相流测量中的应用[J].水泵技术,2000(5),35-37.
    [11]黄建德,张奎亭,陈涟.含砂水对离心泵叶轮磨损的实验研究[J].工程热物理学报,1999,20 (4): 448-452.
    [12]李仁年.抽送含沙水流离心泵叶轮的设计及试验研究[J].流体机械,1997(8):12-15.
    [13]路金喜,杜贵荣.泥沙对水泵性能参数的影响研究[J].排灌机械,1999,21 (3):13-16.
    [14]许洪元.离心式渣浆泵的设计理论研究与应用[J].水力发电学报,1998(1):23-27.
    [15]顾广运,陈定强,殷毅.固液泵设计漫谈[J].水力采煤与管道运输,1994(1):43-47.
    [16]吴波.新型渣浆泵叶轮设计[M].长沙:中南工业大学,2001.
    [17]于长辉.多泥沙河流泵站选型设计若干问题的探讨[J].山西水利科技,1995,10(9):74-76.
    [18]李仁年.含沙水流对离心泵能量特性的影响[J].甘肃工业大学学报,1996,15(22):27-31.
    [19]韦章兵,徐守坤.气液固多相流对离心泵性能影响的实验研究[J].水泵技术,2001,23(1):24-28.
    [20]陆勇,王忠亮.黄河泥沙对水泵的影响和防磨措施[J].山东建筑工程学院学报,2000,15(1):30-33.
    [21]黄建德等.含砂水对离心泵叶轮磨损的实验研究[J].工程热物理学报,1999(4):448-452.
    [22]吴玉林.渣浆泵叶轮中固液两相湍流的计算和实验[J].清华大学学报:自然科学版,1998(1):55-59.
    [23]吴玉林,葛亮,陈乃祥.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报:自然科学版,2001(10):37-41.
    [24]魏进家.密相液固两相湍流KEY模型和数值计算及离心泵叶轮两相流场实验研究[博士学位论文].西安交通大学,1998.
    [25]王春林,李婷婷,马庆勇,刑岩,胡彬彬.叶片式渣浆泵叶轮中浆体浓度分布数值模拟[J].排灌机械,2007,25(2):16-18.
    [26]李仁年,徐振法,韩伟,苏吉鑫,王浩.渣浆泵内部流场数值模拟与磨损特性分析[J].排灌机械,2007,25(2):5-8.
    [27]赵斌娟,袁寿其,刘厚林,黄忠富,谈明高.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J].2008,24(1):7-12.
    [28] Yoshiro Iwai,Kazuyki Nambu.Slurry wear properties of pump lining materials[J].Wear,1997,(210):211-219.
    [29] Craig I Walker.Slurry pump side-liner wear Comparison of some laboratory and field results[J].Wear,2001,(250):81-87.
    [30] H.X.Zhao etc.Slurry erosion properties of ceramic coating [J].Wear,1999,(230):233-235.
    [31] RoeoMc,Addiz G R.Erosion Wearin Slurry Pumps and Pipes [J].Power Technologe,1987,(503):5-9.
    [32]田爱民,李敏,田爱杰.渣浆泵叶轮的磨损规律研究[J].山东矿业学院学报,1998,17(2):168-173.
    [33]罗先武.离心泵叶轮内磨损规律的研究[D].北京:清华大学,1996.
    [34]何希杰等.渣浆泵用材料失重量的预测模型[J].水力采煤与管道运输,2001(1):10-13.
    [35]洪亮.渣浆泵材料的磨损试验[J].水泵技术,1999(1):3-5.
    [36]赵敬亭,刘卫伟.离心泵叶轮出口处水沙两相流动分析计算[J].水泵技术,1990(1):1-6.
    [37]陈红生,朱祖超,王乐勤.固液两相流离心泵磨损机理和叶轮的设计[J].水利学报,1999(8):67-71.
    [38]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [39]郭晓梅,杨敏官,施高萍,等.基于Pro/E Wildfire的水泵叶轮精确建模[J].农机化研究,2006(8):84-86.
    [40]谭东华.水下运行环境的固液两相双流道泵的设计与试验研究.[硕士学位论文],浙江大学,2006.
    [41]蔡武昌,孙淮清,纪纲编.流量测量方法和仪表的选用.北京:化学工业出版社,2001
    [42]余姚银环流量仪表有限公司.LD系列电磁流量计(资料下载).http://www.yinhuan-flowmeter.com
    [43]北京瑞普恩德斯豪斯仪表有限公司.PMC/PMP41型智能压力变送器使用说明书.
    [44]四川诚邦测控技术有限公司.NJ型转矩转速传感器和NC-2A扭矩仪说明书.
    [45]谈明高,刘厚林,袁寿其,王勇.离心泵出口角对能量性能影响的CFD研究[J].中国农村水利水电,2008,(11):104-106.
    [46]陈红生,朱祖超.固液两相流离心泵磨损机理和叶轮的设计[J].水利学报,1999,(8):67-71.
    [47]许洪元,罗先武.磨料固液泵[M].北京:清华大学出版社,2000.
    [48]张玉新,郭俊强.固液两相流泵叶轮的优化设计方法[J].水泵技术,1997(6):21-26.
    [49]樊晓芳.固液两相流离心泵的设计与性能研究[硕士学位论文],华北电力大学,2006.
    [50]杨华,刘超,汤方平,谷传纲.不同叶片包角的离心泵试验与数值模拟[J].机械工程学报,2007,43(10):66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700