AZ31镁合金挤压成形微观组织演化的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有质轻、比强度、比刚度高以及容易回收等优点,在汽车、航空航天等行业具有广阔的应用前景。但由于镁合金是密排六方晶体结构,其室温成形性能很不理想,而在温热状态下具有良好的塑性成形性能。镁合金在塑性加工过程中,会由于滑移和孪晶使晶粒发生转动而形成强烈的织构。同时镁合金在热变形过程中容易发生动态再结晶,使晶粒细化。试验研究表明,镁合金成形过程中的晶粒尺寸与织构演化对其材料性能有着明显影响。因此,研究成形过程中微观组织的变化规律对预测镁合金产品性能具有重要的意义。
     集成计算材料工程集选材、设计、制造、优化于一体,是材料学科一个新的研究方向。它将材料初始的微观组织结构信息作为计算机仿真的输入,模拟宏观制造过程及相应的微观组织演变,最终获得不同度量尺度和加工过程里所有相关的材料信息,实现低成本下产品的最优化设计,并且能够缩短新材料的研发时间。本文根据集成计算材料工程的研究方法对镁合金挤压过程的微观组织演化进行研究,采用试验和模拟两种手段,系统学习了挤压对平均晶粒尺寸和织构分布的影响,为今后镁合金产品的性能预测奠定坚实的基础。
     晶体塑性力学在织构模拟中已经得到广泛的应用,本文对不同模型和模拟方法进行对比,确定最适合于AZ31镁合金的模拟方法。首先建立了滑移主导的率无关单晶体模型,通过模拟单晶体铝板的冲压验证了其正确性。基于该单晶体模型,分别根据泰勒模型和弹塑性自洽模型建立滑移主导的多晶体模型。进一步考虑孪晶在织构演化中的作用,建立了耦合滑移、孪晶的多晶体塑性力学模型。通过模拟AZ31镁合金挤压棒材在压缩过程中的织构分布,对不同的多晶体模型和模拟方法进行对比,该研究为后续的数值模拟提供理论基础。
     为了研究铸态AZ31镁合金高温变形时的微观组织演化,对铸态AZ31镁合金进行了不同变形条件(温度、应变速率和应变)下的恒温热压缩试验。在相同变形条件下,铸态棒材中间部位和边缘部位的应力应变曲线比较接近。利用金相试验观察压缩后样品的金相组织,研究了应变量对平均再结晶晶粒尺寸的影响;采用X射线衍射试验进行宏观织构的测定;采用电子背散射衍射试验研究了变形织构和再结晶织构分布。
     采用修正的Avrami方程拟合得到铸态AZ31镁合金的高温再结晶动力学方程,将该方程嵌入弹塑性自洽模型,提出了耦合动态再结晶动力学和晶体塑性力学的计算方法。通过拟合小应变下的应力应变曲线得到材料的初始临界剪切力和硬化参数。利用材料点模拟计算了热压缩过程的应力应变曲线、织构分布和平均再结晶晶粒尺寸的变化,通过和试验结果的对比验证了方法的有效性。
     对铸态AZ31镁合金进行了不同变形条件(挤压比、挤压温度和挤压速度)下的棒材挤压试验,并且根据汽车零部件(顶盖横梁)的实际尺寸,进行型材挤压试验。利用金相试验、X射线衍射试验和电子背散射衍射试验对挤压后样品的微观组织和织构分布进行观测。同时通过室温拉伸试验研究挤压对AZ31镁合金材料性能的影响。为了能够更好的描述挤压棒材的屈服强度,提出考虑晶粒取向影响的屈服强度描述方法,将Hall-Petch公式应用到每个晶粒上,采用电子背散射衍射的试验结果(每个晶粒的尺寸和取向)作为输入,拟合结果和试验结果较为一致。
     基于动态再结晶动力学和晶体塑性力学的耦合计算方法,考虑挤压过程中温度场变化的影响,对镁合金挤压过程进行宏微观集成计算,预测了挤压棒材和挤压汽车零部件的织构分布,模拟结果与试验结果较为相似。基于考虑晶粒取向影响的屈服强度描述方法,以挤压型材的模拟结果作为输入,得到挤压型材的屈服强度,和试验测量的挤压型材的屈服强度较为接近。因此,基于集成计算材料工程对镁合金挤压过程进行研究有助于揭示其微观组织的演化规律,能够为制定挤压工艺提供理论依据,促进镁合金挤压技术的推广和应用。
Magnesium alloy is promising metal in automotive and aerospace applications because of its low density, high specific strength and stiffness and recyclability. Due to the close-packed hexagonal structure, the formability of magnesium alloy is poor at room temperature, while it is much better at warm condition. Grain reorientation caused by slip and twinning can induce the formation of texture during deformation. Besides, dynamic recrystallization is easily activated during warm forming process of magnesium alloy. The experimental research shows that grain size and texture evolution during deformation of magnesium alloy has significant influence on its material properties. Hence, it is necessary to gain a better understanding of microstructure evolution during forming process from the point of view of predicting material properties.
     Integrated computational materials engineering (ICME) is a new field of study that is evolving within the global materials profession. It enables concurrent analysis of manufacturing, design, and materials within a holistic system. The forming process and microstructure evolution during forming process are simulated with the input of the initial microstructure distribution. ICME entails integration of information across length scales and forming processes for all relevant materials phenomena. In fully mature form, integrated computational materials engineering offers a solution to the industrial need to quickly develop durable components at the lowest cost. It also has important potential for accelerating the development of new materials. In this paper, microstructure evolution during extrusion process is studied with ICME methodology. A systematic research is conducted to investigate the influence of extrusion process on average grain size and texture distribution. This work lays a solid foundation for predicting material properties.
     Crystal plasticity has been widely applied to predict texture evolution recently. To find out the one which fits for magnesium alloy AZ31, comparison between different models and simulation methods has been carried out. A rate dependent single crystal model is built for slip dominated metals. The model is validated by modeling earing behavior during stamping of aluminum sheet. Based on the single crystal model, Taylor model and elasto-plastic self consistent (EPSC) model are built respectively, the effect of twinning is also incorporated into the polycrystalline plasticity model. Comparison between material point simulation and crystal plasticity based finite element method (CPFEM) is conducted by simulating texture evolution during compression of AZ31 alloy. The research lays the foundation for numerical simulation of magnesium alloy.
     To gain a better understanding of microstructure evolution during hot deformation of casting magnesium alloy AZ31, the isothermal compressions have been carried out at different deformation conditions (different temperatures, strain rates and strain). The sampling locations on the casting billet do not have obvious effect on the stress-strain curves. The microstructure distribution is measured by optical microscopy, and the influence of strain on the average recrystallized grain size is studied. The evolution of macro-texture distribution is measured by X-ray diffraction, and electron backscattered diffraction is employed to studied the deformed texture and recrystallized texture.
     The dynamic recrystallization kinetics is formulated as a function of strain, temperature and strain rate based on the modified Avrami equation. The dynamic recrystallization kinetics is then implemented into crystal plasticity model. The initial critical resolved shear stress and hardening parameters are obtained by fitting the stress-strain curve. The coupled model is employed to predict stress-strain curve, texture and averaged recrystallized grain size evolution during compression, the model is validated by comparing with experimental results.
     Direct extrusions of casting AZ31 alloy are carried out at different conditions (different extrusion ratios, extrusion temperatures and velocities), component extrusion test is conducted based on the dimension of an automotive part (roof rail). The microstructure and texture distribution of extruded samples are measured by optical microscopy, X-ray diffraction and electron backscattered diffraction respectively. Tensile tests are conducted at room temperature to reveal the influence of extrusion on the material properties. The experimental yield strength can not be solely described by average grain size. The grain size and orientation in the extruded rods are characterized by electron backscattered diffraction, and Hall-Petch equation is applied to each individual grain with the input from electron backscattered diffraction results (individual grain size and orientation). The yield strengths of tensile sample (polycrystalline aggregate) and individual grain are related by Taylor assumption. The predicted yield strength shows the same trend as experiment results.
     The integrated simulation of extrusion process is carried out based on the coupled method of dynamic recrystallization kinetics and crystal plasticity model, while the effect of temperature variation during extrusion process is also considered. Texture evolution during direct extrusion and component extrusion are simulated, the predicted results are in qualitative agreement with experimental results. The yield strength of extruded component is calculated with the predicted texture and grain size, the predicted yield strength is similar with the experimental value. Hence, investigating extrusion process of magnesium alloy with ICME methodology is possible to reveal its microstructure evolution. It can also provide theory basis of devising extrusion process design, and promote the extrusion technique of magnesium alloy.
引文
[1] N.Hoy-Petersen. From Past To Future [C]. In 47th Annual World Magnesium Conf. 1990, Cannes.
    [2]苌群峰.镁合金板材温热冲压成形理论与实验研究[D].上海:上海交通大学. 2008.
    [3]胡丽娟. AZ31镁合金板材温热变形行为的数值分析与试验研究[D].上海:上海交通大学. 2010.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社, 2005.
    [5] L.Helis, K.Okayasu, H.Fukutomi. Microstructure evolution and texture development during high-temperature uniaxial compression of magnesium alloy AZ31 [J]. Mater Sci Eng A. 2006, 430: 98-103.
    [6] S.B.Yi, S.Zaefferer, H.-G.Brokmeier. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures [J]. Mater Sci Eng A. 2006, 424: 275-281.
    [7] H.Jeong, T.Ha. Texture development in a warm rolled AZ31 magnesium alloy [J]. J Mater Process Technol. 2007, 187-188: 559-561.
    [8] T.Laser, Ch.Hartig, M.R.Nürnberg, D.Letzig, R.Bormann. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties [J]. Acta Mater. 2008, 56: 2791-2798.
    [9] S.E.Ion, F.J.Humphreys, S.H.White. Dynamid recrystallisation and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Metall. 1982, 30: 1909-1919.
    [10] A.Galiyev, R.Kaibyshev, G.Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Mater. 2001, 49: 1199-1207.
    [11] H.Ding, L.Liu, S.Kamado, W.Ding, Y.Kojima. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy [J]. J Alloys Compd. 2008, 456: 400-406.
    [12] H.Watanabe, M. Fukusumi, H. Somekawa, T. Mukai. Texture and mechanical properties of a superplastically deformed Mg–Al–Zn alloy sheet [J]. Scripta Mater. 2009, 61: 883-886.
    [13] J.A.del Valle, F.Carreno, O.A.Ruano. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling [J]. Acta Mater. 2006, 54: 4247-4259.
    [14] X.Huang, K.Suzuki, N.Saito. Textures and stretch formability of Mg–6Al–1Zn magnesium alloy sheets rolled at high temperatures up to 793 K [J]. Scripta Mater. 2009, 60: 651-654.
    [15] A.Jain, S.R.Agnew. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet [J]. Mater Sci Eng A. 2007, 462:29-36.
    [16] W.J.Kim, S.I.Hong, Y.S.Kim, S.H.Min, H.T.Jeong, J.D.Lee. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J]. Acta Mater. 2003, 51: 3293-3307.
    [17] T.Murai, S.Matsuoka, S.Miyamoto, Y.Oki. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions [J]. J Mater Process Technol. 2003, 141: 207-212.
    [18] Y.Uematsu, K.Tokaji, M.Kamakura, K.Uchida, H.Shibata, N.Bekku. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys [J]. Mater Sci Eng A. 2006, 434: 131-140.
    [19] Y.Chen, Q.Wang, J.Peng, C.Zhai, W.Ding. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy [J]. J Mater Process Technol. 2007, 182: 281-285.
    [20] A.EI-Mirsy, A.Ismail, M.Waly. Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes [J]. Mater Sci Eng A. 2008, 486: 528-533.
    [21] M.Shahzad, L.Wagner. Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80 [J]. Mater Sci Eng A. 2009, 506: 141-147.
    [22] S.S.Park, B.S.You, D.J.Yoon. Effect of the extrusion conditions on the texture and mechanical properties of indirect-extruded Mg–3Al–1Zn alloy [J]. J Mater Process Technol. 2009, 209: 5940-5943.
    [23] H.Watanabe, T.Mukai, K.Ishikawa. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy [J]. J Mater Process Technol. 2007, 182: 644-647.
    [24] X.Huang, K.Suzuki, A.Watazu, I.Shigematsu, N.Saito. Mechanical properties of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling [J]. Mater Sci Eng A. 2008, 488: 214-220.
    [25] W.J.Kim, J.B.Lee, W.Y.Kim, H.T.Jeong, H.G.Jeong. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling [J]. Scripta Mater. 2007, 56: 309-312.
    [26] W.Xia, Z.Chen, D.Chen, S.Zhu. Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling [J]. J Mater Process Technol. 2009, 209: 26-31.
    [27] X.Gong, H.Li, S.Kang, J.Cho, S.Li. Microstructure and mechanical properties of twin-roll cast Mg–4.5Al–1.0Zn sheets processed by differential speed rolling [J]. Mater Des. 2010, 31: 1581-1587.
    [28] J.Allison, D.Backman, L.Christodoulou. Integrated computational materials engineering: a new paradigm for the clobal materials profession [J]. JOM. 2006, 58: 25-27.
    [29] J.Allison, M.Li, C.Wolverton, X.Su. Virtual aluminum castings: an industrial application of ICME [J]. JOM. 2006, 58: 28-35.
    [30] Committee on Integrated Computational Materials Engineering. Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security [M]. Washington, D.C.: The national academies press, 2008.
    [31] D.Backman, D.Wei, D.Whitis, M.Buczek, P.Finnigan, D.Gao. ICME at GE: accelerating the insertion of new materials and processes [J]. JOM. 2006, 58: 36-41.
    [32]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [33]吴文云. AZ31和AM30镁合金管材弯曲成形及变形机理研究[D].上海:上海交通大学. 2010.
    [34]祁庆琚,刘勇兵,杨晓红.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程. 2002, 24: 94-100.
    [35]陈振华.镁合金[M].北京:化学工业出版社, 2004.
    [36]曾小勤,王渠东,吕宜振,丁文江,朱燕萍.镁合金应用新进展[J].铸造. 1998, 11: 39-43.
    [37]杜文博,吴玉锋,左铁镛.镁合金在交通工具中的应用现状[J].世界有色金属. 2006, 2: 19-21.
    [38]宋珂.镁合金在汽车轻量化中的应用发展[J].机械研究与应用. 2007, 1: 14-16.
    [39]吕渠东,吕宜振,曾小勤,丁文江,卢晨.镁合金在电子器材壳体中的应用[J].材料导报. 2000, 6: 22-24.
    [40] H.Friedrich, B.Mordike. Magnesiuym Technology-Metallurgy, Design Data,Applications [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2006.
    [41] F.Froes, D.Eliezer, E.Aghion. The science, technology, and applications of magnesium [J]. JOM. 1998, 50: 30-34.
    [42] W.Frazier, D.Polakovics, W.Koegel. Qualifying of metallic materials and structures for aerospace applications [J]. JOM. 2001, 52: 16-18.
    [43] J.Deetz. The use of wrought magnesium in bicycles [J]. JOM. 2005, 57: 50-53.
    [44]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属. 2004, 7: 12-20.
    [45]夏德宏,郭梁,余涛.镁及镁合金广阔的应用前景[J].金属世界. 2005, 2: 47-48.
    [46]张广道,黄晶晶,杨柯,张炳春,艾红军.动物体内植入镁合金的早期实验研究[J].金属学报. 2007, 11: 1186-1190.
    [47]刘凌,李年丰,周厚吾,孔华.生物可吸收镁合金胆道内支架应用前景[J].中国实用外科杂志. 2010, 3: 234-236.
    [48]郑玉峰,刘彬,顾雪楠.可生物降解性医用金属材料的研究进展[J].材料导报. 2009, 1: 1-6.
    [49]杨柯,谭丽丽,任伊宾,张炳春,张广道,艾红军. AZ31镁合金的生物降解行为研究[J].中国材料进展. 2009, 2: 26-30.
    [50]丁文江,袁广银.新型镁合金的研究开发与应用[J].有色金属加工. 2002, 3: 27-32.
    [51] J.Greenwood, H.Worner. Types of creep curve obtained with lead and its dilutealloys [J]. J Inst Metals. 1939, 64: 135-167.
    [52] R.C.Gifkins, H.C.Coe. [J]. Metallurgia. 1951, 43: 47.
    [53] R.Tamhankar, J.Plateau, C.Crussard. Etude de la déformation plastique a chaud d’un fer doux et d’une austénite stable au nickel-chrome. [J]. Revue Metall. 1958, 55: 383-400.
    [54] E.Bella. [J]. Acta Technol Acad Sci Hung. 1959, 25: 393.
    [55] C.Rossard, P.Blain. [J]. Mém scient Revue Metall. 1959, 56: 285.
    [56] M.J.Luton, C.M.Sellars. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metall. 1969, 17: 1033-1043.
    [57] C.M.Sellars WJMT. [J]. Mem Sci Revue Metall. 1966, 63: 731-746.
    [58] H.J.McQueen, S.Bergerson. Dynamic re-crystallisation of copper during hot working [J]. Met Sci. 1972, 6: 25-29.
    [59] H.J.McQueen, C.A.C.Imbert. Dynamic recrystallization: plasticity enhancing structural development [J]. J Alloys Compd. 2004, 378: 35-43.
    [60] J.J.Jonas, C.M.Sellars, W.J.McG.Tegart. [J]. Metall Rev. 1969, 14: 1-24.
    [61] T.Sakai, J.J.Jonas. Dynamic recrystallization: mechanical and microstructural considerations [J]. Acta Metall. 1984, 32: 189-209.
    [62] G.Gottstein. [J]. Met Sci. 1983, 17: 497-502.
    [63] D.Ponge, G.Gottstein. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior [J]. Acta Mater. 1997, 46: 69-80.
    [64] G.Gottstein, L.S.Shvindlerman, M.Crumbach, L.Barrales-Mora. Recent advances in the simulation of recrystalllzation and grain growth [J]. Mater Sci Forum. 2007, 558-559: 3-12.
    [65]黄光杰,钱宝华,汪凌云,J.J.Jonas. AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程. 2007, 36: 2080-2083.
    [66] S.Spigarelli, M.EI Mehtedi, M.Cabibbo, E.Evangelista, J.Kaneko, A.Jager, V.Gartnerova. Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy [J]. Mater Sci Eng A. 2007, 462: 197-201.
    [67] M.R.Barnett, A.G.Beer, D.Atwell, A. Oudin. Influence of grain size on hot working stresses and microstructures in Mg–3Al–1Zn [J]. Scripta Mater. 2004, 51: 19-24.
    [68] I.Maksoud, H.Ahmed and J.R?del. Inverstigating the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy [J]. Magnesium Technology 2008. 2008, 61-67.
    [69]栾娜,李落星,李光耀,钟志华. AZ80镁合金的高温热压缩变形行为[J].中国有色金属学报. 2007, 17: 1678-1684.
    [70] X.Yang, M.sanada, H.Miura, T.Sakai. Effect of initial grain size on deformation behavior and dynamic recrystallization of magnesium alloy AZ31 [J]. Mater Sci Forum. 2005, 488-489: 223-226.
    [71] X.Yang, H.Miura, T.Sakai. Effect of Initial Grain Size and Strain Path on Grain Refinement in Magnesium Alloy AZ31 [J]. Mater Sci Forum. 2007, 539-543: 1632-1637.
    [72] A.G.Beer, M.R.Barnett. The influence of twinning on the hot working flow stressand microstructural evolution of magnesium alloy [J]. Mater Sci Forum. 2005, 488-489: 611-614.
    [73] J.A.del Valle, O.A.Ruano. Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy [J]. Mater Sci Eng A. 2008, 487: 473-480.
    [74] T.Al-Samman, G.Gottstein. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater Sci Eng A. 2008, 490: 411-420.
    [75] M.R.Barnett. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Mater Sci Forum. 2003, 419-422: 503-508.
    [76]刘六法,丁汉林,鎌土重晴,丁文江,小岛阳. AZ91镁合金的热压缩行为(I)——EBSP分析[J].中国有色金属学报. 2008, 18: 237-242.
    [77] A.G.Beer, M.R.Barnett. Microstructure evolution in hot worked and annealed magnesium alloy AZ31 [J]. Mater Sci Eng A. 2007, 485: 318-324.
    [78] B.H.Lee, N.S.Reddy, J.T.Yeom, C.S.Lee. Flow softening behavior during high temperature deformation of AZ31Mg alloy [J]. J Mater Process Technol. 2007, 187-188: 766-769.
    [79] A.G.Beer, M.R.Barnett. Microstructural development during hot working of Mg-3Al-1Zn [J]. Metall Mater Trans A. 2007, 38A: 1856-1867.
    [80] Y.Takigawa, M.Honda, T.Uesugi, etc. Effect of Initial Grain Size on Dynamically Recrystallized Grain Size in AZ31 Magnesium Alloy [J]. Mater Trans. 2008, 49: 1979-1982.
    [81] T.Al-Samman, X.Li, S.Ghosh Chowdhury. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy [J]. Mater Sci Eng A. 2010, 527: 3450-3464.
    [82] J.C.Tan, M.J.Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Mater Sci Eng A. 2003, 339: 124-132.
    [83] S.M.Fatemi-Varzaneh, A.Zarei-Hanzaki, H.Beladi. Dynamic recrystallization in AZ31 magnesium alloy [J]. Mater Sci Eng A. 2007, 456: 52-57.
    [84] X.Yang, Z.Ji, H.Miura, T.Sakai. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31 [J]. TansNonferrous MetSoc China. 2009, 19: 55-60.
    [85]刘志民,邢书明,鲍培玮,李楠,姚淑卿,张密兰. AZ31B铸轧镁合金板材的预变形温热拉深[J].中国有色金属学报. 2010, 20: 688-694.
    [86] A.Mwembela, E.B.Konopleva, H.J.McQueen. Microstructural development in Mg alloy AZ31 during hot working [J]. Scripta Mater. 1997, 37: 1789-1795.
    [87] M.M.Myshlyaev, H.J.McQueen, A.Mwembela, E. Konopleva. [J]. Mater Sci Eng A. 2002, A337: 121-133.
    [88] M.T.Pérez-Prado, J.A.del Valle, J.M.Contreras, O.A.Ruano. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy [J]. Scripta Mater. 2004, 50: 661-665.
    [89] J.A.del Valle, M.T.Perez-Prado, O.A.Ruano. [J]. Mater Sci Eng A. 2003, 355:
    [90] Y.J.Chen, Q.D.Wang, H.J.Roven, M.P.Liu, M.Karlsen, Y.D.Yu, J.Hjelen. Network-shaped fine-grained microstructure and high ductility of magnesiumalloy fabricated by cyclic extrusion compression [J]. Scripta Mater. 2008, 58: 311-314.
    [91] S.H.White. [J]. Phil Trans R Soc A. 1976, 283:
    [92] D.L.Yin, K.F.Zhang, G.F.Wang, W.B.Han. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Mater Sci Eng A. 2005, 392: 320-325.
    [93] O.Sitdikov, R.Kaibyshev, T.Sakai. Dynamic recrystallization based on twinning in coarsed-grained mg [J]. Mater Sci Forum. 2003, 419-422:
    [94] H.Zhang, Q.Yan, L.Li. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process [J]. Mater Sci Eng A. 2008, 486: 295-299.
    [95] A.Styczynski, Ch.Hartig, J.Bohlen, D.Letzig. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Scripta Mater. 2004, 50: 943-947.
    [96] Q.Jin, S.Shim, S.Lim. Correlation of microstructural evolution and formation of basal texture in a coarse grained Mg–Al alloy during hot rolling [J]. Scripta Mater. 2006, 55: 843-846.
    [97] S.Liang, H.Sun, Z.Liu, E.Wang. Mechanical properties and texture evolution during rolling process of an AZ31 Mg alloy [J]. J Alloys Compd. 2009, 472: 127-132.
    [98] M.T.Pérez-Prado JAdV, O.A.Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling [J]. Scripta Mater. 2004, 50: 667-671.
    [99] W.N.Tang, R.S.Chen,J.Zhou,E.H.Han. Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg–Zn–Y–Zr alloy [J]. Mater Sci Eng A. 2009, 499: 404-410.
    [100] S.R.Agnew, P.Mehrotra, T.M.Lillo, G.M.Stoica, P.K.Liaw. Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion [J]. Mater Sci Eng A. 2005, 408: 72-78.
    [101]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究[D].上海:上海交通大学. 2006.
    [102]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报. 2005, 15: 1-11.
    [103]曲家惠,李四军,张正贵,王福,左良.挤出和退火工艺对AZ31镁合金组织和织构的影响[J].中国有色金属学报. 2007, 17: 434-440.
    [104] R.K.Mishra, A.K.Gupta, P.R.Rao, A.K.Sachdev, A.M.Kumar, A.A.Luo. Influence of cerium on the texture and ductility of magnesium extrusions [J]. Scripta Mater. 2008, 59: 562-565.
    [105] J.Bohlen, S.B. Yi, D. Letzig, K.U. Kainer, DOI: doi:10.1016/j.msea.2010.07.08.
    [106] D.Raabe.计算材料学[M].北京:化学工业出版社, 2002.
    [107] P.Mukhopadhyay, M.Loeck. G.Gottstein. A cellular operator model for the simulation of static recrystallization [J]. Acta Mater. 2007, 55: 551-564.
    [108] R.Ding, Z.X.Guo. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta Mater. 2001, 49: 3163-3175.
    [109] G.Kugler, R.Turk. Modeling the dynamic recrystallization under multi-stage hot deformation [J]. Acta Mater. 2004, 52: 4659-4668.
    [110] Ch.-A Gandin, M.Rappaz. A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth [J]. Acta Mater. 1997, 45: 2187-2195.
    [111] AS.C.Michelic, J.M.Thuswaldner, C.Bernhard. Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys [J]. Acta Mater. 2010, 58: 2738-2751.
    [112] Y.H.Wen, J.P.Simmons, C.Shen, C.Woodward, Y.Wang. Phase-field modeling of bimodal particle size distributions during continuous cooling [J]. Acta Mater. 2003, 51: 1123-1132.
    [113] L.Kovarik, F.Yang, A.Garg, D.Diercks, M.Kaufman, R.D.Noebe, M.J.Mills. Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys [J]. Acta Mater. 2010, 58: 4660-4673.
    [114] S.Vedantam, A.Mallick. Phase-field theory of grain growth in the presence of mobile second-phase particles [J]. Acta Mater. 2010, 58: 272-281.
    [115]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社, 2007.
    [116] Y.B.Chun, S.L.Semiatin, S.K.Hwang. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium [J]. Acta Mater. 2006, 14: 3673-3689.
    [117] O.M.Ivasishin, S.V.Shevchenko, N.L.Vasiliev, S.L.Semiatin. 3D Monte-Carlo simulation of texture-controlled grain growth [J]. Acta Mater. 2003, 51: 1019-1034.
    [118] T.Jourdan, J.-L.Bocquet, F.Soisson. Modeling homogeneous precipitation with an event-based Monte Carlo method: Application to the case of Fe–Cu [J]. Acta Mater. 2010, 58: 3295-3302.
    [119] J.Gruber, H.M.Miller, T.D.Hoffmann, G.S.Rohrer, A.D.Rollett. Misorientation texture development during grain growth. Part I: Simulation and experiment [J]. Acta Mater. 2009, 57: 6102-6112.
    [120] F.Roters, P.Eisenlohr, L.Hantcherli, D.D.Tjahjanto, T.R.Bieler, D.Raabe. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater. 2010, 58: 1152-1211.
    [121] S.Balasubramanian, L.Anand. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium [J]. Acta Mater. 2002, 50: 133-148.
    [122] H.Ding LL, S.Kamado, W.Ding, Y.Kojima. Investigation of the hot compression behavior of the Mg-9Al-1Zn alloy using EBSP analysis and a cellular automata simulation [J]. Model Simulat Mater Sci Eng. 2009, 17:
    [123]刘六法,丁汉林,鎌土重晴,丁文江,小岛阳. AZ91镁合金的热压缩行为(Ⅱ)——元胞自动机模拟[J].中国有色金属学报. 2008, 18: 243-249.
    [124] S.R. Agnew, M. H. Yoo, C. N. Tomé. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J]. Acta Mater. 2001, 49: 4277-4289.
    [125] G.I.Taylor, C.F.Elam. The distortion of an aluminum crystal during a tensile test [J]. Proc R Soc Lond. 1923, A102: 643-667.
    [126] G.I.Taylor, C.F.Elam. The plastic extension and fracture of aluminum crystals [J]. Proc R Soc Lond. 1925, A108: 28-51.
    [127] J.Mandel. Generalisation de la theorie de plasticite de W. T. Koiter [J]. Int J Solids Struct. 1965, 1: 273-295.
    [128] R.Hill. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. J Mech Phys Solids. 1966, 14: 95-102.
    [129] J.R.Rice. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity [J]. J Mech Phys Solids. 1971, 19: 433-455.
    [130] A.M.Cuiti?o, M.Ortiz. Computational modelling of single crystals [J]. Modelling Simul Mater Sci Eng. 1993, 1: 225-263.
    [131] L.Anand, M.Kothari. A computational procedure for rate-independent crystal plasticity [J]. J Mech Phys Solids. 1996, 44: 525-558.
    [132] H.Takahashi, H.Motohashi, M.Tokuda, T.Abe. Elastic-plastic finite element polycrystal model [J]. Int J Plasticity. 1994, 10: 63-80.
    [133] W.Gambin. Refined analysis of elastic-plastic crystals [J]. Int J Solids Struct. 1992, 29: 2013-2021.
    [134] C.Miehe, J.Schr?der,J.Schotte. Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials [J]. Comput Methods Appl Mech Engrg. 1999, 171: 387-418.
    [135] S.Nemat-Nasser, T.Okinaka, L.Ni. A physically-based constitutive model for bcc crystals with application to polycrystalline tantalum [J]. J Mech Phys Solids. 1998, 46: 1009-1038.
    [136] R. Knockaert, Y. Chastel, E. Massoni. Rate-independent crystalline and polycrystalline plasticity, application to FCC materials [J]. Int J Plasticity. 2000, 16: 179-198.
    [137] M.Schmidt-Baldassari. Numerical concepts for rate-independent single crystal plasticity [J]. Comput Methods Appl Mech Engrg. 2003, 192: 1261-1280.
    [138] D.Peirce, R.J.Asaro, A.Needleman. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall. 1983, 31: 1951-1976.
    [139] G.Sachs. Zur Ableitung einer Flie?bedingung [J]. Z Verein Deut lng. 1928, 72: 734-736.
    [140] G.I.Taylor. Plastic Deformation of Metals [J]. J Inst Metals. 1938, 62: 307-324.
    [141] J.F.W.Bishop, R.Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses [J]. Phil Mag. 1951, 42: 414-427.
    [142] J.F.W.Bishop, R.Hill. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal [J]. Phil Mag. 1951, 42: 1298-1307.
    [143] R.J.Asaro, A.Needleman. Overview no. 42 Texture development and strain hardening in rate dependent polycrystals [J]. Acta Metall. 1985, 33: 923-953.
    [144] H.Honeff, H.Mecking. [C]. In Proceedings of the 5th International Conference on Texture of Materials (ICOTOM-5). 1978, Aachen.
    [145] J.D.Eshelby. The determination of the elastic field of an ellipsoidal inclusion,and related problems [J]. Proc R Soc Lond. 1957, A241: 376-396.
    [146] E.Kr?ner. Zur plastischen verformung des vielkristalls [J]. Acta Metall. 1961, 9: 155-161.
    [147] B.Budiansky, T.T.Wu. Theoretical prediction of plastic strains in polycrystals [C]. In Proc of 4th US National Congr Appl Mech. 1962, New York.
    [148] R.Hill. Continuum micro-mechanics of elastoplastic polycrystals [J]. J Mech Phys Solids. 1965, 13: 89-101.
    [149] T.Iwakuma, S.Nemat-Nasser. Finite Elastic-Plastic Deformation of Polycrystalline Metals [J]. Proc R Soc Lond. 1984, 394: 87-119.
    [150] S.Nemat-Nasser, M.Obata. Rate-Dependent, Finite Elasto-Plastic Deformation of Polycrystals [J]. Proc R Soc Lond. 1986, A407: 343-375.
    [151] P.A.Turner, C.N.Tomé. A study of residual stresses in Zircaloy-2 with rod texture [J]. Acta Matall. 1994, 42: 4143-4153.
    [152] B.Clausen, C.N.Tomé, D.W.Brown, S.R.Agnew. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg [J]. Acta Mater. 2008, 56: 2456-2468.
    [153] J.W.Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc R Soc Lond. 1976, A(348): 101-127.
    [154] A.Molinari, G.R.Canova, S.Ahzi. A self consistent approach of the large deformation polycrystal viscoplasticity [J]. Acta Metall. 1987, 35: 2983-2994.
    [155] I.J.Beyelein, C.N.Tomé. A dislocation-based constitutive law for pure Zr including temperature effects [J]. Int J Plasticity. 2008, 24: 867-895.
    [156] G.Proust, C.N.Tomé, A.Jain and S.R.Agnew. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 [J]. Int J Plasticity. 2009, 25: 861-880.
    [157] C.A.Bronkhorst, S.R.Kalidindi, L.Anand. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals [J]. Phil Trans R Soc Lond A. 1992, 341: 443-477.
    [158] E.B.Marin, P.R.Dawson. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity [J]. Comput Methods Appl Mech Engrg. 1998, 165: 1-21.
    [159] R.A.Lebensohn, C.N.Tomé. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys [J]. Acta Matall. 1993, 41: 2611-2624.
    [160] C.Miehe, D.Rosato. Fast texture updates in fcc polycrystal plasticity based on a linear active-set-estimate of the lattice spin [J]. J Mech Phys Solids. 2007, 55: 2687-2716.
    [161] A.Staroselsky, L.Anand. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning [J]. J Mech Phys Solids. 1998, 46: 671-673.
    [162] D.Raabe, F.Roters. Using texture components in crystal plasticity finite element simulations [J]. Int J Plasticity. 2004, 20: 339-361.
    [163] E.B.Marin, P.R.Dawson. Elastoplastic finite element analyses of metal deformations using polycrystal constitutive models [J]. Comput Mathods Appl Mech Engrg. 1998, 165: 23-41.
    [164] Z.Zhao, S.Kuchnicki, R.Radovitzky, A.Cuiti?o. Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM [J]. Acta Mater. 2007, 55: 2361-2373.
    [165] K.K.Mathur, P.R.Dawson. On modeling the development of crystallographic texture in bulk forming processes [J]. Int J Plasticity. 1989, 5: 67-94.
    [166] Y.Huang, Harvard Univ., Rep. MECH-178 [R], 1991.
    [167] J.Hu, J.J.Jonas, T.Ishikawa. FEM simulation of the forming of textured aluminum sheets [J]. Mater Sci Eng A. 1998, A256: 51-59.
    [168] C.N.Tomé, P.Maudlin, R.Lebensohn, G. C. Kaschner. Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis [J]. Acta Mater. 2001, 49: 3085-3096.
    [169] Z.Zhao, W.Mao, F.Roters, D.Raabe. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method [J]. Acta Mater. 2004, 52: 1003-1012.
    [170] T.Walde, H.Riedel. Simulation of earing during deep drawing of magnesium alloy AZ31 [J]. Acta Mater. 2007, 55: 867-874.
    [171] A.Zamiri, F.Pourboghrat, F.Barlat. An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming [J]. Int J Plasticity. 2007, 23: 1126-1147.
    [172] F.J.Harewood, P.E.Mchugh. Comparison of the implicit and explicit finite element methods using crystal plasticity [J]. Comput Mater Sci. 2007, 39: 481-494.
    [173] W.Tang, S.Zhang, Y.Peng, D,Li. Simulation of magnesium alloy AZ31 sheet during cylindrical cup drawing with rate independent crystal plasticity finite element method [J]. Comput Mater Sci. 2009, 46: 393-399.
    [174] D.Li, Y.Peng, S.Zhang, S.Liu. Numerical simulation of sheet metal stamping by using ODF data [J]. Int J Mech Sci. 2009, 51: 41-51.
    [175] S.Zhang, Y.Peng, W.Tang, D.Li. The polycrystalline plasticity due to slip and twinning during magnesium alloy forming [J]. Acta Mechanica. 2010, 212: 293-303.
    [176] S.Zhang, D.Li, Y.Luo, Y.Peng. Analysis of FCC sheet metal forming with rate-independent polycrystalline plasticity FEM [J]. TansNonferrous MetSoc China. 2004, 14: 362-365.
    [177] A.Prakash, S.M.Weygand, H.Riedel. Modeling the evolution of texture and grain shape in Mg alloy AZ31 using the crystal plasticity finite element method [J]. Comput Mater Sci. 2009, 45: 744-750.
    [178] M.Lee, J.Wang, P.M.Anderson. Texture evolution maps for upset deformation of body-centered cubic metals [J]. Mater Sci Eng A. 2007, 463: 263-270.
    [179] M.Lee, S.Kim, H.Han. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite [J]. Int J Plasticity. 2010, 26: 688-710.
    [180] A.Staroselsky, L.Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. Int J Plasticity. 2003, 19: 1843-1864.
    [181] T.Walde, H.Riedel. Modeling texture evolution during hot rolling of magnesium alloy AZ31 [J]. Mater Sci Eng A. 2007, 443: 277-284.
    [182] M.H.Yoo, S.R.Agnew, J.R.Morris, K.M.Ho. Non-basal slip systems in HCP metals and alloys: source mechanisms [J]. Mater Sci Eng A. 2001, 319-321: 87-92.
    [183] S.R.Agnew, C.N.Tomé, D.W.Brown, T.M.Holden, S.C.Vogel. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J]. Scripta Mater. 2003, 48: 1003-1008.
    [184] D.W.Brown, S.R.Agnew, M.A.M.Bourke, T.M.Holden, S.C.Vogel, C.N.Tomé. Internal strain and texture evolution during deformation twinning in magnesium [J]. Mater Sci Eng A. 2005, 399: 1-12.
    [185] S.R.Agnew, D.W.Brown, C.N.Tomé. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J]. Acta Mater. 2006, 54: 4841-4852.
    [186] A.Jain, O.Duygulu, D.W. Brown, C.N. Tomé, S.R. Agnew. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet [J]. Mater Sci Eng A. 2008, 486: 545-555.
    [187] S.R.Agnew, P.Mehrotra, T.M.Lillo, G.M.Stoica, P.K.Liaw. Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations [J]. Acta Mater. 2005, 53: 3135-3146.
    [188] S.H.Choi, E.J.Shin, B.S.Seong. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression [J]. Acta Mater. 2007, 55: 4181-4192.
    [189] J.Bohlen, M.R.Nurnberg, J.W.Senn, D.Letzig, S.R.Agnew. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets [J]. Acta Mater. 2007, 55: 2101-2112.
    [190] S.B.Yi, C.H.J.Davies, H.G.Brokmeier, R.E.Bolmaro, K.U.Kainer, J.Homeyer. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading [J]. Acta Mater. 2006, 54: 549-562.
    [191] B.Beausir, S.Suwas, L.T?th, K.Neale, J.Fundenberger. Analysis of texture evolution in magnesium during equal channel angular extrusion [J]. Acta Mater. 2008, 56: 200-214.
    [192] T.Ebeling, Ch.Hartig, T.Laser, R.Bormann. Material law parameter determination of magnesium alloys [J]. Mater Sci Eng A. 2009, 527: 272-280.
    [193] O.Muránsky, D.G.Carr, M.R.Barnett, E.C.Oliver, P.?ittner. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling [J]. Mater Sci Eng A. 2008, 496: 1383-1394.
    [194] E.H.Lee. Elastic-plastic deformation at finite strains [J]. J Appl Mech. 1969, 36: 1-6.
    [195] D.Peirce, R.J.Asaro, A.Needleman. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metall. 1982, 30: 1087-1119.
    [196] L.Anand, S.Balasubramanian. Polycrystal Plasticity: Application to Earing in Cup Drawing [J]. CIRP Anals-Manufacturing Technology. 1996, 45: 263-268.
    [197] C.J.Neil, S.R.Agnew. Crystal plasticity-based forming limit prediction for non-cubic metals: Application to Mg alloy AZ31B [J]. Int J Plasticity. 2009, 25: 379-398.
    [198] J.C.Simo, L.Vu-Quoc. A three-dimensional finite-strain rod model. part II: Computational aspects [J]. Comput Methods Appl Mech Engrg. 1986, 58: 79-116.
    [199] G.E.G.Tucker. Texture and earing in deep drawing of aluminium [J]. Acta Metall. 1961, 9: 275-286.
    [200] E.B.Marin. On the Formulation of a Crystal Plasticity Model [J]. Sandia National Laboratories, CA, SAND2006-4170. 2006,
    [201] J.W.Hutchinson. Elastic-plastic behaviour of polycrystalline metals and composites [J]. Proc R Soc Lond. 1970, A(319): 247-272.
    [202] C.J.Neil, J.A.Wollmershauser, B.Clausen, C.N.Tomé, S.R.Agnew, DOI: 10.1016/j.ijplas.2010.03.005.
    [203] L.Anand, S.R.Kalidindi. The process of shear band formation in plane strain compression of FCC metals: Effects of crystallographic texture [J]. Mech Mater. 1994, 17: 223-243.
    [204] A.Beck. Magnesium und seine Legierungen [M]. Berlin: Springer, 1939.
    [205] F.E.Hauser, P.R.Landon, J.E.Dorn. Deformation and fracture mechanisms of polycrystalline magnesium at low temperatures [J]. Trans ASM. 1956, 48: 986-1002.
    [206] R.E.Reed-Hill, W.D.Robertson. Deformation of manesium single crystals by non basal slip [J]. Trans Met Soc AIME. 1957, 209: 496-502.
    [207] P.Ward-Flynn, J.Mote, J.E.Dorn. On the thermally activated mechanism of prismatic slip in magnesium single crystals [J]. Trans TMS-AIME. 1961, 221: 1148-1154.
    [208] H.Yoshinaga, R.Horiuchi. On the nonbasal slip in magnesium crystals [J]. TransJpnInstMet. 1963, 5: 14-21.
    [209] R.E.Reed-Hill WDR. Pyramidal slip in magnesium [J]. TransTMS-AIME. 1958, 221: 256-259.
    [210] J.F.Stohr, J.P.Poirier. Etude en microscopie electronique du glissement pyramidal {1122}<1123> dans le magnesium [J]. Philos Mag 1972, 25: 1313-1329.
    [211] T.Obara, H.Yoshinaga, S.Morozumi. {1122}<1123> slip system in magnesium [J]. Acta Metall. 1973, 21: 845-853.
    [212] H.Conrad, W.D.Robertson. Effect of Temperature on the Flow Stress and Strain-Hardening Coefficient of Magnesium Single Crystals [J]. Trans Met Soc AIME. 1957, 209: 503-512.
    [213] W.F.Sheely, R.R.Nash. [J]. Trans Met Soc AIME. 1960, 218: 149-157.
    [214] R.E.Reed-Hill, W.D.Robertson. Additional modes of deformation twinning in magnesium [J]. Acta Metall. 1957, 5: 717-727.
    [215] H.Yoshinaga, R.Horiuchi. [J]. Trans JIM. 1963, 4: 1-8.
    [216] B.C.Wonsiewicz, W.A.Backofen. Plasticity of magnesium crystals [J]. Trans Met Soc AIME. 1967, 239: 1422-1431.
    [217] R.E.Reed-Hill. A study of the {1011 and 1013} twinning modes in magnesium [J]. Trans Met Soc AIME. 1960, 218: 554-558.
    [218] P.G.Partridge. The crystallography and deformation modes of hexagonal close- packed metals [J]. Metall Rev. 1967, 12: 169-194.
    [219] E.W.Kelley, W.F.J.Hosford. The deformation characteristics of textured magnesium [J]. Trans Met Soc AIME. 1968, 242: 654-660.
    [220] M.R.Barnett, M.D.Navea, C.J.Bettles. Deformation microstructures and textures of some cold rolled Mg alloys [J]. Mater Sci Eng A. 2004, 386: 205-211.
    [221] Y.N.Wang, J.C.Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy [J]. Acta Mater. 2007, 55: 897-905.
    [222] L.Jiang, J.J.Jonas, A.A.Luo, A.K.Sachdev, S.Godet. Influence of {10-12} extension twining on the flow behavior of AZ31 Mg alloy [J]. Mater Sci Eng A. 2007, 445-446: 302-309.
    [223] Y.Chino, K.Kimura, M.Hakamada, M.Mabuchi. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy [J]. Mater Sci Eng A. 2008, 485: 311-317.
    [224] U.F.Kocks, D.G.Westlake. The important of twining for the ductility of CPH polycrystals [J]. Trans Met Soc AIME. 1967, 239: 1107-1109.
    [225] C.N.Tomé, R.A.Lebensohn, U.F.Kocks. A model for texture development dominated by deformation twinning: Application to zirconium alloys [J]. Acta Metall. 1991, 39: 2667-2680.
    [226] P.V.Houtte. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning [J]. Acta Metall. 1978, 26: 591-604.
    [227] J.S.Kallend, U.F.Kocks, A.D.Rollet, H.R.Wenk. Operational texture analysis [J]. Mater Sci Eng A. 1991, 132: 1-11.
    [228] J.Liu, Z.Cui, C.Li. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B [J]. Comput Mater Sci. 2008, 41: 375-382.
    [229] D.H.Sastry, Y.V.R.K.Prasad, K.I.Vasu. [J]. Scr Met. 1969, 3: 927.
    [230] A.G.Beer, M.R.Barnett. Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn [J]. Mater Sci Eng A. 2006, 423: 292-299.
    [231] S.H.Choi, J.K.Kim, B.J.Kim, Y.B.Park. The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression [J]. Mater Sci Eng A. 2008, 488: 458-467.
    [232] M.R.Barnett, Z.Keshavarz, A.G.Beer, D.Atwell. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Mater. 2004, 52: 5093-5103.
    [233] J.C.Tan, M.J.Tan. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet [J]. Mater Sci Eng A. 2003, 339: 81-89.
    [234] H.Watanabe, A.Takara, H.Somekawa, T.Mukai, K.Higashi. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy [J]. Scripta Mater. 2005, 52: 449-454.
    [235] J.A.del Valle, O.A.Ruano. Separate contributions of texture and grain size on the creep mechanisms in a fine-grained magnesium alloy [J]. Acta Mater. 2007, 55: 455-466.
    [236] R.Panicker, A.H.Chokshi, R.K.Mishra, R.Verma and P.E.Krajewski. Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy [J]. Acta Mater. 2009, 57: 3683-3693.
    [237] H.Watanabe, M.Fukusumi. Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy [J]. Mater Sci Eng A. 2008, 477: 153-161.
    [238] O.D.Sherby, J.Wadsworth. Superplasticity-recent advances and future directions [J]. Prog Mater Sci. 1989, 33: 169-221.
    [239] J.Jiang, A.Godfrey, W.Liu, Q.Liu. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31 [J]. Mater Sci Eng A. 2008, 483-484: 576-579.
    [240] H.R.Wenk, G.Canova, Y.Brechet, L.Flandin. [J]. Acta Mater. 1997, 45: 3283-3296.
    [241] E.I.Poliak, J.J.Jonas. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater. 1996, 44: 127-136.
    [242] P.J.Wray. [J]. Metall Trans. 1975, 6A: 1197.
    [243] N.D.Ryan, H.J.McQueen, E.Evangelista. [J]. Mater Sci Eng. 1986, 81: 259.
    [244] M.R.Barnett. [J]. Mater Sci Forum. 2003, 426-432: 515.
    [245] E.I.Poliak, J.J.Jonas. [J]. Acta Metall. 1996, 44: 127-136.
    [246] A.G.Beer, M.R.Barnett. The influence of twinning on the hot working flow stress and microstructural evolution of magnesium alloy AZ31 [J]. Mater Sci Forum. 2005, 488-489: 611-614.
    [247] X.Yang, H.Miura, T.Sakai. Grain refinement in magnesium alloy AZ31 during hot deformation [J]. Mater Sci Forum. 2004, 467-470: 531-536.
    [248] G.R.Stewart, A.M.Elwazri, S.Yue, J.J.Jonas. Modellin of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels [J]. Mater Sci Technol. 2006, 22: 519-524.
    [249] M.R.Barnett. A taylor model based description of the proof stress of magnesium AZ31 during hot working [J]. Metall Mater Trans A. 2003, 34A: 1799-1806.
    [250] S.H.Choi, D.H.Kim, H.W.Lee, E.J.Shin. Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method [J]. Mater Sci Eng A. 2010, 527: 1151-1159.
    [251] S.H.Choi, D.H.Kim, H.W.Lee, B.S.Seong, K.Piao, R.Wagoner. Evolution of the deformation texture and yield locus shape in an AZ31 Mg alloy sheet under uniaxial loading [J]. Mater Sci Eng A. 2009, 526: 38-49.
    [252] S.Graff, W.Brocks, D.Steglich. Yielding of magnesium: From single crystal to polycrystalline aggregates [J]. Int J Plasticity. 2007, 23: 1957-1978.
    [253] P.Yang, F.Cui, S.Ma, G.Gottstein. Influence of initial texture on dynamic recrystallization and textures in AZ31 magnesium alloys [J]. TansNonferrous MetSoc China. 2003, 13: 504-508.
    [254] S.Biswas, S.Singh D, A.Bhowmik, S.Suwas. Study of Texture Evolution of Pure Magnesium during ECAE Using EBSD [J]. Mater Sci Forum. 2008, 584-586: 343-348.
    [255] P.Yang, L.Meng, W.Mao, L.Chen. Characteristics of hot compressed magnesium alloy AZ31 with initial textures analyzed by orientation mapping [J]. Mater Sci Forum. 2005, 495-497: 639-644.
    [256] J.Jiang, A.Godfrey, Q.Liu. Effect of temperature on microstructure and texture during compression of AZ31 [J]. Mater Sci Forum. 2007, 546-549: 245-248.
    [257] F.Xiong, C.H.J.Davies. [J]. Magnesium Technology 2005. 2005,
    [258] P.Backx, L.Kestens. Dynamic Recrystallization during Compression of Mg-3%Al-1%Zn [J]. Mater Sci Forum. 2005, 495-497: 633-638.
    [259] K.Yu, S.Rui, X.Wang, R.Wang, W.Li. Texture evolution of extruded AZ31 magnesium alloy sheets [J]. TansNonferrous MetSoc China. 2009, 19: 511-516.
    [260] Y.Yoshida, L.Cisar, S.Kamado, J.Koike, Y.Kojima. Texture development of AZ31 magnesium alloy during ECAE processing [J]. Mater Sci Forum. 2003, 419-422: 533-538.
    [261] R.Xin, B.Wang, X.Chen, G.Huang, Q.Liu. Examination of dynamic recrystallization during compression of AZ31 magnesium [J]. Science in China Series E: Technological Sciences. 2009, 52: 176-179.
    [262] G.Gottstein, T.Al Samman. Texture Development in Pure Mg and Mg Alloy AZ31 [J]. Mater Sci Forum. 2005, 495-497: 623-632.
    [263] G.Liu, J.Zhou, J.Duszczyk. Prediction and verification of temperature evolution as a function of ram speed during the extrusion of AZ31 alloy into a rectangular section [J]. J Mater Process Technol. 2007, 186: 191-199.
    [264] Govind, K.Nair, M.Mittal, R.Sikand, A.K.Gupta. Effect of extrusion parameters on microstructure and mechanical properties of ZK30 Mg Alloy [J]. Mater Sci Technol. 2008, 24: 399-405.
    [265] I.L.Dillamore, W.T.Roberts. Preferred orientation in wrought and annealed metals [J]. Metall Rev. 1965, 10: 271-380.
    [266] L.L.Chang, Y.N.Wang, X.Zhao, M.Qi. Grain size and texture effect on compression behavior of hot-extruded Mg-3Al-1Zn alloys at room temperature [J]. mater Charact. 2009, 60: 991-994.
    [267] D.Yin, J.Wang, J.Liu, X.Zhao. On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy [J]. J Alloys Compd. 2009, 478: 789-795.
    [268] N.J.Petch. The cleavage strength of polycrystals [J]. J Iron Steel Inst. 1953, 174: 25-28.
    [269] E.O.Hall. The Deformation and Ageing of Mild Steel: III Discussion of Results [J]. Proc Phys Soc Lond. 1951, B64: 747-753.
    [270] B.Fromm, B.Adams, S.Ahmadi, M.Knezevic. Grain size and orientation distributions: Application to yielding ofα-titanium [J]. Acta Mater. 2009, 57: 2339-2348.
    [271] R.W.Armstrong. Theory of the tensile ductile-brittle behavior of poly-crystalline h.c.p. materials, with application to beryllium [J]. Acta Metall. 1968, 16: 347-355.
    [272] H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé. Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet [J]. Int J Solids Struct. 2010, 47: 2905-2917.
    [273] T.Belytschko, W.Liu, B.Moran (庄茁译).连续体和结构的非线性有限元[M].北京:清华大学出版社, 2002.
    [274]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700