低分子量有机酸对纳米羟基磷灰石固定水溶液中铅离子的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米羟基磷灰石与常规体相材料相比,比表面积大、表面原子数多且配位不饱和,使其表面形成大量悬空键和不饱和键,因而具有极高的表面活性。因此,纳米羟基磷灰石对重金属离子的固定能力应大大超过普通含磷材料。本论文研究了纳米羟基磷灰石对水溶液中铅离子的固定效果和机理;探讨了低分子量有机酸在纳米羟基磷灰石表面上的吸附行为及其对含磷材料固定水溶液中铅离子的影响。主要研究结果如下:
     (1)分别采用中和反应法和溶胶-凝胶法合成了两种不同粒度和结晶度的纳米羟基磷灰石nHAP(A)和nHAP(B),结晶度为:nHAP(A)     (2)研究了纳米羟基磷灰石对有机酸的吸附,以及有机酸对纳米羟基磷灰石和磷矿粉固定铅离子的影响。结果表明,由中和反应法合成的纳米羟基磷灰石nHAP(A)对草酸、苹果酸和柠檬酸有较强的吸附能力,远高于由溶胶-凝胶法合成的纳米羟基磷灰石nHAP(B).通过研究乙酸、草酸、苹果酸、柠檬酸和EDTA对nHAP(A)和nHAP(B)以及磷矿粉(PR)固定铅离子的影响发现:有机酸浓度低于5mmol/L时,有机酸的存在提高了nHAP(B)和PR对铅离子的去除效果,且在有机酸为1 mmol/L时达到最高值;机酸浓度较高(>5 mmol/L)时,乙酸、苹果酸、柠檬酸和EDTA均抑制了nHAP(B)和PR对铅离子的固定,抑制能力的强弱顺序为EDTA>柠檬酸>苹果酸>乙酸;草酸的存在提高了nHAP(B)和PR对铅离子的固定效果;XRD分析表明,草酸是以生成草酸铅沉淀的方式提高了铅离子的固定;但是中和反应法合成的结晶度较低的nHAP(A)对铅离子的固定不受有机酸浓度和种类变化的影响,能够使铅离子完全转化为羟磷酸铅,实现对铅离子最佳固定效果。
     以上结果表明,纳米羟基磷灰石固定水溶液中铅离子的过程不仅存在溶解-沉淀机制,还有表面配位的作用;采用中和反应法合成的纳米羟基磷灰石性能优越,能够有效地应用于环境中铅污染的治理;通过添加低浓度的低分子量有机酸能够提高含磷材料固定铅离子的效果,使固定产物更为有效地转化为生物有效性极低的羟磷酸铅。
Nanosized hydroxyapatite (nHAP) exhibits greater surface area and more active sites on the surface than bulk materials, which lead to an increase in physical adsorption capacity, accompanied by a rise in ion exchange and complexation ability. Thus, the immobilization of heavy metals by nHAP would be more effective than bulk materials. In this work, we studied the immobilization of lead ions by nHAP synthesized through a sol-gel method and a neutralization reaction method, meanwhile, the adsorption of low molecular weight (LMW) organic acids on nHAP, as well as the effect of LMW organic acids on the removal of lead ions by nHAP were investigated. The main results were shown as follows:
     (1) Two types of nanosized hydroxyapatite (nHAP(A) and (nHAP(B)) with different crystallinity were prepared by a sol-gel method and a neutralization reaction method, respectively. And the crystallinity of nHAP(A) was smaller than nHAP(B). The nHAP(A) and nHAP(B) were used to remove lead ions from the aqueous solution, in order to study the effects of adsorption times and pH. The mechanism was also studied through the variety of pH and the analysis of XRD and TEM. Results showed that the removal ability of two materials decreased with the increasing pH and both have the largest removal amount of lead ions in pH=2~4. When the concentration of lead ions was 500mg/L, the removal capacity of lead ions by nHAP(A) was about 1.5 times higher than nHAP(B). The nHAP(A) which has stronger immobilization ability of lead ions was used to study the kinetics and the variety of pH values with different concentration lead ions in solution. It was found that the addition of nHAP to the solution containing lead ions caused a significant decrease of pH initially. It could be concluded that besides dissolution-precipitation mechanism, surface complexation mechanism should be also contributing to the lead uptake, and lead ions coordinated with≡POH on the suface of nHAP. XRD datas showed the formation of Pb(10-x)Cax(P04)6(OH)2(PbCaHAP) as an intermediate phase in the dissolution-precipitation procedure, and lead ions mainly occupied in Ca(Ⅱ) of nHAP. TEM micrographs showed that the final product was PbHAP with a low bioavailability Nanosized hydroxyapatite was proved to be effective for lead immobilization. Furthermore, poorly crystallized nHAP(A) prepared by neutralization method showed a higher efficiency in lead immobilization, and this method was relatively simple and could be used for mass production. Therefore, nHAP synthesized by neutralization method was expected to be an alternative in the remediation of heavy metal in soil and water.
     (2) The adsorption behavior of LMW organic acids on nHAP was studied, and five kinds of LMW organic acids were used to sudy their influnces on the removal of lead ions by nHAP and PR, including acetic, malic, oxalic, citric acid and EDTA. The results showed that the poorly crystallized nHAP(A) adsorbed greater amounts of oxalic, citric, or malic acid than the well crystallized nHAP(B). It was found that organic acids such as malic, oxalic and citric acid (<5 mmol/L) could enhance the adsorption of lead ions by nHAP(B) and PR, and having the largest removal amount of lead ions when the concentration was 1 mmol/L. Acetic, malic, citric acid and EDTA (>5 mmol/L) could decrease the removal of lead ions by nHAP(B) and PR, and their inhibitory capacities were in the order: EDTA>citric acid>malic acid>acetic acid. Oxalic acid could enhance the removal of lead ions by nHAP(B) and PR significantly, and XRD datas showed that oxalic acid enhance the removal of lead ions through the formation of lead oxalate. However, organic acids had little effect on the removal of lead ions by nHAP(A). The smaller particle sized nHAP(A) can achieve the best adsorption effect no matter what the changes of organic acid concentrations and species, it could transform the harmful lead ions to insoluble hydroxypyromorphite completely and should be the best adsorbent for the removal of lead ions from aqueous solution.
     Based on the above results, it could conclude that, in the process of immobilization of lead ions by nHAP in aqueous solution, not only dissolution-precipitation mechanism, but also surface complexation mechanism should be contributing to the lead uptake. In addition, the poorly crystallized nHAP(A) prepared by a neutralization reaction method was proved to be efficient for the remediation of lead-polluted water and soil. Moreover, adding low concerntration of LMW organic acids could enhance the immobilization of lead ions by nHAP and decrease the bioavailability of Pb through the formation of hydroxypyromorphite.
引文
Arbel A., Katz I., Sarig S. Dissolution of hydroxyapatite by calcium complexing agents[J]. Journal of Crystal Growth,1991,110:733-738.
    Aoki H., Kato K. Application of apatite for biomaterials[J]. Ceramics Japan,1975,10:469-478.
    Ball P., Garwin L. Science at the actomic scale[J]. Nature,1992.355:761-766.
    Bolan N.S., Duraisamy V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals:A review involving specific case studies[J]. Australian Journal of Soil Research,2003,41:533-555.
    Chrysochoou M., Dermatas D., Grubb D.G. Phosphate application to firing range soils for Pb immobilization:The unclear role of phosphate[J]. Journal of Hazardous Materials,2007,144:1-14.
    Cotter-Howells J.D. Lead phosphate formation in soils[J]. Environmental Pollution,1996,93:9-16.
    Da Rocha N.C.C., De Campos R.C., Rossi A.M., Moreira E.L., Barbosa A.Do.F., Moure G.T. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment[J]. Environmental Science & Technology,2002,36:1630-1635.
    Debela F., Arocena J.M., Thring R.W., Whitcombe T. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils[J]. Technical Note,2010, 80:450-456.
    Elliott J C. Structure and Chemisity of the Apatite and Other Calcium Orthophosphates[M]. Elsevier Londo,1994.
    Fathi M.H., Hanifi A. Evaluation and charaeterization of nanostrueture hydroxyapatite powder prepared by simple sol-gel method[J]. Materials letters,2007,61:3978-3983.
    Fox T.R., Comerford N.B. Low-molecular-weight organic acids in selected forest soils of the south eastern USA[J]. Soil Science Society of America Journal,1990,54:1139-1144.
    Gao S., Cui J., Wei Z.G. Study on the fluoride adsorption of various apatite materials in aqueous solution[J]. Journal of Fluorine Chemistry,2009a,130(11):1035-1041.
    Gao S., Sun R., Wei Z.G., Zhao H.Y., Li H.X., Hu F. Size-dependent defluoridation properties of synthetic hydroxyapatite[J]. Journal of Fluorine Chemistry,2009b,130(6):550-556.
    Gomez-Morales J., Torrent-Burgues J., Fraile-Sainz, Rodriguez-Clemente R. Precipitation of stoichiometric hydroxyapatite in a continuous flow MSMPR reactor[J]. Chemical Engineering Science,1997.
    Guo G.L., Zhou Q.X., Ma L.Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review[J]. Environmental Monitoring and Assessment,2006, 116:513-528.
    Halperin W.P. Quantum size effects in metal particle[J]. Rev. Mod. Phys,1986,58(3):532-539.
    Han J.K., Song H.Y., Saito F., Lee B.T. Sythesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method[J]. Materials Chemistry and Physics,2006,99:235-239.
    Hanudin E., Matsue N., Henmi T. Adsorption of some low molecular weight organic acids on nano-ball allophone[J]. Clay Science,1999,11:57-72.
    Hattori T., Lwadate Y. Hydrothermal preparation of calcium hydroxyapatite powders[J]. Journal of the American Ceramic Society.1990,73(6):1803-1805.
    Hettiarachchi G.M.. Pierzynski G.M., Ransom M.D. In situ stabilization of soil lead using phosphorus[J]. Journal of Environmental Quality,2001,30(4):1214-1221.
    Hooda P.S., Alloway B.J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. Water. Air and Soil Pollution,1996,127: 289-294.
    Jarcho M., Bolen C.H., Thomas M.B., Hydroxyapatite synthesis and characterization in dense polycrystalline forms[J]. Journal of Materials Science,1976,11:2027-2035.
    Jeanjean J., Rouchaud J.C., Tran L., Fedoroff M. Sorption of uranium and other heavy metals on hydroxyapatite[J]. Journal of Radioanalytical and Nuclear Chemistry,1995.201(6):529-539.
    Katsuki H., Furuta S., Komarneni S. Microwave-versus conventional-hydrothermal synthe-sis of hydroxyapatite crystals from gypsum[J]. Journal of the American Ceramic Society.1999.82(8): 2257-2259.
    Kim W.. Saito F. Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2[J]. Ultrasonics Sonochemistry.2001,8(2):85-88.
    Laperche V., Traina S.J., Gaddam P.. Logan T.J. Chemical and mineralogical characterizations of Pb in a contaminated soil:Reactions with synthetic apatite[J]. Environmental Science & Technology,1996, 30:3321-3326.
    Leusch A.. Holan Z.R., Volesky B. Soultion and particle effects on the biosorption of heavy metals by seaweed biomass[J]. Appl-biochem-biotechnol,1996,61(3):231-249.
    Leventouri T. Synthetic and biological hydroxyapatites:crystal structure questions[J]. Biomaterials, 2006,18:3339-3342.
    Long M., Hong F.S., Li W., Li F.C., Zhao H.Y., Liu Y.Q.:Li H.X., Hu F., Sun L.D., Yan C.H., Wei Z.G. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3- doped Caio(P04)6(OH)2 nanocrystal[J]. Journal of Luminescence,2008,128(3):428-436.
    Lopez-Macipe A., Gomez-Morales J., RodriBguez-Clemente R. The role of pH in the adsorption of citrate ions on hydroxyapatite[J]. Journal of Colloid and Interface Science,1998.200:114-120.
    Ma L.Q., Rao G.N. Aqueous Pb reduction in Pb-contaminated soils by phosphate rocks[J]. Water, Air,& Soil pollution,1996,110:1-16.
    Ma L.Q., Rao G.N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils[J]. J Environ Gual,1997,26(3):788-794.
    Ma L.Q. Factors influencing the effctiveness and stability of aqueous lead immobolization by hydroxyapatite[J]. J Environ Gual,1996.25(6):1420-1429.
    Ma Q.Y., Traina S.J., Logan T.J, Ryan J.A. In situ lead immobilization by apatite[J]. Environmental Science & Technology,1993,27:1803-1810.
    Ma Q.Y., Logan T.J., Traina S.J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J]. Environmental Science & Technology,1995,29:1118-1126.
    Manafi S A., Yazdani B.. Rahimiopour M.R., Sadrnezhaad S.K., Amin M.H., Razavi M. Sythesis of nano-hydroxyapatite under a sonoehemieal/hydrothermal condition. Biomedical Materials,2008, 3(2):250-252.
    Mandjiny S.. Zouboulis A.I.. Matis K.A.. Removal of cadmium from dilute solutions by hydroxyapatite in sorption studies[J]. Separation Science and Technology,1995,30:2963-2978.
    Mashers N.J., Czernuszka J.T. Growth of hydroxyapatite on type collagen[J]. Journal of Materials Science Letters,1991,10:992-993.
    Mavropoulos E., Rossi A.M.. Rocha N.C.C., Soares G.A., Moreira G.T.. Moure G.T., Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions[J]. Mater Charact,2003, 50:203-207.
    Mench M.J., Didier V.L.. Loffler M. A Mimicled in situ remediation study of metal-contaminated soild with emphasis on caemiun and lead[J]. Journal of Environ Qual,1994,23(1):58-63.
    Miyake M., Ishigaki K., Suzuki T., Structure refinements of Pb2- ion-exchanged apatites by X-ray powder Pattern-fitting[J]. Solid State Chem,1986,61:230-235.
    Monma H., Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite[J]. Journal of Materials Science,1987,22:4247-4250.
    Natarajan U.V., Rajeswari S. Influence of calcium precursors on the morphology and Crystallinity of sol-gel-derived hydroxyapatite nanopartieles[J]. Journal of Crystal Growth,2008,310:4601-4611.
    Nishikawa H. A high active type of hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation[J]. Journal of Molecular Catalysis A:Chemical,2004,207(2):147-151.
    Pavel S.,Wojciech L. Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature[J]. J. Mater. Res,2001,16(5):1231-1234.
    Poumier F., Schaad P., Haikel Y., Voegel J.C., Gramain P. Dissolution of synthetic hydroxyapatite in the presence of acidic polypeptides[J]. Journal of Biomedical Materials Research,1999,45:92-99.
    Rahmuni G.N.H., Sternberg S.P.K. Bioremoval of lead from water using Lemna minor[J]. Bioresource Technology,1999,70(3):225-230.
    Raicevic S.. Kaludjerovic-Radoicic T., Zouboulis A.I. In situ stabilizati on of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification[J]. Journal of Hazardous Materials.2005, B117:41-53.
    Ruby M.V., Davis A., Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology,1994,28:646-654.
    Sandrine B., Ange N., Didier B.A., Eric C. Patrick S. Removal of aqueous lead ions by hydroxyapatites: Equilibria and kinetic processes[J]. Journal of Hazardous Materials,2007.139(3):443-446.
    Sayer J.A., Cotter-Howells J.D., Watson C., Hillier S., Gadd G.M. Lead mineral transformation by fungi [J]. Current Biology,1999,9:691-694.
    Shi Z.L., Huang X., Cai Y.R. Size effete of hydroxyapatite nanopartieles on proliferation and apoptosis of osteoblast-like cells[J]. Acta Biomaterialia,2009.5:338-345.
    Shipu Li.. Shicheng Z.. Wenjie C. Effects of hydroxyapatite ultrafine powder on colony formation and cytoskeletons of MGC-803 cell[J]. Bioceramics,1996,9:225-227.
    Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes[J]. Journal of Materials Science:Materials in Medicine,1998,9:727-729.
    Suzuki T., Hatsushika T., Hayakawa Y. Synthetic hydroxyapatites employed as inorganic cation-exchangers[J]. J Chem Soc. Faraday Trans,1981.77:1059-1062.
    Suzuki T., Hatsushika T., Miyake M. Synthetic hydroxyapatites as inorganic cation-exchangers:Part 2[J]. J Chem Soc. Faraday Trans.1982,78:3605-3611.
    Suzuki T., Ishigaki K., Miyake M. Synthetic hydroxyapatite as inorganic cation exchanger. Part 3. Exchange characteristics of lead ion (Pb2+)[J]. Journal of Chemical Society, Faraday Transactions, 1984,80:3157-3165.
    Takeuchi Y.. Arai H. Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder[J]. Journal of Chemical Engineering of Japan,1990,23(1):75-80.
    Vidac R.D., Pohland F.G., Treatment Walls. Technology Evaluation Report TE-96-01[R]. Pittsburgh P A. Groundwater Remediation Technologies Analysis Center,1996.
    Welch S.A., Taunton A.E., Banfield J.F. Effect of microorganisms and microbial metabolites on apatite dissolution[J]. Geomicrobiology Journal,2002,19:343-367.
    Wei W.. Sun R.. Wei Z.G., Zhao H.Y. Elimination of the interference from nitrate ions on oxalic acid in RP-HPLC by solid-phase extraction with nanosized hydroxyapatite[J]. Journal of Liquid Chromatography & Related Technologies,2009a,32:106-124
    Wei W., Wang Y., Wei Z.G., Zhao H.Y., Li H.X., Hu F. Roles of organic acids and nitrate in the long-distance transport of cobalt in xylem saps of alyssum murale and trifolium subterraneum[J]. Biological Trace Element Research,2009b,131:165-176
    Wei W., Wei Z.G., Zhao H.Y, Li H.X., Hu F. Simultaneous determination of organic acids and nitrate in xylem saps of the hyperaccumulator Alyssum murale by RP-HPLC after solid-phase extraction with nanosized hydroxyapatite [J]. Journal of Chromatographic Science, Accept
    Wei W., Zhang X., Cui J., Wei Z.G. Simultaneous extraction and determination of organic acids in xylem saps by RP-HPLC after solid-phase extraction with smaller particle sized hydroxyapatite nanocrystals[J]. Journal of Liquid Chromatography & Related Technologies,2010, DO1: 10.1080/10826076.2010.489430.
    Wu L., Forsling W., Schindler P.W. Surface complexation of calcium minerals in aqueous solution.1. Surface protonation at fluorapatite-water interfaces[J]. Journal of Colloid and Interface Science, 1991.147(1):178-185.
    Xu Y., Schwartz F.W. Lead immobilization by hydroxyapatite in aqueous solution[J]. Journal of Contaminant Hydrology,1994,15:187-206.
    Yeong K.C.B., Wang J., Ng S.C. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4[J]. Biomaterials,2001.22(20):2705-2712.
    Yubao Li., Groot K., Wijn J., Klein CPAT.,Meer S.V.D. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment[J]. Journal of Materials Science:Materials in Medicine,1994,5:326-331.
    Zhang P.C., Ryan J.A. Formation of pyromorphite in anglesite-hydroxyapatite suspension under varying pH conditions[J]. Environmental Science & Technology,1998,32:3318-3324.
    Zhang Z.Z., Li M.Y., Chen W., Zhu S.Z.. Liu N.N., Zhu L.Y. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J]. Environmental Pollution,2010,158:514-519.
    丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤(Soils).2005,37(3):24-50.
    冯春雨,白红娟,肖根林,贾万利,柴春镜.重金属污染土壤的生物修复研究现状[J].工业安全与环保.2010,36(4):27-28
    郭大刚,付涛,徐可为.短棒状纳米羟基磷灰石的湿法合成及表征[J].硅酸盐学报. 2002.30(2):189-190.
    何冰,杨肖娥,魏幼璋.铅污染土壤的的修复技术[J].广东微量元素科学.2001,8(9):12-17.
    胡红青.有机酸影响酸性土壤与铝氧化物表面磷吸附—解吸的条件和机理[D].华中农业大学.1997.8-18.
    胡恋,陈朝猛,谢水波.羟基磷灰石生物活性材料处理重金属废水的机理及效果研究[J].南华大学学报(自然科学版).2005.19:28-3.
    李夏.有机无机改良剂对铅污染红壤中铅形态及其植物有效性的影响[J].现代化工2007,19(22):12-18.
    李玉峰.水溶液中合成羟基磷灰的实验研究[J].攀枝花大学学报.2002,19(1):77-81.
    李志宏,武继民.许媛媛,王鹏飞.纳米羟基磷灰石-胶原蛋白-壳聚糖复合生物材料[J].功能材料.2007,38(A50):1748-1750.
    梁文懂,刘强.用改性磷灰石去除废水中重金属离子的研究[J].武汉科技大学学报.2000.23(3):242-244.
    廖其龙.水热法合成纳米羟基磷灰石粉体及其结构表征[J].四川大学学报.2002,234(3):69-71.
    刘斌,寇小丽,王奎,钱晓良.人工合成羟基磷灰石对水溶液中Pb2+,Cd2+离子的固定作用[J].应用化工.2005.34:415-418.
    刘海弟,李福志,赵璇.工业石膏合成羟基磷灰石及其对Pb2-,Cu2+,Zn2-和Ni2+的吸附作用[J].工业工程学报.2007,1:42-47.
    刘莹.功能性纳米羟基磷灰石的制备、表征及性能研究[J].现代农业科技.2009,201-222.
    刘羽,钟康年,胡文云.用水热法羟基磷灰石去除溶液中铅离子的研究[J].武汉化工学院学报.1998.20(3):39-42.
    刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报.2001,2:9-11.
    龙梅,胡锋,李辉信.赵海燕,吕元琦,魏正贵.低成本含磷材料修复环境重金属污染的研究进展[J].环境污染治理技术与设备.2006,71-77.
    龙梅.纳米羟基磷灰石性质及其应用于修复环境铅污染的研究[D].南京:南京农业大学.2007.
    陆文龙,张福锁.低分子量有机酸对石灰性土壤磷吸附动力学的影响[J].土壤学报.1999,36(2):189-197.
    莫淑勋.土壤中有机酸的产生、转化对土壤肥力的某些影响[J].土壤学进展.1996,4:1-10.
    聂俊华,刘秀梅,王庆仁.营养元素NPK对Pb超富集植物吸收能力的影响[J].农业工程学报.2004,20(5):262-265.
    潘家永,林开利,成荣明,陈奕卫,于华荣.纳米经基磷灰石粉体的制备及其对苯酚吸附的研究[J].水处理技术.2007,33(1):20-22.
    潘杰.低分子有机酸对磷矿粉固定重金属影响研究[D].湖南农业大学.2004.
    任卫.纳米羟基磷灰石合成及表面改性的途径与方法[J].硅酸盐通报.2002.1:38-43.
    商冉.有机酸和猪粪对土壤中铜锌吸附、积累和迁移的影响研究[D].山东农业大学.2008.
    沈阿林,李学垣,吴受容.土壤中低分子量有机酸在物质循环中的作用[J].植物营养与肥料学报.1997,3(4):363-371.
    石和彬,刘羽,罗惠华.磷灰石固定水溶性铅离子研究进展[J].地质科技情报.1999,18(2):73-76.
    孙榕.高表面活性磷灰石材料应用于吸附草酸和硝基苯的研究[D].南京:南京农业大学,2009.
    孙玉绣.羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究[D].北京:北京化工大学应用化学.2007.
    谭军军.羟基磷灰石溶胶及其液晶的制备[D].天津理工大学.2008.
    谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700--704.
    唐赝.生物陶瓷的发展与应用[J].材料科学与工程.1994.2:63-64.
    王友法,闫玉华,梁飞,张宏泉.水热条件下针状羟基磷灰石单晶体的均相合成[J].硅酸盐通报.2001,2:30-34.
    王志新,刘莹,杨晓民.纳米经基磷灰石对人源性泌尿系肿瘤细胞增殖的影响[J].中国老年学杂志.2007.27:2276-2277.
    吴宏海,胡勇有,黎淑平.有机酸与矿物间界面作用研究评述[J].岩石矿物学杂志.2001.20(4):399-404.
    吴双桃,吴晓芙,胡臼利.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2003.13(2):156-157.
    徐卫红,黄河,王爱华,熊治廷,王正银.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境.2006.15(1):184-189.
    杨金燕,杨肖娥,何振立.土壤中铅的来源于生物有效性[J].土壤通报.2005.36(5):765-772.
    战颖.纳米羟基磷灰石的研究进展[J].华北煤炭医学院学报.2010.12:30-31.
    张丽娜.纳米羟基磷灰石及其复合材料的研究[D].青岛大学.2004.
    赵晓秀.重金属铜复合污染土壤中石油的微生物降解[D].大连理工大学.2008.
    郑岳华.多孔羟基磷灰石生物陶瓷的进展[J].硅酸盐通报.1995.11(3):20-24.
    周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700