氢氧化物纳米颗粒稳定的Pickering乳状液及其环境响应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳液是一种液体以液滴形式分散于另一种与之不相混溶的液相中形成的胶体分散体系,表面活性剂稳定的乳液的研究已经有上千年的历史。自从Pickering和Ramsdon首次报道了胶体颗粒对稳定油水界面的作用后,人们开始慢慢了解到颗粒很有可能替代或者部分替代表面活性剂作为乳液稳定剂,这主要是因为颗粒作为乳化剂具有很多固有的优势,例如:(1)可以大大降低表面活性剂的用量,节约成本;(2)对生物体的毒性远小于表面活性剂;(3)环境友好;(4)乳液稳定性非常强,特别是抗聚结能力,一般受环境影响因素较少,所以被广泛应用于食品、医药、原油开采、农药、涂料等很多工业部门。同时随着纳米科技的兴起,颗粒稳定乳液还被应用到组装纳米颗粒、制备空壳结构、胶囊和其他具有特殊功能的结构和材料。因此,纳米颗粒在液液界面上的吸附特性及其关联的乳液稳定作用机理一直是国际学术界研究的热点之一。同时由于在很多工业生产环节中或者科学研究中,颗粒稳定的乳液只能暂时存在或者是需要消除的,比如粘稠原油的管道输运,高分子乳液聚合过程中的后期纯化,药物在生物体内的可控释放等方面都会涉及这个问题,如何设计出具有条件响应的颗粒乳化剂就成了解决这个问题的关键。
     近年来,人们对颗粒稳定的乳液进行了较为系统全面的研究,找到了乳液稳定性与助乳化剂、颗粒浓度、溶液pH值、盐浓度、颗粒自身基本性质等因素变化的规律,进而对这些因素对乳液稳定性的影响都有了较为深刻的认识。同时也开发出很多具有特定条件响应的乳液体系,比如磁场、温度、pH等。尽管如此,我们注意到仍有许多问题需要进一步深入探讨:(1)原位生成的无机纳米颗粒对乳液稳定性的研究;(2)不同结构和形貌的纳米颗粒对Pickering乳液性质的影响;(3)以往设计响应乳化剂的颗粒的思路主要是通过环境条件来改变颗粒表面润湿性,是否还有其它响应模式;(4)仍需大量新的表征方法来深入探讨Pickering乳液的稳定机理以及各种乳液现象(如Pickering乳液的非球形转变)的发生机理。基于乳液研究领域的上述背景,本文选择了两种金属氢氧化物亲水性颗粒:原位共沉淀法制备的氢氧化镁纳米颗粒(Magnesium hydroxide nanoparticles,简称MPs)和原位共沉淀法制备的氢氧化铝纳米颗粒(Aluminum hydroxidenanoparticles,简称APs)作为研究颗粒。首先研究了氢氧化镁纳米颗粒对石蜡油/水乳液体系的稳定性。在此基础上,探讨了氢氧化铝颗粒对石蜡油/水乳液体系的稳定性,最后研究了氢氧化镁颗粒稳定的乳液随老化温度变化发生的非球形转变。通过宏观观察、接触角、光学显微镜、扫描电镜(SEM)、透射电镜(TEM)和激光共聚焦显微镜(LFCM)等实验手段考察了颗粒在乳液滴表面(即弯曲的油/水界面)的吸附行为以及制备的乳液的性质,包括乳液类型、稳定性等。另外,通过总有机碳含量(TOC)测定、电位分析仪、界面张力等手段对上述表面活性剂与颗粒之间的相互作用进行了较为系统的研究。从而丰富了Pickering乳液的研究内容,提出了在所研究体系中乳液稳定性产生变化的机理。
     本文的主要内容包括:
     1.氢氧化镁颗粒对乳液稳定性及其pH响应性的影响
     以往,制备pH响应型颗粒乳化剂的主要方法是将具有pH敏感的有机分子吸附在无机颗粒表面或者是直接将一些pH敏感的有机分子或者聚合物直接交联成颗粒乳化剂,通过这些处理使颗粒乳化剂具有pH敏感性,其核心原理就在于利用水相中pH变化来调控这些有机分子的解离程度或者溶解性,从而来控制颗粒在水相中的润湿性,最终达到控制乳液稳定性和乳液类型。那么是否存在其它方式使得颗粒具有pH敏感性呢?鉴于此,我们考察了原位形成的氢氧化镁纳米颗粒对石蜡油/水体系乳液稳定性的影响,同时也评价了此体系的pH敏感性能。通过对不同颗粒浓度和不同pH值下乳液的分层稳定性和乳液滴尺寸的考察,证明了原位形成的氢氧化镁纳米颗粒具有非常优秀的乳化性能,而且所制备的乳液对体系pH值具有强烈的依赖性。通过激光共聚焦显微镜和乳液滴的透射电子显微镜观察确认了氢氧化镁纳米颗粒对乳液稳定性的作用及其颗粒层的存在。通过乳液的pH开关实验证明氢氧化镁纳米颗粒具有非常优良的开关性能,而且在多次开关循环中,乳液稳定性几乎没有受到影响。对氢氧化镁颗粒的基本性质进行了考察,包括pH对润湿性、界面张力、颗粒电位的变化等,证明了氢氧化镁纳米颗粒的pH敏感性主要是由于水相中pH值影响到水相中氢氧化镁纳米颗粒浓度,而其它因素对其敏感性的影响很小。基于得到的结果,可以推断乳液pH敏感性机理为:(1)在较低pH值下,由于镁元素以离子形态存在于水相中,此时对油水体系没有界面保护作用;(2)当pH值大于氢氧化镁的沉淀pH值,水相中存在氢氧化镁颗粒,此时可以得到稳定的水包油型乳液;(3)再一次将pH值调到小于氢氧化镁的沉淀pH值,乳液会快速破乳,完全分层,其原因是稳定乳液的氢氧化镁颗粒被完全溶解,恢复到离子形态。
     2.氢氧化铝颗粒对乳液稳定性及其pH响应性的影响
     前面研究了氢氧化镁纳米颗粒稳定乳液及其pH开关性的核心就在于通过调节水相pH来控制镁元素是处于离子形态还是固体形态;而氢氧化铝两性化合物不仅在偏酸的环境比较容易溶解,而且在偏碱的环境也容易溶解。如果将其应用到颗粒稳定乳液体系中必然会带来一些有趣的现象,于是我们研究了原位形成氢氧化铝颗粒对石蜡油/水体系稳定性的影响,结果发现无论调节颗粒浓度还是体系的pH,单纯使用氢氧化铝颗粒很难得到稳定的乳液。这可能和氢氧化铝颗粒很强的亲水性及其对油相亲和力很差有关。为此我们考察了在体系中加入少量的表面活性剂来帮助增强颗粒的亲油性。并对三种不同的表面活性剂进行了考察,分别是十二烷基硫酸钠、油酸钠、Brij 30。结果表明当加入的表面活性剂浓度为10-5M时,颗粒在界面上的吸附能力就能得到改善,乳液的宏观分层稳定性和聚结稳定性都有很大的提高;同时发现随pH变化,乳液体系表现出特定乳化pH区域。当表面活性剂浓度为10-4M时,可乳化的pH区域出现宽化现象。而当表面活性剂浓度为10-3M时,结果发现可乳化的区域已经覆盖了整个考察pH区域,乳液敏感性消失。通过测定界面张力、颗粒润湿性变化以及表面活性剂吸附变化等,我们认为氢氧化铝颗粒和表面活性剂复配体系表现出来的pH敏感性主要是与氢氧化铝颗粒的两性及表面活性剂的协同效应有关。当体系中加入过量的表面活性剂时,乳液的这种pH敏感性消失,主要是由于过剩的表面活性剂就可以在整个pH研究范围内稳定乳液,所以pH敏感性无法表现出来。
     3.温度诱导氢氧化镁稳定的乳液滴的非球形转变
     我们在对氢氧化镁颗粒稳定乳液的研究过程中,尝试考察温度对乳液会不会带来一些影响,结果很意外发现在氢氧化镁乳液中出现了球形乳液滴向非球形乳液滴转变的现象。在具体的实验考察中发现,常温下制备的氢氧化镁颗粒稳定乳液保持着完美的球形形状,即使放置几个月也不会发生形状改变;然而将刚制备的乳液放置在特定老化温度下一段时间后,原先球形液滴就会转变成非球形乳液滴。我们还考察了几个实验因素对其非球形化程度的影响,包括老化温度、颗粒浓度、油水比、老化时间。结果发现老化温度对非球形化具有很重要影响,是一个重要的驱动力;同时发现以下规律:颗粒浓度过低不利于整体的乳液稳定,过高不利与非球形化液滴形成;油水比也是出现了与颗粒浓度相似的结果,在中间某个小范围内容易得到较好的非球形液滴;延长老化时间有利于非球形液滴形成,但是老化温度必须大于80℃才有意义,低于此温度老化温度对乳液滴的非球形转变效果不明显,同时老化时间达到一定时间后对非球形化影响较小。利用透射电子显微镜和XRD等手段对老化前后的颗粒进行表征,发现颗粒老化前后发生明显的颗粒二次长大。同时利用显微镜和激光共聚焦显微镜对乳液在不同颗粒浓度下界面吸附形态的变化进行了表征,结果表明在低颗粒浓度下,乳液滴的吸附主要以单层或者少量多层颗粒吸附为主,在高颗粒浓度下,颗粒往往以小团聚体吸附在界面上居多。同时利用苯乙烯单体作为油相,原位本体聚合,利用扫描电子显微镜观察了非球形液滴表面颗粒吸附形态以及非球形液滴本身,发现颗粒形貌变化和液滴形态变化和其他表征方法得到的结果完全一致。对以上结果总结发现氢氧化镁颗粒稳定乳液发生非球形转变主要经历三个过程:(1)原位形成氢氧化镁颗粒吸附在液滴表面形成球形乳液滴。(2)在老化温度下,界面吸附氢氧化镁颗粒发生奥氏熟化,尺寸长大,总的颗粒覆盖面积降低,乳液滴表面出现颗粒空白区。(3)当液滴之间颗粒空白区碰撞在一起,乳液滴之间就会发生部分融合,即形成非球形乳液滴。(4)当空白区过大后,液滴内部的油相可能会逃逸出来,颗粒层完全破裂。
An emulsion is a system of dispersed droplets of one immiscible liquid in another. Although it has been studied for over a thousand years, only when Pickering and Ramsdon reported the role of particles in the stabilization of oil/water interface one hundred year ago, did people start to realize that particles can totally or partially replace surfactant. As emulsifiers, particles have lots of natural advantages, for example,(1) cut down on the amount of surfactant and save cost;(2)lower toxicity to creature than surfactant; (3)friendly to environment;(4)strong emulsion stability, especially to coalescence and little effect by environment conditions, so they have been widely applied to industries like food, pharmaceutical, oil recovery, agrochemical industries and coatings etc.. what is more, with the rise of nanotechnology, particle stabilized emulsions have also been applied to the assembly of nanoparticles, the preparation of hollow structure, capsule and some other structures and materials with specific functions. Thus, the adsorption property of nanoparticles at the liquid-liquid interface and its related emulsion stabilization mechanism has always been a hot issue internationally. In industrial applications or scientific research, particle stabilized emulsions may be temporarily desirable or undesirable in cases like viscous oil transportation, emulsion and micro-suspension polymerization, drug controlling release etc.. Therefore, to design a stimulus-responsive particulate emulsifier is necessary as well as urgent.
     In recent years, systematical studies have been conducted on the particle stabilized emulsions. Some laws have been summarized about co-emulsifiers, particle concentration, pH, salinity and the natural features of the particles. And lots of comprehensive studies have been carried out on the role of these factors in stabilizing the emulsions. At the same time, a number of stimulus-responsive emulsion systems have been developed. However, there are still lots of problems which need further study:(1) the assessment of pure inorganic nanoparticles on emulsion stability; (2) the effect of nanoparticles with different structures and shapes on Pickering emulsion; (3) the key point for particles used as stimulus-responsive emulsifiers is the surface wettability, is there any other manners? (4) more new characterization methods should be employed to deepen the study on the mechanism of not only Pickering emulsion stability but also some other phenomenon of emulsions, like Pickering non-spherical transformation.
     Based on the study on emulsion field above, this dissertation studied two types of hydrophilic metal hydroxide nanoparticles, magnesium hydroxide nanoparticles (MPs) and aluminum hydroxide nanoparticles (APs). Initially, we studied Mps and APs to serve as a particulate emulsifier on paraffin/water system. Then, we studied the non-spherical emulsion droplets transformation at different aging temperatures. The adsorption behaviors of particles at the Pickering emulsion surfaces, and the emulsion properties including emulsion stability and emulsion types are investigated systematically using visual observation, contact angle, optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and Laser-induced fluorescent confocal micrograph (LFCM) experiments. In addition, by total organic carbon (TOC) measurement, zeta potential analysis, interfacial intension measurement and Fourier transform infrared (FTIR) spectrometer, the interactions between particles and surfactants are further investigated in detail. The main contents of this dissertation are as follows:
     1. The assessment of Mps particles on the stability of emulsions and its pH sensitivity
     In the past, to produce particulate emulsifiers were directly put the pH sensitive organic molecules or polymers with inorganic nanoparticles together. Through these processes, the particulate emulsifier would be pH sensitive; the principle behind it is that the emulsion stability as well as its type could be controlled by adjusting the particle wettability in the water phase. By adjusting the degree of dissociation or dissolubility of the organic molecules, particle wettability could be well controlled. However, is there any other approach to achieve such pH sensitivity? Guided by this issue, we studied in situ formed magnesium hydroxide nanoparticles as a stabilizer for paraffin/water system and evaluated its pH sensitivity. By studying the effects of particle concentration and pH on emulsion stability to resist creaming and the droplet size, it was demonstrated that in situ formed magnesium hydroxide nanoparticles are of superb emulsification ability and the emulsions produced strongly rely on the pH in the emulsion system. Through the observation of emulsion droplets with the laser scanning confocal microscope and transmission electron microscope, it was confirmed that Mps nanoparticles could affect the stability of emulsions and particle layers do exist in the system. Besides, it was also shown through a series of pH switch experiments that nanoparticles have excellent switchability, and the emulsion stability would hardly be affected by several switchable cycles. Studies have also been performed on the properties of Mps nanoparticles, including the effect of wettability on the interfacial tension, the zeta potential etc. The results proved that the pH sensibility of Mps nanoparticles was resulted from the pH of aqueous phase which affects the particle concentration of Mps nanoparticles. Other factors had minimum effect on its pH sensibility. The mechanism of emulsion pH sensibility could be concluded from the study as follows:(1) When the pH value was lower than the precipitation limit for Mps, the magnesium element existing in the water phase in the form of ion could not protect the interface of the oil-water system. (2) Over the precipitation condition for Mps, stable O/W emulsion could be produced due to the existence of Mps particles in the water phase. (3) Switching the pH value under the precipitation limit of Mps again, the emulsion would soon be demulsified and complete oil/water separation as the Mps particles in the stable emulsion would be completely dissolved to be ions again.
     2. APs particles as an emulsion stabilizer and its pH sensibility
     Previously we have studied the emulsion stabilized by MPs and its pH switchability, the key point is to control the form of the element of magnesium, being ion or solid, by controlling the pH in the water phase. However, the Mps are amphoteric, to be exact, it could be easily dissolved under both basic and acidic solution. Presumably it would be very interesting to apply Mps to the particle stabilized emulsion system, so we studied in situ formed APs used as an emulsion stabilizer for paraffin/water system and found that Mps particles alone can hardly produce stable emulsion either by controlling the particle concentration or the pH value in the system. The results may relate to the strong hydrophilic property of Mps particles and little interaction with oil phase. In order to find out the reason, we added a certain amount of surfactant to make the particles to be more hydrophobic and we observed three different types of surfactant, sodium dodecyl sulfate, sodium oleate and Brij30 separately. The results showed that the particle adsorption ability could be improved when the surfactant concentration was 10-5M, so does the stability of creaming and coalescence. With the change of pH, specific pH range would occur in the emulsion system. When surfactant concentration was 10-4M, the pH area, which could obtain stable emulsion would cover the whole pH range that were investigated, and the emulsion sensibility would disappear. By testing the interfacial tension, the change of particle wettability and the change of the adsorption of surfactant etc., we believe that the pH sensibility of mixture of APs and surfactant was mainly related to the synergy of the amphotericity of Mps particles and surfactant. The pH sensibility would disappear if excessive surfactant was added into the system. The primary reason for this phenomenon was that the emulsion could be stabilized by the extra surfactant in the whole pH range and therefore the pH sensibility could not be observed.
     3. The change of the stability of emulsion stabilized by Mps particles under different surrounding temperatures
     In our research on the emulsion stabilized by Mps particles, we considered the influence of temperature on the emulsion and surprisingly found that the Mps emulsion presented change from spherical droplets to non-spherical ones. In our experiment, the Mps particles prepared under room temperature could perfectly keep being spherical, even being placed for several months. However, when the newly prepared emulsion was placed under certain aging temperature for a period, the droplet form would change from being originally spherical to non-spherical. In typical experiments, we studied several factors that may affect the non-spherical degree, including aging temperature, particle concentration, oil/water ratio and aging time. The results showed that aging temperature working as an important driving force, could significantly affect the non-spherical degree. Too low particle concentration is adverse to the stabilization of the whole emulsion system, while too high particle concentration is adverse to the formation of non-spherical droplets. The effect of oil/water ratio on the formation of non-spherical droplets is similar to that of particle concentration; droplets with high non-spherical degree could be produced when the oil/water ratio was controlled in a certain range. Extending the aging time would have a positive effect on the formation of non-spherical droplets only on condition that the aging temperature would be higher than 80℃. Below this aging temperature, the effect would be significantly decreased. Besides, when aging time reached a certain point, the influence of it on the formation of non-spherical droplets would become less significant. Through the observation of MHps with the XRD and transmission electron microscope, it was found that the particles experienced obvious growth after the aging process. Moreover, we used the laser scanning confocal microscope and microscope to observe of the particles on the surface emulsion droplets, the results showed that at low particle concentration, the particles adopted on the surface of emulsion droplets are mainly in the form of monolayer or multiple layer, while at high particle concentration, most of the particles on the interface are in small aggregates. Same results could be got when oil phase was replaced by styrene. The oil phase is polymerized through bulk polymerization at aging temperature, and then the appearance of particle layer and non-spherical droplets could be clearly observed with scanning electron microscopy (SEM). Based on the results above, it could be concluded that three key processes are necessary for Mps particle stabilized emulsion droplets to undergo non-spherical transformation. (1) Spherical emulsion droplets would be formed when in situ formed particles are adsorbed on the surface of the emulsion droplets. (2) The MHps on the surface droplets would experience Ostwald ripening at the aging temperature which results for particle size increase and the total surface area decrease, so does the emulsion coverage. In this case,'vacant area'takes on. (3) Partial coalescence occurs when droplets collide with each other and form non-spherical droplets. (4) If the vacant area is too large, the oil phase would release from the particle shell and particle layer would break up.
引文
[1]B. P. Binks; Modern Aspects of Emulsion Science, The Royal Socety of Chemistry Press, Cambridge,1998.
    [2]B. P. B. T. S. Horozov; colloidal particles at liquid interfaces, Cambridge University Press, New York,2006.
    [3]陈宗淇,王光信,徐桂英;胶体与界面化学,高等教育出版社2001.
    [4]W. Ramsden; Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation).--Preliminary Account[J], Proceedings of the Royal Society of London,1903,72,156-164.
    [5]S. U. Pickering; Pickering:Emulsions[J], Journal of chemistry society,1907, 2001-2021.
    [6]Y. C. Tian, A. D. Dinsmore, S. B. Qadri and B. R. Ratna; Microsized structures fabricated with nanoparticles as building blocks [J], Microcrystalline and Nanocrystalline Semiconductors-1998,1999,536,205-209.
    [7]B. P. Binks; Macroporous silica from solid-stabilized emulsion templates [J], Advanced Materials,2002,14,1824-1827.
    [8]S. Arditty, V. Schmitt, J. Giermanska-Kahn and F. Leal-Calderon;Materials based on solid-stabilized emulsions[J], Journal of Colloid and Interface Science,2004,275, 659-664.
    [9]M. F. Hsu, M. G. Nikolaides, A. D. Dinsmore, A. R. Bausch, V. D. Gordon, X. Chen, J. W. Hutchinson and D. A. Weitz; Self-assembled shells composed of colloidal particles:Fabrication and characterization [J], Langmuir,2005,21,2963-2970.
    [10]A. B. Subramaniam, M. Abkarian, L. Mahadevan and H. A. Stone;Mechanics of interfacial composite materials [J], Langmuir,2006,22,10204-10208.
    [11]S. A. F. Bon, S. Cauvin and P. J. Colver; Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules[J], Soft Matter,2007,3,194-199.
    [12]S. A. F. Bon and T. Chen; Pickering stabilization as a tool in the fabrication of complex nanopatterned silica microcapsules[J], Langmuir,2007,23,9527-9530.
    [13]D. B. Lawrence, T. Cai, Z. Hu, M. Marquez and A. D. Dinsmore; Temperature-responsive semipermeable capsules composed of colloidal microgel spheres[J], Langmuir,2007,23,395-398.
    [14]S. Sacanna and A. P. Philipse; A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification[J], Advanced Materials,2007,19,3824-3826.
    [15]A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort and L. J. Gauckler; Materials from foams and emulsions stabilized by colloidal particles [J], Journal of Materials Chemistry,2007,17,3283-3289.
    [16]F. Yang, S. Y. Liu, J. Xu, Q. Lan, F. Wei and D. J. Sun; Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability [J], Journal of Colloid and Interface Science,2006, 302,159-169.
    [17]F. Yang, Q. Niu, Q. Lan and D. J. Sun; Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], Journal of Colloid and Interface Science,2007,306,285-295.
    [18]R. Aveyard, B. P. Binks and J. H. Clint; Emulsions stabilised solely by colloidal particles [J], Advances in Colloid and Interface Science,2003,100,503-546.
    [19]B. P. Binks and S. O. Lumsdon; Influence of particle wettability on the type and stability of surfactant-free emulsions [J], Langmuir,2000,16,8622-8631.
    [20]M. A. J. S. van Boekel and P. Walstra; Stability of oil-in-water emulsions with crystals in the disperse phase[J], Colloids and Surfaces,1981,3,109-118.
    [21]F. Leal-Calderon and V. Schmitt; Solid-stabilized emulsions [J], Current Opinion in Colloid & Interface Science,2008,13,217-227.
    [22]S. Abend, N. Bonnke, U. Gutschner and G. Lagaly; Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides [J], Colloid and Polymer Science,1998,276,730-737.
    [23]G. Lagaly, M. Reese and S. Abend; Smectites as colloidal stabilizers of emulsions: I. Preparation and properties of emulsions with smectites and nonionic surfactants [J], Applied Clay Science,1999,14,83-103.
    [24]G. Lagaly, M. Reese and S. Abend; Smectites as colloidal stabilizers of emulsions: Ⅱ. Rheological properties of smectite-laden emulsions[J], Applied Clay Science,1999, 14,279-298.
    [25]N. P. Ashby and B. P. Binks; Pickering emulsions stabilised by Laponite clay particles[J], Physical Chemistry Chemical Physics,2000,2,5640-5646.
    [26]B. P. Binks, J. H. Clint and C. P. Whitby; Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles [J], Langmuir,2005,21, 5307-5316.
    [27]S. Tarimala, S. R. Ranabothu, J. P. Vernetti and L. L. Dai; Mobility and in situ aggregation of charged microparticles at oil-water interfaces [J], Langmuir,2004,20, 5171-5173.
    [28]L. L. Dai, R. Sharma and C. Y. Wu; Self-assembled structure of nanoparticles at a liquid-liquid interface[J], Langmuir,2005,21,2641-2643.
    [29]C. Y. Wu, S. Tarimala and L. L. Dai; Dynamics of charged microparticles at oil-water interfaces[J], Langmuir,2006,22,2112-2116.
    [30]H. Schwartz, Y. Harel and S. Efrima; Surface behavior and buckling of silver interfacial colloid films[J], Langmuir,2001,17,3884-3892.
    [31]R. Aveyard, J. H. Clint, D. Nees and N. Quirke; Structure and collapse of particle monolayers under lateral pressure at the octane/aqueous surfactant solution interface[J], Langmuir,2000,16,8820-8828.
    [32]T. S. Horozov, R. Aveyard, B. P. Binks and J. H. Clint; Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces [J], Langmuir,2005,21,7405-7412.
    [33]B. R. Midmore; Preparation of a novel silica-stabilized oil/water emulsion[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,132, 257-265.
    [34]E. Vignati, R. Piazza and T. P. Lockhart; Pickering emulsions:Interfacial tension, colloidal layer morphology, and trapped-particle motion[J], Langmuir,2003,19, 6650-6656.
    [35]T. S. Horozov and B. P. Binks; Particle-stabilized emulsions:A bilayer or a bridging monolayer?[J], Angewandte Chemie-International Edition,2006,45, 773-776.
    [36]B. P. Binks and S. O. Lumsdon; Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J], Langmuir,2000,16,2539-2547.
    [37]B. P. Binks and S. O. Lumsdon; Transitional phase inversion of solid-stabilized emulsions using particle mixtures[J], Langmuir,2000,16,3748-3756.
    [38]B. P. Binks, J. Philip and J. A. Rodrigues; Inversion of silica-stabilized emulsions induced by particle concentration [J], Langmuir,2005,21,3296-3302.
    [39]B. P. Binks and J. A. Rodrigues; Inversion of emulsions stabilized solely by ionizable nanoparticles[J], Angewandte Chemie-International Edition,2005,44, 441-444.
    [40]N. Yan, M. R. Gray and J. H. Masliyah; On water-in-oil emulsions stabilized by fine solids [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,193,97-107.
    [41]S. Stiller, H. Gers-Barlag, M. Lergenmueller, F. Pflucker, J. Schulz, K. P. Wittern and R. Daniels; Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232,261-267.
    [42]B. P. Binks and J. A. Rodrigues; Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil[J], Langmuir,2003,19,4905-4912.
    [43]B. P. Binks and S. O. Lumsdon; Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity[J], Physical Chemistry Chemical Physics,2000,2,2959-2967.
    [44]N. Yan and J. H. Masliyah; Effect of pH on Adsorption and Desorption of Clay Particles at Oil-Water Interface[J], Journal of Colloid and Interface Science,1996, 181,20-27.
    [45]B. P. Binks and S. O. Lumsdon; Stability of oil-in-water emulsions stabilised by silica particles[J], Physical Chemistry Chemical Physics,1999,1,3007-3016.
    [46]B. P. Binks, R. Murakami, S. P. Armes and S. Fujii; Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles[J], Langmuir,2006,22,2050-2057.
    [47]D. E. Tambe and M. M. Sharma; Factors Controlling the Stability of Colloid-Stabilized Emulsions:I. An Experimental Investigation[J], Journal of Colloid and Interface Science,1993,157,244-253.
    [48]B. R. Midmore; Effect of Aqueous Phase Composition on the Properties of a Silica-Stabilized W/O Emulsion[J], Journal of Colloid and Interface Science,1999, 213,352-359.
    [49]B. P. Binks and C. P. Whitby; Nanoparticle silica-stabilised oil-in-water emulsions:improving emulsion stability[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2005,253,105-115.
    [50]B. P. Binks, A. Desforges and D. G. Duff; Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J], Langmuir,2007,23, 1098-1106.
    [51]B. P. Binks, J. A. Rodrigues and W. J. Frith; Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J], Langmuir, 2007,23,3626-3636.
    [52]B. R. Midmore; Synergy between silica and polyoxyethylene surfactants in the formation of O/W emulsions [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,145,133-143.
    [53]I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach and L. J. Gauckler; Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J], Langmuir,2008,24,7161-7168.
    [54]B. P. Binks and J. A. Rodrigues; Double inversion of emulsions by using nanoparticles and a di-chain surfactant [J], Angewandte Chemie-International Edition, 2007,46,5389-5392.
    [55]M. Aizawa, Y. Nosaka and H. Miyama; Behavior of titanate coupling agent on TiO2 particles [J], Journal of Colloid and Interface Science,1990,139,324-330.
    [56]J. W. Kim, D. Lee, H. C. Shum and D. A. Weitz; Colloid surfactants for emulsion stabilization[J], Advanced Materials,2008,20,3239-3243.
    [57]M. Shen and D. E. Resasco; Emulsions Stabilized by Carbon Nanotube-Silica Nanohybrids[J], Langmuir,2009,25,10843-10851.
    [58]H. W. Duan, D. A. Wang, D. G. Kurth and H. Mohwald; Directing self-assembly of nanoparticles at water/oil interfaces[J], Angewandte Chemie-International Edition, 2004,43,5639-5642.
    [59]D. Y. Wang, H. W. Duan and H. Mohwald; The water/oil interface:the emerging horizon for self-assembly of nanoparticles [J], Soft Matter,2005,1,412-416.
    [60]T. S. Horozov, B. P. Binks, R. Aveyard and J. H. Clint; Effect of particle hydrophobicity on the formation and collapse of fumed silica particle monolayers at the oil-water interface[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,282,377-386.
    [61]F. Reincke, S. G. Hickey, W. K. Kegel and D. Vanmaekelbergh; Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface[J], Angewandte Chemie International Edition,2004,43,458-462.
    [62]S. Simovic and C. A. Prestidge; Hydrophilic silica nanoparticles at the PDMS droplet-water interface[J], Langmuir,2003,19,3785-3792.
    [63]O. D. F. Velev, K.; Nagayama, K.; Assembly of Latex Particles by Using Emulsion Droplets as Templates.1. Microstructured Hollow Spheres [J], Langmuir, 1996,12,2374-2384.
    [64]Y. Umemura, A. Yamagishi, R. Schoonheydt, A. Persoons and F. De Schryver; Fabrication of hybrid films of alkylammonium cations (CnH2n+1NH3+; n=4-18) and a smectite clay by the Langmuir-Blodgett method[J], Langmuir,2001,17,449-455.
    [65]K. S. S. Mayya, M.; A New Technique for the Spontaneous Growth of Colloidal Nanoparticle Superlattices[J], Langmuir,1999,15,1902-1904.
    [66]S. Levine, B. D. Bowen and S. J. Partridge; Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface[J], Colloids and Surfaces,1989,38,325-343.
    [67]V. N. Paunov and O. J. Cayre; Supraparticles and "Janus" Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique[J], Advanced Materials,2004,16,788-791.
    [68]B. P. Binks; Particles as surfactants-similarities and differences[J], Current Opinion in Colloid & Interface Science,2002,7,21-41.
    [69]G. Kaptay; On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,282, 387-401.
    [70]P. M. Kruglyakov, A. Nushtayeva and N. G. Vilkova; Experimental investigation of capillary pressure influence on breaking of emulsions stabilized by solid particles[J], Journal of Colloid and Interface Science,2004,276,465-474.
    [71]W. Chen, S. Tan, T.-K. Ng, W. T. Ford and P. Tong; Long-Ranged Attraction between Charged Polystyrene Spheres at Aqueous Interfaces [J], Physical Review Letters,2005,95,218-301.
    [72]A. Moncho-Jorda, F. Martinez-Lopez, A. E. Gonzalez and R. Hidalgo-Alvarez; Role of long-range repulsive interactions in two-dimensional colloidal aggregation: Experiments and simulations [J], Langmuir,2002,18,9183-9191.
    [73]P. Pieranski; Two-Dimensional Interfacial Colloidal Crystals[J], Physical Review Letters,1980,45,569.
    [74]A. I. Abdel-Fattah and M. S. El-Genk; On colloidal particle sorption onto a stagnant air-water interface[J], Advances in Colloid and Interface Science,1998,78, 237-266.
    [75]A. I. Abdel-Fattah and M. S. El-Genk; Sorption of Hydrophobic, Negatively Charged Microspheres onto a Stagnant Air/Water Interface[J], Journal of Colloid and Interface Science,1998,202,417-429.
    [76]K. D. Danov, B. Pouligny and P. A. Kralchevsky; Capillary forces between colloidal particles confined in a liquid film:The finite-meniscus problem[J], Langmuir,2001,17,6599-6609.
    [77]G. Lagaly, O. Mecking and D. Penner; Colloidal magnesium aluminum hydroxide and heterocoagulation with a clay mineral. I. Properties of colloidal magnesium aluminum hydroxide[J], Colloid and Polymer Science,2001,279,1090-1096. [78] Z. G. Cui, K. Z. Shi, Y. Z. Cui and B. P. Binks; Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008, 329,67-74.
    [79]J. I. Amalvy, S. P. Armes, B. P. Binks, J. A. Rodrigues and G. F. Unali;Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J], Chemical Communications,2003,1826-1827.
    [80]S. Fujii, S. P. Armes, B. P. Binks and R. Murakami; Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels[J], Langmuir,2006,22,6818-6825.
    [81]Y. Hirose, S. Komura and Y. Nonomura; Adsorption of Janus particles to curved interfaces [J], Journal of Chemical Physics,2007,127,054707(1-5)
    [82]D. J. Adams, S. Adams, J. Melrose and A. C. Weaver; Influence of particle surface roughness on the behaviour of Janus particles at interfaces [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,317,360-365.
    [83]S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer and S. Granick; Janus Particle Synthesis and Assembly [J], Advanced Materials,2010,22,1060-1071.
    [84]N. P. Pardhy and B. M. Budhlall;Pickering Emulsion as a Template to Synthesize Janus Colloids with Anisotropy in the Surface Potential [J], Langmuir,2010,26, 13130-13141.
    [85]T. Tanaka, M. Okayama, H. Minami and M. Okubo;Dual Stimuli-Responsive "Mushroom-like" Janus Polymer Particles as Particulate Surfactants(?)[J], Langmuir, 2010,26,11732-11736.
    [86]B. Madivala, J. Fransaer and J. Vermant; Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces [J], Langmuir,2009,25,2718-2728.
    [87]B. Madivala, S. Vandebril, J. Fransaer and J. Vermant; Exploiting particle shape in solid stabilized emulsions [J], Soft Matter,2009,5,1717-1727.
    [88]J. I. Amalvy, G. F. Unali, Y. Li, S. Granger-Bevan, S. P. Armes, B. P. Binks, J. A. Rodrigues and C. P. Whitby; Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions [J], Langmuir, 2004,20,4345-4354.
    [89]E. S. Read, S. Fujii, J. I. Amalvy, D. P. Randall and S. P. Armes; Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: Demulsification versus transitional phase inversion[J], Langmuir,2004,20, 7422-7429.
    [90]S. Fujii, Y. L. Cai, J. V. M. Weaver and S. P. Armes; Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers [J], Journal of the American Chemical Society, 2005,127,7304-7305.
    [91]S. Fujii, E. S. Read, B. P. Binks and S. P. Armes; Stimulus-responsive emulsifiers based on nanocomposite microgel particles[J], Advanced Materials,2005,17, 1014-1018.
    [92]T. Ngai, S. H. Behrens and H. Auweter; Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical Communications,2005,331-333.
    [93]T. Ngai, H. Auweter and S. H. Behrens; Environmental responsiveness of microgel particles and particle-stabilized emulsions[J], Macromolecules,2006,39, 8171-8177.
    [94]B. P. Binks, R. Murakami, S. P. Armes, S. Fujii and A. Schmid; pH-responsive aqueous foams stabilized by ionizable latex particles[J], Langmuir,2007,23, 8691-8694.
    [95]S. Fujii, M. Okada and T. Furuzono; Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials [J], Journal of Colloid and Interface Science,2007,315,287-296.
    [96]X. D. He, X. W. Ge, H. R. Liu, M. G. Deng and Z. C. Zhang; Self-assembly of pH-responsive acrylate latex particles at emulsion droplets interface [J], Journal of Applied Polymer Science,2007,105,1018-1024.
    [97]B. Brugger, B. A. Rosen and W. Richtering; Microgels as Stimuli-Responsive Stabilizers for Emulsions[J], Langmuir,2008,24,12202-12208.
    [98]D. Dupin, J. R. Howse, S. P. Armes and D. P. Randall; Preparation of stable foams using sterically stabilized pH-responsive latexes synthesized by emulsion polymerization [J], Journal of Materials Chemistry,2008,18,545-552.
    [99]J. Li and H. D. H. Stover; Doubly pH-Responsive Pickering Emulsion[J], Langmuir,2008,24,13237-13240.
    [100]Q. C. Yuan, O. J. Cayre, S. Fujii, S. P. Armes, R. A. Williams and S. Biggs; Responsive Core-Shell Latex Particles as Colloidosome Microcapsule Membranes [J], Langmuir,2010,26,18408-18414.
    [101]M. F. Haase, D. Grigoriev, H. Moehwald, B. Tiersch and D. G. Shchukin; Nanoparticle Modification by Weak Polyelectrolytes for pH-Sensitive Pickering Emulsions[J], Langmuir,2011,27,74-82.
    [102]B. P. Binks and C. P. Whitby; Temperature-dependent stability of water-in-undecanol emulsions [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2003,224,241-249.
    [103]B. P. Binks, R. Murakami, S. P. Armes and S. Fujii;Temperature-induced inversion of nanoparticle-stabilized emulsions[J], Angewandte Chemie-International Edition,2005,44,4795-4798.
    [104]S. Tsuji and H. Kawaguchi; Thermosensitive pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles[J], Langmuir,2008,24,3300-3305.
    [105]Y. G. Jiang, P. B. Wan, H. P. Xu, Z. Q. Wang, X. Zhang and M. Smet; Facile Reversible UV-Controlled and Fast Transition from Emulsion to Gel by Using a Photoresponsive Polymer with a Malachite Green Group[J], Langmuir,2009,25, 10134-10138.
    [106]Z. Li, X. Wei and T. Ngai; Controlled production of polymer microspheres from microgel-stabilized high internal phase emulsions [J], Chemical Communications, 2010,331-333.
    [107]Z. F. Li, T. Ming, J. F. Wang and T. Ngai; High Internal Phase Emulsions Stabilized Solely by Microgel Particles[J], Angewandte Chemie-International Edition, 2009,48,8490-8493.
    [108]A. Menner, V. Ikem, M. Salgueiro, M. S. P. Shaffer and A. Bismarck; High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles[J], Chemical Communications,2007,4274-4276.
    [109]G. Q. Sun, Z. F. Li and T. Ngai; Inversion of Particle-Stabilized Emulsions to Form High-Internal-Phase Emulsions[J], Angewandte Chemie-International Edition, 2010,49,2163-2166.
    [110]Z. G. Cui, L. L. Yang, Y. Z. Cui and B. P. Binks; Effects of Surfactant Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica Nanoparticles and Cationic Surfactant[J], Langmuir,2010,26,4717-4724.
    [111]J. Wang, F. Yang, C. F. Li, S. Y. Liu and D. J. Sun; Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate[J], Langmuir,2008,24,10054-10061.
    [112]R. Zhang and P. Somasundaran; Advances in adsorption of surfactants and their mixtures at solid/solution interfaces[J], Advances in Colloid and Interface Science, 2006,123-126,213-229.
    [113]P. D. Finkle, H.D.; Hildebrand, J.H.; The theory of emulsification[J], J. Am. Chem. Soc.,1923,45,2780-2788.
    [114]B. P. Binks and C. P. Whitby; Silica particle-stabilized emulsions of silicone oil and water:Aspects of emulsification[J], Langmuir,2004,20,1130-1137.
    [115]Y. Nonomura and N. Kobayashi; Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles[J], J Colloid Interface Sci,2009,330, 463-466.
    [116]B. P. Binks, J. H. Clint, G. Mackenzie, C. Simcock and C. P. Whitby; Naturally occurring spore particles at planar fluid interfaces and in emulsions[J], Langmuir, 2005,21,8161-8167.
    [117]N. Saleh, T. Sarbu, K. Sirk, G. V. Lowry, K. Matyjaszewski and R. D. Tilton; Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles [J], Langmuir,2005,21,9873-9878.
    [118]A. Menner, R. Verdejo, M. Shaffer and A. Bismarck; Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials:Poly-pickering-foams[J], Langmuir,2007,23,2398-2403.
    [119]I. Luzinov, S. Minko and V. V. Tsukruk; Responsive brush layers:from tailored gradients to reversibly assembled nanoparticles[J], Soft Matter,2008,4,714-725.
    [120]B. Brugger and W. Richtering; Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers:Microgels versus low molecular weight polymers[J], Langmuir,2008,24,7769-7777.
    [121]J. W. Kirnt, A. Fernandez-Nievest, N. Dan, A. S. Utada, M. Marquez and D. A. Weitz; Colloidal assembly route for responsive colloidosomes with tunable permeability[J], Nano Letters,2007,7,2876-2880.
    [122]F. Gautier, M. Destribats, R. Perrier-Cornet, J. F. Dechezelles, J. Giermanska, V. Heroguez, S. Ravaine, F. Leal-Calderon and V. Schmitt; Pickering emulsions with stimulable particles:from highly-to weakly-covered interfaces[J], Physical Chemistry Chemical Physics,2007,9,6455-6462.
    [123]B. Brugger and W. Richtering; Magnetic, thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions [J], Advanced Materials,2007,19,2973-2978.
    [124]S. Melle, M. Lask and G. G. Fuller; Pickering emulsions with controllable stability [J], Langmuir,2005,21,2158-2162.
    [125]H. W. Duan, D. Y. Wang, N. S. Sobal, M. Giersig, D. G. Kurth and H. Mohwald; Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J], Nano Letters,2005,5,949-952.
    [126]Q. Lan, C. Liu, F. Yang, S. Y. Liu, J. Xu and D. J. Sun; Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions [J], Journal of Colloid and Interface Science,2007,310,260-269.
    [127]B. P. Binks and B. A. Rodrigues; Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,345,195-201.
    [128]J. H. L. Schulman, J.; Control of contact angles at the oil-water-solid interfaces-emulsions stabilized by solid particles (BaSO4)[J], Trans. Faraday Soc. 1954,50,598-604.
    [129]N. Yan and J. H. Masliyah; Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,96,229-242.
    [130]H. T. Davis; Factors determining emulsion type:Hydrophile--lipophile balance and beyond [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1994,91,9-24.
    [131]D. E. Tambe and M. M. Sharma; The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability [J], Advances in Colloid and Interface Science,1994,52,1-63.
    [132]S. Tarimala and L. L. Dai; Structure of microparticles in solid-stabilized emulsions [J], Langmuir,2004,20,3492-3494.
    [133]H. Bechhold, L. Dede and L. Reiner; Dreiphasige Emulsionen[J], Colloid & Polymer Science,1921,28,6-19.
    [134]V. B. Menon and D. T. Wasan; Review of the factors affecting the stability of solids-stabilized emulsions[J],1988, Medium:X; Size:Pages:2131-2142.
    [135]J. Thieme, S. Abend and G. Lagaly; Aggregation in Pickering emulsions [J], Colloid & amp; Polymer Science,1999,277,257-260.
    [136]S. Abend and G. Lagaly; Bentonite and double hydroxides as emulsifying agents[J], Clay Minerals,2001,36,557-570.
    [137]Y. Yan and J. H. Masliyah; Solids-stabilized oil-in-water emulsions:Scavenging of emulsion droplets by fresh oil addition [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,75,123-132.
    [138]T. S. Horozov, B. P. Binks and T. Gottschalk-Gaudig; Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles [J], Physical Chemistry Chemical Physics,2007,9,6398-6404.
    [139]S. O. Asekomhe, R. Chiang, J. H. Masliyah and J. A. W. Elliott; Some observations on the contraction behavior of a water-in-oil drop with attached solids[J], Industrial & Engineering Chemistry Research,2005,44,1241-1249.
    [140]B. P. Binks and J. H. Clint; Solid wettability from surface energy components: Relevance to pickering emulsions[J], Langmuir,2002,18,1270-1273.
    [141]B. P. Binks and S. O. Lumsdon; Pickering emulsions stabilized by monodisperse latex particles:Effects of particle size[J], Langmuir,2001,17,4540-4547.
    [142]Z. L. Yan, J. A. W. Elliott and J. H. Masliyah; Roles of various bitumen components in the stability of water-in-diluted-bitumen emulsions [J], Journal of Colloid and Interface Science,1999,220,329-337.
    [143]D. M. Sztukowski and H. W. Yarranton; Characterization and interfacial behavior of oil sands solids implicated in emulsion stability [J], Journal of Dispersion Science and Technology,2004,25,299-310.
    [144]B. P. Binks and J. A. Rodrigues; Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23,7436-7439.
    [145]K. L. Gosa and V. Uricanu; Emulsions stabilized with PEO-PPO-PEO block copolymers and silica [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2002,197,257-269.
    [146]D. E. Tambe and M. M. Sharma; Hydrodynamics of thin liquid films bounded by viscoelastic interfaces [J], Journal of Colloid and Interface Science,1991,147, 137-151.
    [147]D. E. Tambe and M. M. Sharma; Factors Controlling the Stability of Colloid-Stabilized Emulsions:III. Measurement of the Rheological Properties of Colloid-Laden Interfaces [J], Journal of Colloid and Interface Science,1995,171, 456-462.
    [148]J. Legrand, M. Chamerois, F. Placin, J. E. Poirier, J. Bibette and F. Leal-Calderon; Solid colloidal particles inducing coalescence in bitumen-in-water emulsions[J], Langmuir,2005,21,64-70.
    [149]Q. Lan, F. Yang, S. Y. Zhang, S. Y. Liu, H. Xu and D. J. Sun; Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2007,302,126-135.
    [150]C. F. Li, S. Y. Zhang, J. Wang, X. S. Feng, D. J. Sun and J. Xu; Interactions between Brij Surfactants and Laponite Nanoparticles and Emulsions Stabilized by Their Mixtures [J], Acta Chimica Sinica,2008,66,2313-2320.
    [151]B. M. Yaghi and A. Al-Bemani; Heavy crude oil viscosity reduction for pipeline transportation [J], Energy Sources,2002,24,93-102.
    [152]D. Langevin, S. Poteau, I. Henaut and J. F. Argillier; Crude oil emulsion properties and their application to heavy oil transportation [J], Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole,2004,59,511-521.
    [153]Z. Zhou, T. Kasongo, Z. Xu and J. Masliyah; Assessment of bitumen recovery from the athabasca oil sands using a laboratory Denver flotation cell[J], Canadian Journal of Chemical Engineering,2004,82,696-703.
    [154]M. Motornov, Y. Roiter, I. Tokarev and S. Minko; Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems[J], Progress in Polymer Science,2010,35,174-211.
    [1]B. P. Binks; Particles as surfactants-similarities and differences[J], Current Opinion in Colloid & Interface Science,2002,7,21-41.
    [2]S. Cauvin, P. J. Colver and S. A. F. Bon; Pickering stabilized miniemulsion polymerization:Preparation of clay armored latexes[J], Macromolecules,2005,38, 7887-7889.
    [3]S. A. F. Bon and P. J. Colver; Pickering miniemulsion polymerization using Laponite clay as a stabilizer [J], Langmuir,2007,23,8316-8322.
    [4]S. Sacanna and A. P. Philipse; A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification[J], Advanced Materials,2007,19,3824-3826.
    [5]H. X. Liu, C. Y. Wang, Q. X. Gao, J. X. Chen, X. X. Liu and Z. Tong; One-pot fabrication of magnetic nanocomposite microcapsules[J], Materials Letters,2009,63, 884-886.
    [6]T. Hasell, J. X. Yang, W. X. Wang, J. Li, P. D. Brown, M. Poliakoff, E. Lester and S. M. Howdle; Preparation of polymer-nanoparticle composite beads by a nanoparticle-stabilised suspension polymerisation [J], Journal of Materials Chemistry, 2007,17,4382-4386.
    [7]A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch and D. A. Weitz; Colloidosomes:Selectively permeable capsules composed of colloidal particles[J], Science,2002,298,1006-1009.
    [8]H. W. Duan, D. Y. Wang, N. S. Sobal, M. Giersig, D. G. Kurth and H. Mohwald; Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J], Nano Letters,2005,5,949-952.
    [9]J. W. Kirnt, A. Fernandez-Nievest, N. Dan, A. S. Utada, M. Marquez and D. A. Weitz; Colloidal assembly route for responsive colloidosomes with tunable permeability [J], Nano Letters,2007,7,2876-2880.
    [10]J. I. Amalvy, S. P. Armes, B. P. Binks, J. A. Rodrigues and G. F. Unali; Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J], Chemical Communications,2003,1826-1827.
    [11]E. S. Read, S. Fujii, J. I. Amalvy, D. P. Randall and S. P. Armes; Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: Demulsification versus transitional phase inversion[J], Langmuir,2004,20, 7422-7429.
    [12]S. Fujii, M. Okada and T. Furuzono; Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials [J], Journal of Colloid and Interface Science,2007,315,287-296.
    [13]D. Dupin, J. R. Howse, S. P. Armes and D. P. Randall; Preparation of stable foams using sterically stabilized pH-responsive latexes synthesized by emulsion polymerization[J], Journal of Materials Chemistry,2008,18,545-552.
    [14]J. Li and H. D. H. Stover; Doubly pH-Responsive Pickering Emulsion[J], Langmuir,2008,24,13237-13240.
    [15]Q. Lan, C. Liu, F. Yang, S. Y. Liu, J. Xu and D. J. Sun; Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], Journal of Colloid and Interface Science,2007,310,260-269.
    [16]F. Yang, Q. Niu, Q. Lan and D. J. Sun; Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], Journal of Colloid and Interface Science,2007,306,285-295.
    [17]B. P. Binks and C. P. Whitby; Temperature-dependent stability of water-in-undecanol emulsions [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2003,224,241-249.
    [18]B. P. Binks, R. Murakami, S. P. Armes and S. Fujii; Temperature-induced inversion of nanoparticle-stabilized emulsions [J], Angewandte Chemie-International Edition,2005,44,4795-4798.
    [19]T. Ngai, S. H. Behrens and H. Auweter; Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical Communications,2005,331-333.
    [20]S. Tsuji and H. Kawaguchi; Thermosensitive pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles[J], Langmuir,2008,24,3300-3305.
    [21]S. Melle, M. Lask and G. G. Fuller; Pickering emulsions with controllable stability[J], Langmuir,2005,21,2158-2162.
    [22]B. Brugger and W. Richtering; Magnetic, thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions [J], Advanced Materials,2007,19,2973-2978.
    [23]F. Yang, S. Y. Liu, J. Xu, Q. Lan, F. Wei and D. J. Sun; Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability [J], Journal of Colloid and Interface Science,2006, 302,159-169.
    [24]B. P. Binks, R. Murakami, S. P. Armes, S. Fujii and A. Schmid; pH-responsive aqueous foams stabilized by ionizable latex particles[J], Langmuir,2007,23, 8691-8694.
    [25]J. I. Amalvy, G. F. Unali, Y. Li, S. Granger-Bevan, S. P. Armes, B. P. Binks, J. A. Rodrigues and C. P. Whitby; Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions[J], Langmuir, 2004,20,4345-4354.
    [26]I. Luzinov, S. Minko and V. V. Tsukruk; Responsive brush layers:from tailored gradients to reversibly assembled nanoparticles[J], Soft Matter,2008,4,714-725. [27] S. Fujii, E. S. Read, B. P. Binks and S. P. Armes; Stimulus-responsive emulsifiers based on nanocomposite microgel particles[J], Advanced Materials,2005,17, 1014-1018.
    [28]T. Ngai, H. Auweter and S. H. Behrens; Environmental responsiveness of microgel particles and particle-stabilized emulsions [J], Macromolecules,2006,39, 8171-8177.
    [29]B. P. Binks, W. H. Liu and J. A. Rodrigues; Novel stabilization of emulsions via the heteroaggregation of nanoparticles[J], Langmuir,2008,24,4443-4446.
    [30]G. Liu, S. Liu, X. Dong, F. Yang and D. Sun; Rearrangement of layered double hydroxide nanoplatelets during hollow colloidosome preparation [J], Journal of Colloid and Interface Science,2010,345,302-306.
    [31]R. Aveyard, B. P. Binks and J. H. Clint; Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100,503-546.
    [32]S. Arditty, C. P. Whitby, B. P. Binks, V. Schmitt and F. Leal-Calderon; Some general features of limited coalescence in solid-stabilized emulsions[J], European Physical Journal E,2003,11,273-281.
    [33]J. C. Yu, A. W. Xu, L. Z. Zhang, R. Q. Song and L. Wu; Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J], Journal of Physical Chemistry B,2004,108,64-70.
    [34]J. Lv, L. Z. Qiu and B. J. Qu; Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends[J], Nanotechnology,2004,15,1576-1581.
    [35]B. P. Binks and S. O. Lumsdon; Influence of particle wettability on the type and stability of surfactant-free emulsions[J], Langmuir,2000,16,8622-8631.
    [36]B. P. Binks, J. A. Rodrigues and W. J. Frith; Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J], Langmuir, 2007,23,3626-3636.
    [37]R. Tuckermann; Surface tension of aqueous solutions of water-soluble organic and inorganic compounds [J], Atmospheric Environment,2007,41,6265-6275.
    [38]E. Vignati, R. Piazza and T. P. Lockhart; Pickering emulsions:Interfacial tension, colloidal layer morphology, and trapped-particle motion[J], Langmuir,2003,19, 6650-6656.
    [39]F. Leal-Calderon and V. Schmitt; Solid-stabilized emulsions[J], Current Opinion in Colloid & Interface Science,2008,13,217-227.
    [1]R. Aveyard, B. P. Binks and J. H. Clint; Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100,503-546.
    [2]B. P. Binks; Particles as surfactants-similarities and differences [J], Current Opinion in Colloid & Interface Science,2002,7,21-41.
    [3]F. Leal-Calderon and V. Schmitt; Solid-stabilized emulsions[J], Current Opinion in Colloid & Interface Science,2008,13,217-227.
    [4]M. Motornov, Y. Roiter, I. Tokarev and S. Minko; Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems [J], Progress in Polymer Science,2010,35,174-211.
    [5]X. D. He, X. W. Ge, H. R. Liu, M. G. Deng and Z. C. Zhang; Self-assembly of pH-responsive acrylate latex particles at emulsion droplets interface [J], Journal of Applied Polymer Science,2007,105,1018-1024.
    [6]S. Fujii, M. Okada and T. Furuzono; Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials [J], Journal of Colloid and Interface Science,2007,315,287-296.
    [7]D. Dupin, J. R. Howse, S. P. Armes and D. P. Randall; Preparation of stable foams using sterically stabilized pH-responsive latexes synthesized by emulsion polymerization[J], Journal of Materials Chemistry,2008,18,545-552.
    [8]B. P. Binks, R. Murakami, S. P. Armes, S. Fujii and A. Schmid; pH-responsive aqueous foams stabilized by ionizable latex particles[J], Langmuir,2007,23, 8691-8694.
    [9]M. F. Haase, D. Grigoriev, H. Moehwald, B. Tiersch and D. G. Shchukin; Nanoparticle Modification by Weak Polyelectrolytes for pH-Sensitive Pickering Emulsions[J], Langmuir,2011,27,74-82.
    [10]J. Li and H. D. H. Stover; Doubly pH-Responsive Pickering Emulsion[J], Langmuir,2008,24,13237-13240.
    [11]E. S. Read, S. Fujii, J. I. Amalvy, D. P. Randall and S. P. Armes; Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: Demulsification versus transitional phase inversion[J], Langmuir,2004,20, 7422-7429.
    [12]B. P. Binks, R. Murakami, S. P. Armes and S. Fujii; Temperature-induced inversion of nanoparticle-stabilized emulsions [J], Angewandte Chemie-International Edition,2005,44,4795-4798.
    [13]T. Ngai, S. H. Behrens and H. Auweter; Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical Communications,2005,331-333.
    [14]B. P. Binks and C. P. Whitby; Temperature-dependent stability of water-in-undecanol emulsions[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2003,224,241-249.
    [15]B. Brugger and W. Richtering; Magnetic, thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions [J], Advanced Materials,2007,19,2973-2978.
    [16]S. Melle, M. Lask and G. G. Fuller; Pickering emulsions with controllable stability[J], Langmuir,2005,21,2158-2162.
    [17]H. W. Duan, D. Y. Wang, N. S. Sobal, M. Giersig, D. G. Kurth and H. Mohwald; Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J], Nano Letters,2005,5,949-952.
    [18]B. P. Binks, J. Philip and J. A. Rodrigues; Inversion of silica-stabilized emulsions induced by particle concentration [J], Langmuir,2005,21,3296-3302.
    [19]S. Fujii, Y. L. Cai, J. V. M. Weaver and S. P. Armes; Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers [J], Journal of the American Chemical Society, 2005,127,7304-7305.
    [20]S. Fujii, S. P. Armes, B. P. Binks and R. Murakami; Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels[J], Langmuir,2006,22,6818-6825.
    [21]F. Yang, Q. Niu, Q. Lan and D. J. Sun; Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], Journal of Colloid and Interface Science,2007,306,285-295.
    [22]Q. Lan, C. Liu, F. Yang, S. Y. Liu, J. Xu and D. J. Sun; Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], Journal of Colloid and Interface Science,2007,310,260-269.
    [23]J. I. Amalvy, G. F. Unali, Y. Li, S. Granger-Bevan, S. P. Armes, B. P. Binks, J. A. Rodrigues and C. P. Whitby; Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive parti culate emulsifiers for oil-in-water emulsions [J], Langmuir, 2004,20,4345-4354.
    [24]B. P. Binks, W. H. Liu and J. A. Rodrigues; Novel stabilization of emulsions via the heteroaggregation of nanoparticles [J], Langmuir,2008,24,4443-4446.
    [25]B. P. Binks; Wetting:theory and experiment [J], Current Opinion in Colloid & Interface Science,2001,6,17-21.
    [26]A. L. Ding, B. P. Binks and W. A. Goedel; Influence of particle hydrophobicity on particle-assisted wetting[J], Langmuir,2005,21,1371-1376.
    [27]N. G. Eskandar, S. Simovic and C. A. Prestidge; Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions[J], Physical Chemistry Chemical Physics,2007,9,6426-6434.
    [28]B. P. Binks, J. A. Rodrigues and W. J. Frith; Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J], Langmuir, 2007,23,3626-3636.
    [29]B. P. Binks and J. A. Rodrigues; Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23,7436-7439.
    [30]B. P. Binks, A. Desforges and D. G. Duff; Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant [J], Langmuir,2007,23, 1098-1106.
    [31]I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach and L. J. Gauckler; Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J], Langmuir,2008,24,7161-7168.
    [32]B. R. Midmore; Preparation of a novel silica-stabilized oil/water emulsion[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,132, 257-265.
    [33]C. F. Li, S. Y. Zhang, J. Wang, X. S. Feng, D. J. Sun and J. Xu; Interactions between Brij Surfactants and Laponite Nanoparticles and Emulsions Stabilized by Their Mixtures[J], Acta Chimica Sinica,2008,66,2313-2320.
    [34]B. P. Binks and B. A. Rodrigues; Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles [J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,345,195-201.
    [1]Y. N. Xia, B. Gates, Y. D. Yin and Y. Lu; Monodispersed colloidal spheres:Old materials with new applications[J], Advanced Materials,2000,12,693-713.
    [2]L. S. Li, J. T. Hu, W. D. Yang and A. P. Alivisatos; Band gap variation of size-and shape-controlled colloidal CdSe quantum rods[J], Nano Letters,2001,1,349-351.
    [3]M. Mittal and E. M. Furst; Electric Field-Directed Convective Assembly of Ellipsoidal Colloidal Particles to Create Optically and Mechanically Anisotropic Thin Films[J], Advanced Functional Materials,2009,19,3271-3278.
    [4]B. Madivala, J. Fransaer and J. Vermant; Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces [J], Langmuir,2009,25,2718-2728.
    [5]J. C. Loudet, A. G. Yodh and B. Pouligny; Wetting and contact lines of micrometer-sized ellipsoids [J], Physical Review Letters,2006,97,
    [6]E. P. Lewandowski, J. A. Bernate, A. Tseng, P. C. Searson and K. J. Stebe; Oriented assembly of anisotropic particles by capillary interactions [J], Soft Matter,2009,5, 886-890.
    [7]W. Z. Zhou, J. Cao, W. C. Liu and S. Stoyanov; How Rigid Rods Self-Assemble at Curved Surfaces[J], Angewandte Chemie-International Edition,2009,48,378-381.
    [8]S. H. Kim, G. R. Yi, K. H. Kim and S. M. Yang; Photocurable Pickering emulsion for colloidal particles with structural complexity [J], Langmuir,2008,24,2365-2371.
    [9]H. R. Sheu, M. S. El-Aasser and J. W. Vanderhoff; Phase separation in polystyrene latex interpenetrating polymer networks [J], Journal of Polymer Science Part A: Polymer Chemistry,1990,28,629-651.
    [10]E. B. Mock, H. De Bruyn, B. S. Hawkett, R. G. Gilbert and C. F. Zukoski; Synthesis of anisotropic nanoparticles by seeded emulsion polymerization [J], Langmuir,2006,22,4037-4043.
    [11]C. C. Ho, A. Keller, J. A. Odell and R. H. Ottewill; Preparation of monodisperse ellipsoidal polystyrene particles[J], Colloid & amp; Polymer Science,1993,271, 469-479.
    [12]K. Zhao, C. Harrison, D. Huse, W. B. Russel and P. M. Chaikin; Nematic and almost-tetratic phases of colloidal rectangles [J], Physical Review E,2007,76,
    [13]O. Cayre, V. N. Paunov and O. D. Velev; Fabrication of asymmetrically coated colloid particles by microcontact printing techniques [J], Journal of Materials Chemistry,2003,13,2445-2450.
    [14]A. R. Studart, H. C. Shum and D. A. Weitz; Arrested Coalescence of Particle-coated Droplets into Nonspherical Supracolloidal Structures [J], Journal of Physical Chemistry B,2009,113,3914-3919.
    [15]S. A. F. Bon, S. D. Mookhoek, P. J. Colver, H. R. Fischer and S. van der Zwaag; Route to stable non-spherical emulsion droplets[J], European Polymer Journal,2007, 43,4839-4842.
    [16]A. B. Subramaniam, M. Abkarian, L. Mahadevan and H. A. Stone; Non-spherical bubbles[J], Nature,2005,438,930-930.
    [17]S. C. Glotzer and M. J. Solomon; Anisotropy of building blocks and their assembly into complex structures [J], Nature Materials,2007,6,557-562.
    [18]T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic and G. M. Whitesides; Design and self-assembly of open, regular,3D mesostructures[J], Science,1999,284,948-951.
    [19]S. Gangwal, O. J. Cayre and O. D. Velev; Dielectrophoretic Assembly of Metallodielectric Janus Particles in AC Electric Fields [J], Langmuir,2008,24, 13312-13320.
    [20]R. Aveyard, B. P. Binks and J. H. Clint; Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100,503-546.
    [21]F. Leal-Calderon and V. Schmitt; Solid-stabilized emulsions[J], Current Opinion in Colloid & Interface Science,2008,13,217-227.
    [22]B. J. Park and E. M. Furst; Fabrication of Unusual Asymmetric Colloids at an Oil-Water Interface[J], Langmuir,2010,26,10406-10410.
    [23]D. Lee and D. A. Weitz; Nonspherical Colloidosomes with Multiple Compartments from Double Emulsions[J], Small,2009,5,1932-1935.
    [24]Y. I. Dikanskii, O. A. Nechaeva and A. R. Zakinyan; Deformation of magnetosensitive emulsion microdroplets in magnetic and electric fields [J], Colloid Journal,2006,68,137-141.
    [25]B. Walther, L. Hamberg, P. Walkenstrom and A. M. Hermansson; Formation of shaped drops in a fast continuous flow process[J], Journal of Colloid and Interface Science,2004,270,195-204.
    [26]T. Sugimoto, M. M. Khan, A. Muramatsu and H. Itoh; Formation mechanism of monodisperse peanut-type [alpha]-Fe2O3 particles from condensed ferric hydroxide gel[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,79, 233-247.
    [27]C. C. Ho, A. Keller, J. A. Odell and R. H. Ottewill; Preparation of monodisperse ellipsoidal polystyrene particles[J], Colloid & Polymer Science,1993,271,469-479.
    [28]K. M. Keville, E. I. Franses and J. M. Caruthers; Preparation and characterization of monodisperse polymer microspheroids[J], Journal of Colloid and Interface Science, 1991,144,103-126.
    [29]H. R. Sheu, M. S. El-Aasser and J. W. Vanderhoff; Uniform nonspherical latex particles as model interpenetrating polymer networks [J], Journal of Polymer Science Part A:Polymer Chemistry,1990,28,653-667.
    [30]A. T. Skjeltorp, J. Ugelstad and T. Ellingsen;Preparation of nonspherical, monodisperse polymer particles and their self-organization[J], Journal of Colloid and Interface Science,1986,113,577-582.
    [31]J. Tan, J. Wang, L. Wang, J. Xu and D. Sun; In situ formed Mg (OH)2 nanoparticles as pH-switchable stabilizers for emulsions [J], Journal of Colloid and Interface Science, In Press, Accepted Manuscript,
    [32]J. J. Tan, J. Wang, L. Y. Wang, J. Xu and D. J. Sun; In situ formed Mg (OH)2 nanoparticles as pH-switchable stabilizers for emulsions [J], J Colloid Interface Sci, 2010, accepted.
    [33]S. Cauvin, P. J. Colver and S. A. F. Bon; Pickering stabilized miniemulsion polymerization:Preparation of clay armored latexes[J], Macromolecules,2005,38, 7887-7889.
    [34]J. C. Yu, A. W. Xu, L. Z. Zhang, R. Q. Song and L. Wu; Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J], Journal of Physical Chemistry B,2004,108,64-70.
    [35]Y. D. Yin, Y. Lu and Y. N. Xia; Self-assembly of spherical colloids into well-defined clusters and structures [J], Abstracts of Papers of the American Chemical Society,2001,221,314.
    [36]Y. Lu, Y. D. Yin and Y. N. Xia; Self-assembly with nonspherical colloids as the building blocks [J], Abstracts of Papers of the American Chemical Society,2001,221, 170.
    [37]A. Perro, S. Reculusa, S. Ravaine, E. B. Bourgeat-Lami and E. Duguet; Design and synthesis of Janus micro-and nanoparticles[J], Journal of Materials Chemistry, 2005,15,3745-3760.
    [38]T. Nisisako, T. Torii, T. Takahashi and Y. Takizawa; Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system[J], Advanced Materials,2006,18,1152-1156.
    [39]K. H. Roh, D. C. Martin and J. Lahann; Biphasic Janus particles with nanoscale anisotropy [J], Nature Materials,2005,4,759-763.
    [40]A. Walther and A. H. E. Muller; Janus particles[J], Soft Matter,2008,4,663-668.
    [41]T. Ngai, S. H. Behrens and H. Auweter; Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical Communications,2005,331-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700