强碱性阴离子交换树脂在海水提溴中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴是一种重要的工业原料,在国民经济中应用广泛。地球上99%的溴都存在于海水中,随着现代生活对溴的需求量日益增大,海水提溴工程愈加重要而紧迫。目前采用的海水提溴技术普遍存在耗能高、流程复杂及成本高的缺点,因此寻找高效率、低成本直接从海水中提取溴离子的方法具有重要的意义。本文主要以201×7强碱性苯乙烯系阴离子交换树脂为吸附剂,研究了该树脂对海水中溴离子的吸附性能。
     通过对文献报道较多的五种溴离子测定方法进行了比较。从测定结果的准确性、重现性、操作的难易程度及避免使用有毒化学品等方面考虑,选用甲基橙分光光度法,平均加标回收率为99.7%,标准曲线的相关系数R 2 = 0.9998,准确度较高,重现性均较好,操作简便且不使用有毒化学品。
     从静态饱和吸附量、饱和吸附时间及抗物理破裂能力等方面,考察了201×4、201×7强碱性阴离子交换树脂和D201大孔强碱性阴离子交换树脂对人工海水中Br -的吸附,结果表明,201×7树脂较另外的两种树脂均有较大的吸附量和较短的吸附时间,且树脂颗粒抗物理破裂能力强,不易破损。该树脂的静态饱和吸附平衡时间为40 min左右,对Br–标准溶液、Br–浓度为128.26 mg·L~(-1)的人工浓海水及Br–浓度为65.03 mg·L~(-1)的人工海水中的静态饱和吸附量分别为33.25 mg·g~(-1)、25.94 mg·g~(-1)和29.42 mg·g~(-1)。
     以201×7树脂为吸附剂进行对Br–浓度为128.26 mg·L~(-1)人工海水的静态吸附实验和静态解吸实验,结果表明:树脂质量的增加可提高吸附量,但当树脂质量达1.0 g时吸附量无明显变化,实验中树脂质量选取1.0 g;在288 K~328 K范围内,升高温度对该吸附过程有利,但吸附率的增幅不大,实验中温度选取298 K。在此基础上,根据静态吸附速率曲线,得到298 K时201×7树脂吸附Br–的表观速率常数为: k 298 = 1.7×10-3 s~(-1),液膜扩散是该吸附过程的主控步骤。根据等温吸附曲线确定吸附过程较符合Freundlich吸附等温式。通过红外光谱分析可知,201×7树脂吸附溴离子前后树脂的骨架结构没有发生化学反应,吸附发生的原因主要是Br–与( )—N +CH33之间的静电引力作用,该吸附过程属于离子交换吸附。测得201×7树脂对天然海水的静态饱和吸附量为27.72 mg·g~(-1)。确定了1.5 mol·L~(-1)柠檬酸钠溶液为最佳解吸剂,解吸率达79.68%。
     以201×7树脂为吸附剂进行对Br–浓度为128.26 mg·L~(-1)人工海水的动态吸附实验和动态解吸实验,结果表明:低流速有利于该吸附过程。计算流速为2.3 ml·min~(-1)时的动态饱和吸附量为13.42 mg·g~(-1),比静态饱和吸附量小,说明此过程的动态吸附没有静态吸附效果好。解吸剂流速越慢,解吸效果越好,但单位时间解吸量却不随着流速的减慢而升高。解吸流速为3.2 ml·min~(-1)时,解吸Br–总量为49.41 mg,动态解吸率为63.49%,较静态解吸率有所下降,说明动态解吸没有静态解吸效果好。201×7树脂在天然海水中的吸附量在一定时间内随时间延长而增加,但是72 h之后,吸附量反而下降,测得吸附72 h后吸附量为38.57 mg·g~(-1)。
Bromine is one of the important industrial raw materials and has wide application in the national economy. 99% of bromine exists in sea water. With more and more demand of bromine in modern life, bromine extraction engineering from seawater shows importance increasingly. The current technologies of bromine extraction from seawater generally have many defects such as high energy consumption, complex process and high cost. Therefore, searching high efficiency and low cost method to extracted bromine ion directly from seawater has the vital significance. In this thesis, the adsorption properties of bromine ion in seawater are studied mainly using 201×7 strongly basic styrene type anion exchange resin.
     In this thesis, five kinds of determination methods of bromine ion in seawater are compared. Considering the accuracy of determination results, reproducibility and the operation difficulty degree as well as avoids using dangerous chemicals and so on, methyl orange spectrophotometry surpasses other four methods. The results of methyl orange spectrophotometry are that Recovery rate is 99.7%, correlation coefficient of standard curve is 0.9998.
     According to resins in literatures, 201×7、201×4 and D201 anion exchange resins are selected as adsorbent. Adsorption effects of bromine ion in standard solution and artificial seawater using these resins are researched from the capacity of static saturation adsorption, the time of static saturated adsorption as well as resistance to physical rupture ability. Results show that, the balance time of static adsorption is 40 minutes, static saturation adsorption capacities of bromine ion standard solution、artificially thick seawater with 128.26 mg·L~(-1) Br– and artificially seawater with 65.03 mg·L~(-1) Br– are 33.25 mg·g~(-1)、25.94 mg·g~(-1)and 29.42 mg·g~(-1) respectively.
     This thesis studies the adsorption properties of 201×7 resin as adsorbent to remove Br– from artificially thick seawater (128.26 mg·L~(-1) Br–) by static adsorption experiment and static desorption experiment. Results show that, increasing resin mass can improve the adsorption capacity, but when resin mass reaches the 1.0 g, the adsorption capacity is not obviously improved. So, resin mass selected at 1.0 g in this experiment. Between 288 K~ 328 K, elevated temperature is beneficial to this adsorption process, but the growing rate of adsorption rate is not obvious. So, experiments are performed at 298 K. Apparent rate constant of this adsorption process is 1.7×10-3 s~(-1) at 298 K, therefore, the adsorption rate was mainly governed by liquid film diffusion. And the adsorption process fit well to Freundlich model.
     Through infrared spectroscopy, chemical reaction of Resin’s skeleton structure doesn't occur. It could be concluded that adsorption mechanism is electrostatic attraction between Br– and ( )—N +CH33. The static saturation adsorption capacity of bromine ion in natural seawater is 27.72 mg·g~(-1). And 1.5 mol·L~(-1) Sodium citrate solution is selected as desorption agent with desorption rate being 79.68%.
     By dynamic adsorption experiment and dynamic desorption experiment, results show that, low flow velocity is beneficial to this adsorption process. The capacity of dynamic adsorption is 13.42 mg·g~(-1)at 2.3 ml·min~(-1), less than the capacity of static saturation adsorption, which shows effect of static adsorption is best than dynamic adsorption. Low desorption flow velocity is beneficial to this desorption process, but desorption capacity per minute is not improved with the velocity slower. Dynamic desorption capacity is 49.41 mg and dynamic desorption rate is 63.49% at 3.2 ml·min~(-1), which are less than static desorption. The adsorption capacity in natural seawater increases as time goes on, but after 72 hours, it decreases. The adsorption capacity is 38.57 mg·g~(-1)at 72 h.
引文
[1]王和锋,孙婷,黄根华.海水提溴技术的研究进展[J].中国新技术新产品,2009: 02-02
    [2]孙玉善.海洋资源化学[M].北京:北京海洋出版社, 1991: 76-82
    [3]杨宏孝.无机化学[M].3.北京:高等教育出版社, 2002. 306-317
    [4]侯杰.三种壳聚糖对海水溴离子的吸附性能研究[D].青岛:中国海洋大学,2009
    [5]林耀庭.我国卤水溴资源及其开发前景展望[J].盐湖研究, 2000, 8(2): 59-66
    [6] Yalcin H, Koc T, Pamuk V. Hydrogen and bromine production from concentrated sea-water [J].International Journal of Hydrogen Energy, 1997, 20(1): 967-970
    [7]王国强,冯厚军,张凤友.海水化学资源综合利用发展前景概述[J].海洋技术. 2002, 12: 61-65
    [8]李增新.海水化学资源的开发与利用[J].化学教育. 1998, 12: 1-8
    [9] Grinbaum B,Freiberg M. Bromine [J]. Kirk-Othmer Encyclopedia of Technology, 2001, 1(2): 1-29
    [10]王寿武,卢伯南.溴素生产现状及展望[J].中国井矿盐, 2004, 35(2): 9-12
    [11]张力军,王薇,王修林.溴素生产技术及溴系列产品的开发[J].海洋科学, 1998, (5): 20-24
    [12]孙培现,张万峰.我国溴及溴系产品的现状及发展思路[J].海湖盐与化工, 2001, 30(1) :7-9
    [13]谢海英. D201大孔阴离子树脂从浓海水中提溴的研究[D].杭州:浙江工业大学,2009
    [14]王雅洁,王国强等.含溴化学品的现状及发展动态[J].海湖盐与化工, 1997, 26(3): 32-36
    [15]金锋.溴资源开发应用现状及发展前景展望[J].中国井矿盐, 1995, 4: 8-11
    [16]张敏恒,李付刚.含溴农药生产状况与机会(二)[J].精细与专用化学品, 2005, 13(17): 5-9
    [17]张一宾.含溴农药的研究开发概况[J].上海化工, 1999, 24(22): 9-20
    [18]张雨山,高春娟,蔡荣华.溴系阻燃剂的应用研究及发展趋势[J].化学工业与工程, 2009, 26(5): 460-465
    [19]郭如新.美国溴产品近况和前景[J].盐湖研究, 2006, 14(1): 66-71
    [20]王作升.海水提溴生产阻燃剂和制冷剂的化学工艺[J].河北化工, 2002, 03: 15-17
    [21]关庆丽,谭丽菊,石晓勇等.海洋化学[M].北京:中国少年儿童出版社, 2002,5:106-111
    [22]《探索海洋奥秘,开发海洋资源》编委会.探索海洋奥秘,开发海洋资源[M].北京:地质出版社.1998, 11: 28-29,47-48
    [23]张宁,苏营营,苏华等.冷冻离心法处理浓海水研究[J].盐业与化工, 2008, 37(4): 25-28
    [24]周桓.浓海水利用的生态工业体系[J].化工环保, 2004, 24(21): 399-401
    [25]张宁,苏营营,苏华,邓莉萍,李丽丽,杨沛珊,王新亭,朱校斌.海水淡化中浓海水的综合利用研究[J].海洋科学, 2008, 32(6): 85-88
    [26]易克达.空气吹出法制溴技术的现状与展望[J].海盐湖与化工, 1992, 1: 19-21
    [27]王汝志,王伟.空气吹出法提溴工艺的两点改进[J].海湖盐与化工, 1998, 28(l): 31-41
    [28]韩智英.一种新的提溴技术—蒸汽蒸馏法[J].天然气勘探与开发, 2004, 27(2): 26-32
    [29]卢伯南,王寿武,陈双平.连续双过程真空提溴法[J].浙江化工, 2004, (35): 5-14
    [30]张慧峰,王国强,姚颖,高书宝,蔡荣华,张雨山.膜法提溴技术研究进展[J].盐业与化工, 2009, 38(3): 46-49
    [31]董景岗,季奎武.我国制溴业基本状况[J].海盐湖与化工, 1997, 26(5): 20-25
    [32]张拿慧. 201×7强碱性阴离子交换树脂吸附浓海水中溴的应用基础研究[D].杭州:浙江工业大学,2009
    [33]朱建华,马淑芬,刘红研.溴素生产应用现状分析及展望[J].矿产综合利用, 2004, 2: 36-41
    [34]孟范平,侯杰.溴素提取生产技术研究进展[J].杭州化工, 2008, 38(4): 10-13
    [35] Dietmar K. Process for the production of very pure bromine [P].US 4125595, 1978-11-14
    [36] Lesher K C. Continuous vacuum process and apparatus for recovering bromine [P]. EP 0300085, 1989-01-25
    [37] Lesher K C, Henry H W. Continuous vacuum process for recovering bromine [P]. US 4978518, 1990-12-18
    [38]张琳娜,刘有智,焦纬洲等.卤水提溴技术的发展与研究现状[J].盐湖研究. 2009, 3: 68-72
    [39]童登珈.溶剂萃取法提溴.海湖盐与化工[J], 1990, 19(4): 11-14
    [40]张勤业.溴及溴化物生产技术现状与发展趋势[J].化工开发与设计, 2001, (4): 30-33
    [41] AndréB. Affinity Solvents for Intensified Organics Extraction: Development Challengesand Prospects [J]. Tsinghua Science and Technology, 2006, 11(2): 171-180
    [42] Toyo Soda MFG Co. Ltd. Recovering bromine from soln. by Contacting with alkali hydroxide soln. through hydrophobic polymer film to effect absorption [P]. JP: 58041703-A, 1983-03-11
    [43]周武超,王亚兵,曹国平.气态膜吸收技术研究进展[J].化学推进剂与高分子材料, 2006, 4(3): 55-59
    [44] Zhang QI, E.L.Cussler. Bromine recovery with hollow fiber gas membranes [J].Journal of membrane science, 1985, 24(43): 36-42
    [45]仉琦,王国强,蔡荣华,等.中空纤维气态膜海水提溴[J].水处理技术, 1986, 12(5): 261-266
    [46]王国强,张淑芬,刘风林. BSF-II型平面气态膜海水提溴工艺及膜寿命考察[J].水处理技术, 1988, 14(6): 339-343
    [47]王国强,张淑芬,王俐聪等.气态膜法海水提溴影响因素的研究[J].海洋技术, 2004, 23(1): 77-80
    [48]王国强,张淑芬,王俐聪等.聚偏氟乙烯中空纤维气态膜法海水提溴研究[J].海湖盐与化工, 2004, 33(2): 17-19
    [49]孙志娟,张心亚,黄洪等.乳状液膜分离技术的发展与应用[J].现代化工, 2006, 26(9): 63-66
    [50]闫树旺,安莲英,唐明林,彭绍洪.离子交换法从卤水富集溴的技术进展综述[J].海湖盐与化工, 1994, 23(6): 14-17
    [51]黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版, 2005: 1-9
    [52]冯孝庭.吸附分离技术[M].北京:化学工业出版, 2000: 3-9
    [53]姜志新,谌竟清,宋正孝.离子交换分离工程[M].天津:天津大学出版社, 1992: 27-73
    [54]何余生,李忠,奚红霞,郭建光,夏启斌.气固吸附等温线的研究进展[J].离子交换与吸附, 2004, 20(4): 376-383
    [55]王方.国际通用离子交换技术手册[M].北京:科学技术文献出版社, 2000
    [56]刘兴芝,蒋维棋,宋玉林. D201BR树脂的寿命及应用于海水提溴的研究[J].离子交换与吸附. 1992, 8(2): 183-187
    [57]毕东峰,倪其明. D201BR树脂的性能及应用于苦卤提溴的研究[J].离子交换与吸附.1990, 6(2): 131-136
    [58]李月卿.溴素蒸馏塔的现状与展望[J].海湖盐与化工, 1997, 27(2): 29-31
    [59]贺永贵.油田含溴卤水提溴方法的选择[J].海盐湖与化工, 1991, 20(3): 39-41
    [60] Metters-Tuladhar C H, Ottaway J M.The reaction of methyl orange with bromine[M]. Anal.Chim.Acta. 1973, 66: 291-300
    [61]冯敏,瞿建国,龚书椿.萃取分光光度法测定工业废气中的游离溴[J].上海环境科学, 1998, 17(3): 31-32
    [62]马钦科(波).元素的分离和分光光度测定[M].郑用熙等译.太远:山西高校联合出版社, 1992: 147-149
    [63]张云,徐刚,江勇等.沉淀滴定计算分析法同时测定溴酸根与碘酸根[J].分析化学研究简报, 2002, 30(5): 605-606
    [64]景丽洁.电位滴定法连续测定废水中溴和氯[J].环境工程, 1999, 17(6): 60-62
    [65]瞿建国,冯敏.甲基橙分光光度法测定环境空气及工业废气中游离溴[J].环境污染与防治, 2000, 22(3): 44-46
    [66]刘占广,楼良旺. H2O2氧化、萃取光度法测溴[J].海湖盐与化工, 1998, 28(1): 26-28
    [67]徐春彦,高艳阳.催化光度法测定微量溴离子[J].华北工学院学报, 1999, 20(2): 174-176
    [68]史俊,张炯亮,李铭.氧化-偶联光度法测定水中的微量溴离子[J].化学工程师, 2005, 5: 23-26
    [69]洪光前,孔庆娴.溴离子选择电极测定卤水中的溴[J].海湖盐与化工, 1992, 21(4): 48-50
    [70]梅朵,孙宝盛.离子选择性电极测定溶液中Br-时去除Cl-的干扰[J].分析科学学报. 2006, 4: 243-244
    [71]王广珠,汪德良,崔焕芳.离子交换树脂使用及诊断技术[M].北京:化学工业出版社, 2004: 9-12
    [72]施林妹,莫建军. D201×4树脂对金(Ⅲ)的吸附[J].无机化学学报, 2007, 5: 911-914
    [73] Boyd G E, Adamson A W, Myers Jr. L S.The exchange adsorption of ions from aqueous solutions by organic zeolites II. Kinetics1[J]. Am.Chem.Soc.1947, (69): 2836–2848
    [74]湛含辉,罗彦伟,张晶晶.吸附过程中流场分布对液膜扩散传质影响模型的研究[J].环境科学研究, 2008, 21(2): 140-144
    [75]北川浩,铃木廉一郎.吸附的基础与设计[M].鹿政理译.北京:化学工业出版社, 1983: 28-29
    [76]孟令芝,龚淑玲,何永炳.有机波谱分析[M].武汉:武汉大学出版社,2003:194-249
    [77]廖赞,兰新哲,朱国才. 201×7强碱性阴离子交换树脂对氰化物的吸附性能及吸附机理[J].分析与环保, 2008, 29(7): 46-50
    [78]谢祖芳,何星存,夏金虹等.苦味酸在聚酰胺树脂上的吸附热力学及动力学[J].化学研究,2003,14(4):53-56
    [79]黄家益,黄汉生.溴的销路与开发[J].青海化工, 1990, (1): 56-59
    [80]管来霞.中度卤水提溴对海盐产质量的影响[J].海盐湖与化工, 1999, 29(2): 10-12
    [81]刘中暹.空气吹出纯碱吸收制溴工艺设备的演讲和评述[J].海湖盐与化工, 1992, 21(4): 31-33
    [82]刘有智,张琳娜.我国工业化卤水提溴现状与问题思考[J].盐业与化工. 2009, 9: 37-40
    [83]刘振军.溴离子氧化反应机理分析[J].海湖盐与化工, 2001, 30(6): 25-27
    [84]张仁泽.用一步精馏法提制精溴的实践与探索[J].海湖盐与化工, 1994, 23(3): 20-21
    [85]于伯杉.气态膜及应用[J].盐湖研究, 1991(1): 47-54
    [86]黄增琼,蒋伟哲,黄兴振,巫世红,陆璐. 717型阴离子交换树脂分离猫豆中的猫豆胍[J].药物研究, 2009, 18(12): 23-24
    [87]王惠君,熊春华,姚彩萍,顾振宇. D201×4树脂对钼(Ⅵ)的性能及机理[J].有色金属, 2006, 58(4): 29-32
    [88]郝福锦,武春瑞,吕晓龙,王国强,张慧峰.新型膜吸收海水提溴过程研究[J].盐业与化工, 2008, 37(6): 1-4
    [89]郝福锦,吕晓龙,王国强,张慧峰.膜法提溴过程的研究与对比[J].化工进展, 2009, 28(6): 927-932
    [90]朱昌洛,寇建军.树脂吸附法由卤水中提溴[J].矿产综合利用, 2003, 5: 13-16
    [91] Pinto N.G., Graham E.E. Characterization of ionic diffusivities in ion exehange resins [J]. Ind. Eng. Chem. Res., 1987, 26(11): 2331-2336
    [92] Fan M., Xu S. Adsorption and desorption properties of macroreticular resins for salidroside from Rhodiola sachalinensis A.Bor [J]. Sep. Purif. Technol., 2008, 61(2): 211-216
    [93] Helfferich F. Ion-exchange kinetics: experimental test of theory of Particle diffusioncontrolled ion exchange [J]. Phys. Chem., 1962, 66(l): 39-54
    [94] Kraaijeveld G., Wesselingh J.A. The kinetics of film diffusion-limited ion exchange [J].Chem. Eng. Sci., 1993, 48(3): 467-473
    [95]魏建良.空气吹溴(碱法)提溴工序工艺用酸浅析[J].中国井矿盐, 1995, (4): 40-41
    [96] Barbari T A, Datwani S S. Gas separation properties of polysulfone membranes treated with molecular bromine [J]. Journal of Membrane Science, 1995, (107): 263-266
    [97]王红.利用液膜法提取卤水中的溴[D].唐山:河北理工学院, 2006: 1-1l
    [98]李海民,程怀德,张全有.卤水资源开发利用技术述评(续完)[J].盐湖研究, 2004, 12(1): 62-72
    [99]苏燕.活化半焦处理含油废水的研究[D].青岛:中国海洋大学, 2007
    [100]傅献彩等.物理化学(第五版)[M].北京:高等教育出版社. 2007, 5: 1-105
    [101]武汉大学.分析化学(第五版)(下册)[M].北京:高等教育出版社. 2007, 12: 357-388
    [102]祝陈坚.海水分析化学实验[M].青岛:中国海洋大学出版社. 2006, 12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700