中和法合成纳米级羟基磷酸钙
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工产业是主要由磷复肥及精细磷化工组成的磷资源加工产业,其中精细化是其未来的主要发展方向之一。羟基磷酸钙(HAP)是近年来新兴发展起来的一种精细磷化工产品,在悬浮聚合分散剂以及荧光材料、生物材料、陶瓷等方面都有应用。在石化行业的悬浮聚合中,作为当今用量最大的一种新型无机悬浮分散剂,HAP能使聚合工艺稳定,反应压力、温度平稳,清釜周期延长,从而得到粒度分布集中、透明度和外观质量均改善的聚合树脂,产品档次明显提高。
     目前我国高质量的HAP主要依靠进口,国产的HAP在用于悬浮聚合时,树脂产品在外观、粒度分布等方面存在一定缺陷。研究发现HAP悬浮分散剂的活性与其比表面积成正比,将其超细纳米化,增大其比表面积,可以提高其分散活性。但HAP纳米化后微粒之间容易发生二次团聚,影响树脂产品在悬浮聚合时的注塑成型;而减少微粒间的团聚增大粒径使比表面积减小,又会降低其活性影响分散性能。因此,为了解决HAP纳米化和分散性能之间的矛盾,须选择一种有效的合成方法和表面处理使制得的HAP粒径达到纳米级、比表面积大、分散活性高。
     本课题采用酸碱中和法,以H3P04和CaO为原料制备HAP悬浮聚合分散剂。该工艺原理简单,易操作,原料易得,通过严格控制反应条件就可以得到具有特定性能的粒子。课题系统研究了原料Ca/P、反应体系pH、反应温度、陈化时间及十二烷基苯磺酸钠(SDBS)加入量等工艺条件对产品的结构、化学组成、粒度大小及其粒径分布的影响,并采用正交设计法优化工艺条件。通过激光粒度分析仪、X-射线衍射、全化学分析法等手段对产物进行了表征。为改善HAP粉体粒度,降低其团聚现象,采用不同的改性剂对HAP粉体进行表面改性以制备出纳米尺寸的羟基磷酸钙粉体,并分别研究了改性剂种类、改性剂加入时间、改性剂用量等因素对HAP粉体改性的影响。主要研究成果如下:
     (1)所制备的HAP悬浮分散剂具有羟基磷酸钙(Caio(P04)6(OH)2)的晶体结构。
     (2)当以产物Ca/P值为控制指标时,优惠工艺条件应为反应物Ca/P为1.77,SDBS加入量为1.5mL,反应温度45℃,体系pH为11。
     当以产物粒度及其粒径分布为控制指标时,优惠工艺条件应为反应物Ca/P为1.57,SDBS加入量为1.5mL,反应温度45℃,体系pH为9。
     当以产率为控制指标时,优惠工艺条件应为反应物Ca/P为1.67,SDBS加入量为1.0mL,反应温度55℃,体系pH为9。优惠工艺条件的验证实验证明设计方案的正确性和可行性。
     (3)优惠条件下合成的HAP微粒的各项指标均符合部颁标准HG/T3583-2009,而且其平均粒径这项指标明显高于标准HG/T3583-2009。
     (4)单一改性剂以柠檬酸效果最佳,扫描电镜(SEM)结果显示柠檬酸的加入使得粉体粒度明显变小,激光粒度仪测定结果表明HAP粉体尺寸约为70nm;复合改性剂以柠檬酸和SDBS复合时改性效果最佳,优于单一改性剂的作用效果;改性剂在中和反应前加入效果较好;改性剂最佳用量为4%,最优改性产品的活化指数为94%,沉降体积为2.2mL/g。
Phoschemical industry, which is composed of phosphate and compound fertilizer as well as fine phosphorous chemicals, mainly aims at phosphorus resources for processing. And the refine technology is further developed in the future of this field. The Hydroxyapatite (HAP) is emerging as a kind of fine phosphorus chemical products in recent years, which has been used in many ways, such as the suspension polymerization dispersant, fluorescent material, biological material as well as ceramic. As a new kind of inorganic suspension polymerization dispersant, HAP is the most widely used in the suspension polymerization of petrochemical industry. It can make the polymerization process stable, the pressure and temperature more smooth, and can prolong the period of cleaning kettle. In brief, HAP can improve the appearance quality and transparency of the product, and enhance the grade of the product.
     At present, the HAP with high quality is mainly from imports. The HAP at home makes from suspension polymerization, and it has some drawbacks in the appearance, particle size distribution of resin products. Recent studies show that the activity of HAP dispersant for suspension polymerization is proportional to its specific surface area. Nanoparticle of HAP could improve the dispersion cativity because of its large specific surface area. When HAP particle size reaches to nanometer level, the HAP particles are liable to agglomerate, which can affect resin products injection molding. Increasing the size of the particles for reducing their agglomeration, however, can lower surface activity and influence its dispersion activity. In order to resolve the contradiction between the nanocrystallization of HAP dispersant and its dispersing property, a kind of effective synthetic method and surface treatment must be choosed, as a result, this method can be used to prepare nano-sized HAP particles with large specific surface area and high surface activity.
     An acid-base neutralization was adopted using phosphoric acid and calcium oxide as starting materials to prepare HAP dispersants for suspension polymerization. The principle of this synthesis technique that is easy to handle is simple, raw materials are cheap and easily-accessible, and the controllable preparation on some properties of particles can be achieved by means of strictly controlling reaction conditions. In this paper, the effects of the process conditions, including the Ca/P of raw materials, the pH value of the reaction system, temperature of reaction, aging time, as well as SDBS addition amount on the structure, chemical composition, grain size and partical size distribution of the HAP products were researched in detail, and the process conditions were optimized by using orthogonal design method. The samples were characterized by laser particle size analyzer, X-ray diffraction instrument, chemical analysis and so on. In order to improve the grain size and the aggregation of Hydroxyapatite powders, different modifiers are used to perform the surface modification of HAP powders to obtain nano-sized particles. The influences of modifiers types, modification time as well as surfactant dosages are investigated. The results were listed as follows:
     (1) The crystal structure of the prepared HAP is same to Ca10(PO4)6(OH)2.
     (2) When the control indicators are Ca/P of the HAP products, the optimum process conditions are Ca/P of raw materials1.77, SDBS addition amount1.5mL, temperature of reaction45℃and the pH value of the reaction system11.
     When the control indicators are grain size and partical size distribution of the HAP products, the optimum process conditions are Ca/P of raw materials1.57, SDBS addition amount1.5mL, temperature of reaction45℃and the pH value of the reaction system9.
     When the control indicators are the yield of the HAP products, the optimum process conditions are Ca/P of raw materials1.67, SDBS addition amount1.0mL, temperature of reaction55℃and the pH value of the reaction system9. Under the optimum process conditions the experiment for verification is done. It validates the correctness and feasibility of the design method further.
     (3) All the indicators of the prepared HAP under the optimum process conditions are in line with the ministerial standard HG/T3583-2009, of which the average particle diameter is significantly higher than the standard HG/T3583-2009.
     (4) As a single modifier, C6H8O7is the best, and scanning electron microscope (SEM) analysis reveals that the size of HAP powders with C6H8O7decreases significantly. Further study under laser particle size analyzer demonstrates that the average size of HAP powders is70nm or so. When C6H8O7and SDBS as the compound modifier are used, it turns out a better consequence. If the modifier is added before acid-base neutralization reaction, the effect of modification is noteworthy and the optimum content of modified agents is4%. The activation index and sedimentation volume of optimal modified products is94%and2.4mL/g, respectively.
引文
[l]徐家乐.多孔HAP悬浮聚合分散剂的合成工艺研究[D].[硕士学位论文].成都:四川大学,2006.
    [2]雷兴家.活性磷酸钙(ATCP)的研制及应用[J].湖北化工,1989,4:11-14.
    [3]何光伟,潘仁云,周其云,等.悬浮聚合用无机分散剂——磷酸钙的表征[J].合成树脂及塑料,1992,9(4):16-20.
    [4]沈卫,顾燕芳,刘昌胜,等.羟基磷灰石的表面特性[J].硅酸盐通报,1996,1:45-51.
    [5]曹伦,刘晨曦,李云东.羟基活性磷酸钙生产工艺评价[J].云南化工,2008,35(2):58-61.
    [6]陈林,李国珍,李琼.无机悬浮分散剂——活性磷酸钙的研制与表征[J].浙江大学学报,1992,26(5):544-511.
    [7]潘祖仁.悬浮聚合[M].北京:化学工业出版社,1997.
    [8]White R, Meek P D, Snyder J R, et al. Improvements in or relating to the production of polymer beads[P]. G.B Patent,948747, Oct.19,1964.
    [9]李琼.悬浮聚合分散剂——活性磷酸钙的研制[J].广东化工,1997,2:32-33.
    [10]徐家乐,徐卡秋,赵春霞.HAP用作悬浮聚合分散剂的技术研究[J].四川化工,2005,8(2):9-11.
    [11]徐兆瑜.聚氯乙烯生产市场新动态和技术进展[J].江苏氯碱,2004,2:7-14.
    [12]高春雨.中国聚苯乙烯市场现状及发展趋势[J].石化市场论坛,2004,3:21-25.
    [13]徐卡秋,徐家乐,王渝红.多孔活性磷酸钙悬浮聚合分散剂的制备及性能研究[J].四川大学学报(工程科学版),2006,38(6):73-78.
    [14]Bezzi G, Celotti G, Landi E. A novel sol-gel technique for hydroxypatite preparation[J]. Materials Chemistry and Physics,2003,78:816-824.
    [15]Mamoru S C, Tetisuhiko I Y. Method for synthesis of hydroxyapatite, and hydroxyapatite complex and method for preparing the same[P]. U.S Patent, US6592989B1, Jul.15,2003.
    [16]Takeshi I, Tetsuro O, Masaya S, et al. Process for producing shaped article of oriented calcium phosphate type compound[P]. U.S Patent,5240659, Aug.31,1993.
    [17]郭大勇,储成林,林萍华,等.柠檬酸对溶胶-凝胶法制备羟基磷灰石粉体的影响[J].东南大学学报(自然科学版),2002,32(3):402-404.
    [18]张园,袁嫒,刘昌胜.纳米羟基磷灰石悬浮液稳定性能的研究[J].中国生物医学工程学报,2008,27(1):108-111.
    [19]李正廉.活性磷酸钙的生产技术[P].中国专利,94113016.9,1994-12-05.
    [20]张友贵,李茂林.微细活性磷酸钙的生产方法[P].中国专利,00109945.0,2000-07-25.
    [21]秦永健.新型活性磷酸钙及其制备方法[P].中国专利,201010210894.9,2010-06-28.
    [22]丁立国.纳米二氧化硅的制备与应用研究[D].[硕士学位论文].哈尔滨:哈尔滨工程大学,2004.
    [23]Ball P, Garwin L. Science at the actomic scale[J]. Nature,1992,355(6363):761-764.
    [24]王中林.纳米材料和纳米技术[J].化学通讯,2001,6:1-3.
    [25]李小兵,刘竟超.纳米粒子与纳米材料[J].塑料,1999,28(1):19-29.
    [26]尹邦跃.纳米时代——现实与梦想[J].科技智囊,2001,9:112.
    [27]吴明在.低维磁性纳米氧化物的水热合成与物性研究[D].[硕士学位论文].合肥:中国科学技术大学,2005.
    [28]周江波.阳极氧化铝模板(AAO)的制备与应用研究[D].[硕士学位论文].北京:首都师范大学,2006.
    [29]Lee T, Yao N, Imai H, Aksay I A. Barium Titanate Nanoparticles in Block Copolymer[J]. Langmuir,2001,17:7656-7663.
    [30]Pyun J, Matyjaszewski K, Kowalewski. T, et al. Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces [J]. J Am Chem Soc,2001,123:9445-9446.
    [31]Biju V, Abdul K M. Analysis of AC electrical properties of nanocrystalline oxide[J]. Materials Science and Engineering,2001,304-306(0):814-817.
    [32]付栓平.羟基磷灰石纳米粒子的制备与表征[D].[硕士学位论文].呼和浩特:内蒙古工业大学,2009.
    [33]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.23-70.
    [34]高素莲.功能化多壁碳纳米管的细胞毒性研究[D].[硕士学位论文].济南:山东大学,2008.
    [35]郑水林.超微粉体加工技术与应用[M].北京:化学工业出版社,2011.14-18.
    [36]Hideki A. Medical Applications of Hydroxyapatite[M]. Tockyo:Ishiyaku EuroAmerica Inc, 1994.225-231.
    [37]王颖.羟基磷灰石纳米粒子的制备及其性能表征含磷酸根的无机-有机杂化材料的合成[D].[硕士学位论文].北京:北京化工大学,2004.
    [38]高端平.纳米材料合成技术的研究及展望[J].材料导报,2001,15(5):6-9.
    [39]倪永红,葛学武,徐相凌,等.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15(1):9-11.
    [40]刘维平,邱定蕃,卢惠民.纳米材料制备方法及应用领域[J].化工矿物与加工,2003,12:1-8.
    [41]Sumit P, Avinash K A, Rai K N. Development of high strength hydroxyapatite by solid-state-sintering process [J]. Ceramics International,2007,33(3):419-426.
    [42]朱晏军,王玮竹,闫玉华,等.纳米羟基磷灰石(HAP)的制备方法及应用[J].佛山陶瓷,2003,7:9-11.
    [43]徐光亮,聂轶霞,赖振宁.水热合成羟基磷灰石纳米粉体的研究[J].无机材料学报,2002,17(3):601-604.
    [44]苗鸿雁,董敏,丁常胜.水热法制备纳米陶瓷粉末技术[J].中国陶瓷,2004,40(4):26-28.
    [45]汪晓霞,张海黔.羟基磷灰石晶须的水热法合成及表征[J].南京航空航天大学学报,2005,37(5):611-614.
    [46]魏杰,李玉宝,左奕,等.水热法制备纳米磷灰石晶体比较研究[J].高技术通讯,2003,9:77-79.
    [47]刘晶冰,叶晓月,汪浩,等.水热法合成羟基磷灰石的结构和形貌[J].应用化学,2003,20(3):299-301.
    [48]廖其龙,徐光亮.纳米经基磷灰石的水热合成[J].功能材料,2002,33(3):338-340.
    [49]Lin C H. Hydrothermal Preparation of Hydroxyapatite Powders from Ca(OH)2 and Na3PO4·12H2O[J]. Materials Researeh Society SymPosium Proeeedings,1994,340: 237-242.
    [50]Monma H, Kamiya T. Preparation of Hydroxyapatite by the Hydrolysis of Brushite[J]. Journal of Materials Seience,1987,22:4247-4250.
    [51]Monma H, Deno S, Kanazawa T. Propertites of Hydroxyapatite PrePared by the Hydrolysis of Triealcium Phosphate[J]. Journal of Chemcal Teelmology and Bioteebnology,1981,31: 15-24.
    [52]张力,汪超,苑庆兰,等.沉淀法制备羟基磷灰石影响产物结晶和晶粒粒度的因素[J].武警医学院学报,2003,12(2):143-145.
    [53]王德平,王璐.pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].同济大学学报(自然科学版),2005,33(1):94-97.
    [54]王志强,马铁成,韩趁涛,等.湿法合成纳米羟基磷灰石粉末的研究[J].无机盐工业,2001,33(1):3-5.
    [55]江听,韩颖超,李世普,等.速均匀沉淀法制备纳米级HAP粉末[J].硅酸盐通报,2002,1:44-46.
    [56]Luo P, Nieh T G. Synthesis of ultrafine hydroxyapatite particles by a spray dry method[J]. Materials Science and Engineering,1995,3:75-78.
    [57]张超武,李娟莹.共沉淀法制备羟基磷灰石影响因素的研究[J].材料导报,2006,20:390-396.
    [58]徐立新.沉淀法制备羟基磷灰石粉末的探索[J].甘肃科技,2003,19(11):33-34.
    [59]马兰.羟基磷灰石复相梯度生物陶瓷的制备及性能研究[D].[硕士学位论文].洛阳:河南科技大学,2009.
    [60]李爱民,孙康宁,尹衍升,等.化学沉淀法制备纳米HAP粉体的工艺优化[J].山东大学学报(工学版),2003,33(6):611-614.
    [61]王志锋.羟基磷灰石生物功能材料的制备及其生物活性评价[D].[硕士学位论文].洛阳:河南科技大学,2007.
    [62]宋云京,李木森,吕宇鹏.液相沉淀法制备羟基磷灰石粉体的现状及进展[J].功能材料,2004,35:2414-2416.
    [63]童义平,李粉玲,余沐磷.溶胶-凝胶法制备羟基磷灰石工艺条件的探讨[J].中国陶瓷,2002,38(4):16-17.
    [64]童义平,余沐磷,钟秀兰,等.羟基磷灰石合成工艺研究[J].化学研究与应用,2002,14(1):93-95.
    [65]朱晓丽,王迎军.纳米羟基磷灰石的溶胶-凝胶制备及其特性研究[J].硅酸盐通报,2003,2:77-80.
    [66]石袁嫒,刘昌胜.溶胶-凝胶法制备纳米羟基磷灰石[J].中国医学科学学报,2002,2(24):129-133.
    [67]黄志良,刘羽,王大伟,等.溶胶-凝胶法合成的羟基磷灰石的热稳定性研究[J].武汉化工学院学报,2002,24(2):35-39.
    [68]孟令科,朱晓丽,叶建东,等.溶胶-凝胶法制备羟基磷灰石的影响因素[J].现代化工,2002,22:137-142.
    [69]李霞.溶胶-凝胶法羟基磷灰石纳米粉体的制备[J].牙膏工业,2003,4:33-34.
    [70]朱明刚.溶胶-凝胶法制备HAP骨水泥材料的研究[J].金属功能材料,2002,9(1):34-35.
    [71]王峰,李木森,隋金玲.快速溶胶-凝胶法制备纳米级羟基磷灰石[J].生物骨科材料与临床研究,2004,1(4):17-20.
    [72]Vallet R M, Gutierrez R M T, Alonso M P, et al. Hydroxyapatite particles synthesized by phrolysis of an aerosol[J]. Journal of Solid State Chemistry,1994,112:537-541.
    [73]方义.低维有序纳米钨酸铅形成机理及性能研究[D].[硕士学位论文].绵阳:西南科技大学,2010.
    [74]Lim G K, Wang J, Ng S C, et al. Processing of fine hydroxyapatite powders via an inverse micro emulsion route[J]. J Mater Lett,1996,28:431-436.
    [75]Lim G K, Wang J, Ng S C, et al. Processing of gydroxyapatite via microemulsion and emulsion routes[J]. Biomaterials,1997,18(21):1433-1439.
    [76]Lim G K, Wang J, Ng, S C, et al. Nanosized hydroxyapatite powers from micro emulsions and emulsions stabilized by a biodegradable surfactant[J]. Journal Material Chemistry,1999, 9:1635-1639.
    [77]Limin Q. Micro emulsion-mediated synthesis of calcium hydroxyapatite fine powder[J]. Journal of Materials Science Letters,1997,16:1779-1781.
    [78]Ren W, Li S P, Wang Y F, et al. Preparation and characterization of nanosized hydroxyapatite particles in AOT inverse micro emulsion[J]. Materials Science Edition,2004, 19(2):24-29.
    [79]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999.73.
    [80]多贺谷宜秋,桑原秀行,桥本孝雄,等.磷酸钙型羟(基)磷灰石及其制备方法[P].中国专利,CN86107535A,1987-08-19.
    [81]Moreno E C, Varughese K. Crystal Growth of Calcium Apatite from Dilute SolutionsfJ]. J Crystal Growth,1981,53:20-30.
    [82]黄龙全,徐英莲,傅雅琴,等.溶液-凝胶法制备纳米羟基磷灰石[J].浙江理工大学学报,2008,25(2):199-202.
    [83]Ito A, Nakamura S, Aoki H, et al. Hydrothermal growth of carbonate-containing hydroxyapatite single crystals[J]. J Crystal Growth,1996,163:311-317.
    [84]唐膺,翁文剑.生物陶瓷的发展与应用[J].材料科学与工程,1994,12(2):63-64.
    [85]任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成及表面改性的途径与方法[J].硅酸盐通报,2001,1:38-43.
    [86]高阳俊.海岛型超细复合纤维开纤剥离废水资源化技术研究[D].[硕士学位论文].上海:东华大学,2006.
    [87]邝志清,潘春跃,黄可龙,等.Sol-gel法制备羟基磷酸钙超细粉末[J].中南工业大学学报,2000,31(3):246-248.
    [88]王志锋,宋帮才,张军.化学分析法精确测定羟基磷灰石(HA)中的Ca和P含量[J].硅酸盐通报,2007,26(1):186-189.
    [89]王志锋,张军,卢伟伟,等.Ca-P-Si系微晶玻璃的制备及生物活性分析[J].河南科技大学学报(自然科学版),2006,27(4):98-100.
    [90]徐晓虹,吴建锋,华全,等.溶胶-凝胶法制备纳米羟基磷灰石粉体[J].硅酸盐学报,2012,40(2):266-270.
    [91]马兰,温喜梅,张军,等.快速溶胶-凝胶法制备羟基磷灰石的工艺条件[J].河南科技大学学报,2008,29(6):93-99.
    [92]王继浩.纳米羟基磷灰石粉体及其生物陶瓷的制备与表征[D].[硕士学位论文].淄博:山东理工大学,2012.
    [93]石和彬,钟宏,刘羽,等.共沉淀法制备纳米羟基磷灰石[J].化学与生物工程,2012,8:16-20.
    [94]黄维,章于川,夏茹.羟基磷酸钙的制备及其对甲基丙烯酸甲酯悬浮聚合的影响[J].过程工程学报,2006,6(5):742-747.
    [95]冯连芳,高彦芳,王凯.悬浮聚合用HAP/SDBS无机分散体系的作用机理[J].化学反应工程与工艺,1993,9(4):432-436.
    [96]Umegaki T, Shiomi M, Kanazawa T. Preparation of Sintered P-Tricalcium Phosphate From Calcium Phosphate[J]. J Ceram Soc Jpn,1987,95:16-19.
    [97]谭军军.羟基磷灰石溶胶及其液晶的制备[D].[硕士学位论文].天津:天津理工大学,2007.
    [98]李延报,李怀栋,程新,等.无定形磷酸钙的硬脂酸表面改性及其改性后的稳定性研究[J].无机材料学报,2009,24(4):707-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700