膜吸收过程传质行为的模型化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜吸收技术是将膜分离技术与传统气体吸收技术相耦合的新型分离技术。该技术使用多孔膜分隔气、液两相,两相在膜孔处间接接触进行传质,可有效避免传统吸收操作过程中的液泛、雾沫夹带等问题,并具有单位体积接触面积大、易于放大、操作弹性大等优点,在温室气体的捕集分离方面具有巨大的应用潜力。
     在膜吸收过程中,多孔膜本身不具有分离作用,只起到分隔两相和固定相界面的作用。膜吸收过程的传质模型多是基于阻力串联模型建立,将总传质阻力分为气相、液相和膜相分传质阻力,大多数研究者忽视了膜结构参数对膜两侧流体中传质的影响,认为膜结构参数仅对膜相传质阻力产生影响。
     本文对膜吸收过程的传质行为进行了模型化研究,主要分为以下几个方面:
     (1)选取纯CO_2气体-去离子水体系,对气液两相均静止的非稳态传质过程进行了模拟,深入分析了膜结构参数(主要是孔径和孔隙率)对液相侧近膜壁面处扩散传质的影响,对不同条件下的溶质浓度剖面进行了模拟。模型结果表明,膜的存在会对近膜壁面处溶质的浓度分布产生影响。当孔隙率较大或者孔径较小时,膜孔相距较近,溶质浓度剖面可以在短时间内覆盖整个膜表面,近膜壁面处浓度分布较为均匀,膜结构参数对传质影响较小。反之,当孔隙率较小或者孔径较大时,膜孔间距较大,溶质浓度剖面难以在短时间内覆盖整个膜表面,近膜壁面处浓度分布不均匀,此时膜结构参数对传质有显著影响。
     上述研究屏蔽了流体流动、化学反应等因素的影响,集中分析膜结构参数对近膜壁面附近传质的影响,为综合分析各因素对膜吸收过程传质的作用、建立包含膜结构参数影响在内的传质模型提供了理论支持。
     (2)从改善近膜壁面处浓度分布的不均匀性入手,提出了在液相中加入固相粒子对传质过程进行强化的方法。利用固体粒子将动量引入液相边界层内,使膜壁面处溶质浓度分布趋于均匀。实验结果表明,固相粒子的加入减小了不同孔隙率膜之间的传质效果差异,同时还强化了传质,且膜的孔隙率越小强化效果越大。
     (3)在板式膜接触器内,采用纯CO_2-去离子水和纯CO_2-NaOH溶液体系,建立了液相流动条件下的稳态传质模型,分析了膜结构参数、化学反应强度和流体流动状态等因素对膜吸收过程传质的影响,对不同条件下的溶质浓度剖面进行了模拟和分析,并通过实验进行验证。结果表明,膜结构参数对传质的影响与吸收剂pH和液相流速有关。当吸收剂pH值增大时,由于化学反应的消耗,延缓了CO_2浓度剖面覆盖整个膜表面的速度,近膜壁面附近CO_2的浓度分布变得不均匀,膜结构参数对传质的影响增大。当流速增大时,更多的新鲜吸收剂得以补充,同时,液相边界层减薄,更多的CO_2分子可以扩散进入液相主体,因此加剧了近膜壁面附近CO_2浓度的不均匀分布,膜结构参数对传质的影响增大。
     (4)传质机理研究表明:膜结构参数对传质过程影响的原因是由于溶质在近膜壁面处的切向和法向传质距离不同。溶质通过膜孔扩散进入液相后,在液相侧近膜壁面处同时沿切向和法向两个方向扩散。法向和切向两个方向上传质距离的不同导致了近膜壁面附近溶质浓度分布的差异。其中,法向传质距离即为液相侧浓度边界层的厚度,与体系物性、化学反应强度和流动状态等有关,切向传质距离为膜孔间距,由膜结构参数决定。当法向传质距离大于切向传质距离时,溶质扩散到达液相主体需要较长时间,溶质扩散通过浓度边界层前即可在切向上覆盖整个膜表面,近膜壁面处的浓度分布较为均匀。反之,当法向传质距离小于切向传质距离时,溶质浓度剖面在未覆盖整个膜表面前即可通过边界层到达液相主体,近膜壁面处的浓度分布不均匀。
     (5)选用实际应用更为广泛的中空纤维膜接触器,建立了CO_2-去离子水和CO_2-NaOH体系的传质模型,综合考察了膜结构参数、操作条件和膜器长度等因素之间的相互作用及其对传质的影响。结果表明,吸收剂pH值和液相流速的增大以及膜丝长度的减小会引起液相侧浓度边界层减薄,传质系数上升,同时,膜壁面附近CO_2的浓度分布变得不均匀,膜结构参数对传质的影响增大。膜的孔隙率还会作用于上述操作条件以及膜器结构参数对传质的影响。当孔隙率较小时,上述参数的改变不仅会减小液相边界层的厚度,也会使近膜壁面处浓度分布变得更加不均匀,引起有效传质面积的减小;当孔隙率较大时,近膜壁面处的浓度分布越均匀,上述各参数的改变不会引起有效传质面积的改变。因此,孔隙率越大,上述参数的变化对传质的增强效果越明显。
     综上,本文通过对膜吸收过程传质行为的模型化研究,分析了膜结构参数对传质的影响及其与其他因素的相互作用,为建立通用的膜吸收过程传质关联式奠定了基础,有助于膜吸收技术的研究和应用。
Membrane absorption technology is novel separate technology that combines membrane separation technology and traditional gas absorption technology. Due to the advantages such as independent manipulation of gas/liquid flow, larger mass transfer area and flexibility to scale up, membrane absorption technology has been considered to be one of the most promising alternatives for the capture of green house gases.
     In most studies on membrane absorption process, resistance-in-series model is used to describe the mass transfer process, in which the overall mass transfer resistance is assumed to consist of three partial resistances: the liquid phase resistance, the membrane resistance and the gas phase resistance. As for the micro-porous membrane, it is merely considered to have influence on membrane phase mass transfer resistance. Little attention has been given to the effect of membrane micro-structure on mass transfer in gas or liquid phase, and the concerned viewpoints somehow remain confused. So, the deeply theoretical study on mass transfer behavior in membrane absorption process has important theoretical and practical value.
     In this work, theoretical model has been developed to describe the mass transfer behavior in mass transfer process.
     (1) CO_2 is absorbed by de-ionized water in unsteady-state membrane absorption processes. A theoretical model is developed to describe the diffusing near membrane surface, in which the effects of membrane structure characteristics are studied. The effect of membrane structure on mass transfer can be determined by concentration profile near membrane surface. When membrane porosity is big or pore size is small relatively, the concentration profile near membrane surface can get homogeneous instantly due to the short distance between adjacent pores. In this case, the existence of membrane has less effect on mass transfer. However, when membrane porosity is small or pore size is large relatively, the distance between adjacent pores is large, so the concentration profile near membrane surface becomes inhomogeneous during the absorption process. Therefore, the concentration profile can be influenced significantly by membrane structure characteristics, which means that membrane structure has significant effect on mass transfer in liquid.
     The study above analyzed the effect of membrane structure characteristics deeply by avoiding the influence of flow status and chemical reaction. It is helpful for develop the mass transfer model including all the factors.
     (2) In order to improve the concentration distribution near the membrane surface, solid particles are added into the absorbent liquid to enhance the turbulence in the boundary layer. The results show that the movement of particles in the liquid boundary layer makes the the concentration profile near membrane surface get more homogeneous. Consequently, the difference of mass transfer coefficient obtained by varied porosities declined.
     (3) A theoretical model, including the effect of membrane structure characteristics, liquid velocity and absorbent pH, has been developed to describe the mass transfer in steady-state membrane absorption process. It shows that the effect of membrane structure on mass transfer can be influenced by liquid velocity and absorbent pH. The increasing of absorbent pH or liquid velocity makes it hard for the solute concentration profile near membrane surface to reach homogeneous, which means the effect of membrane structure characteristics on mass transfer becomes significant. The model results agree well with the experimental data.
     (4) The effect of membrane structure on mass transfer can be explained by the difference between the mass transfer distances in the normal direction and tangential direction. The mass transfer distance in normal direction is the thickness of concentration boundary which is influenced by absorbent pH and liquid velocity. And the mass transfer distance in tangential direction is determined by the membrane structure. When the distance in normal direction is larger than that in tangential direction, solute concentration profile can overcast the whole membrane surface before diffusing into liquid bulk, so the concentration profile near membrane surface is homogeneous. Contrarily, solute concentration profile can not overcast the whole membrane surface before diffusing into liquid bulk, and the concentration profile near membrane surface is inhomogeneous relatively.
     (5) The mass transfer in hollow fiber membrane contactor is modeling studied when CO_2 is absorbed by de-ionized water and NaOH solution. The effects of membrane structure characteristics, operational conditions and fiber length are considered. The model results show that the thickness of concentration boundary layer in liquid side can be reduce by the changes as following: the increasing of absorbent pH, liquid velocity, inner radius of fiber or the decreasing of fiber length. In this case, the mass transfer coefficient increases and the effect of membrane structure becomes significant. Simultaneously, the membrane structure characteristics can influence the effects of the changes above. When porosity is small relatively, the changes above make the concentration profile near membrane surface become more inhomogeneous and lead to the decreasing of effective mass transfer area. When porosity is big, concentration profile is homogeneous relatively, so the changes above has little effect on effective mass transfer area. Therefore, the effects of operation conditions become more significant as the increasing of porosity.
     The above researches can be used for further theoretical study and practical application of membrane absorption technology.
引文
[1]Bachu S.Sequestration of CO_2 in geological media:criteria and approach for site selection in response to climate change[J].Fuel and Energy Abstracts,2002,43(2):145-145.
    [2]Michael C S,Robert H S.Sustaining fossil fuel use in a carbon-constrained world by rapid commercialization of carbon capture and sequestration[J].AIChE Journal,2007,53(12):3022-3028.
    [3]王金莲,方梦祥,晏水平等.吸收CO_2新型混合化学吸收剂的研究[J].环境科学,2007.11:2630-2636.
    [4]宿辉,崔琳.二氧化碳的吸收方法及机理研究[J].环境科学与管理,2006.31(8):79-81.
    [5]Glasscock D A,Critchfield J E,Rochelle G T.CO_2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine[J].Chemical Engineering Science,1991,46(11):2829-2845.
    [6]Mofarahi M,Khojasteh Y,Khaledi H,et al.Design of CO_2 absorption plant for recovery of CO_2 from flue gases of gas turbine[J].Energy,2008,33(8):1311-1319.
    [7]Vaidya P D,Kenig E Y.Absorption of CO_2 into aqueous blends of alkanolamines prepared from renewable resources[J].Chemical Engineering Science,2007,62(24):7344-7350.
    [8]Yang H Q,Xu Z H,Fan M O,et al.Progress in carbon dioxide separation and capture:A review[J].Journal of Environmental Sciences,2008,20(1):14-27.
    [9]费维扬,艾宁,陈健.温室气体CO_2的捕集和分离——分离技术面临的挑战与机遇[J].化工进展,2005.24(1):1-4.
    [10]田波.可大量吸附二氧化碳的新材料问世[J],低温与特气,2008,3(26):26.
    [11]张丽丹,王小宁,韩春英等.活性炭吸附二氧化碳性能的研究[J].北京化工大学学报(自然科学版),2007,1:76-80.
    [12]Hammami R,Dhouib A,Fernandez S,et al.CO_2 adsorption on(001) surfaces of metal monoxides with rock-salt structure[J].Catalysis Today,2008,139(3):227-233.
    [13]Li P,Handan T F.Adsorption separation of N_2,O_2,CO_2 and CH_4 gases by[beta]-zeolite[J].Microporous and Mesoporous Materials,2007,98(1-3):94-101.
    [14]Heydari G A,Kaghazchi T.CO_2/H_2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions:Experimental and modeling study[J].Journal of Membrane Science.2008.325(1):40-49.
    [15]周晓艳,周鹭,凌爱军.膜技术在天然气中脱出CO_2的最新发展[J].内蒙古石油化工,2008.9:50-52.
    [16]Kai T,Kouketsu T,Duan S,et al.Development of commercial-sized dendrimer composite membrane modules for CO_2 removal from flue gas[J].Separation and Purification Technology,2008,63(3):524-530.
    [17]Zhang Qi,Clssler E L.Hollow fiber gas membranes[J].AIChE Journal,1985,31(9):1548-1553.
    [18]Zhang Qi,Clssler E L.Microporous hollow fibers for gas absorption:I.Mass transfer in the liquid[J].Journal of Membrane Science,1985,23(3):321-332.
    [19]Zhang Qi,Clssler E L.Microporous hollow fibers for gas absorption:Ⅱ.mass transfer across the membrane[J].Journal of Membrane Science,1985,23(3):333-345.
    [20]Richard W B.Membrane technology and applications[M].New York:McGraw-Hill,2000:1-25.
    [21]Wang R,Li D F,Zhou C,et al.Impact of DEA solutions with and without CO_2 loading on porous polypropylene membranes intended for use as contactors[J].Journal of Membrane Science,2004,229(1-2):147-157.
    [22]Lee Y,Noble R D,Yeom B Y,et al.Analysis of CO_2 removal by hollow fiber membrane contactors[J].Journal of Membrane Science,2001.194(1):57-67.
    [23]张秀莉,张卫东,张泽廷.膜吸收用疏水性多孔膜结构参数的确定[J].膜科学与技术,2005,25(02):25-29.
    [24]Feron P H,Jansen A E.CO_2 separation with polyolefin membrane contactors and dedicated absorption liquids:performances and prospects[J].Separation and Purification Technology,2002,27(3):231-242.
    [25]Ghosh A C,Borthakur S,Dutta N N.Absorption of carbon monoxide in hollow fiber membranes[J].Journal of Membrane Science,1994,96(3):183-192.
    [26]Karoor S,Sirkar K K.Gas absorption studies in microporous hollow fiber membrane mudules[J].Ind.Eng.Chem.Res,1993,32:674-684.
    [27]Kreulen H,Smolders C A,Versteeg G F,et al.Determination of mass transfer rates in wetted and non-wetted microporous membranes[J].Chemical Engineering Science,1993,48(11):2093-2102.
    [28]郭占虎,史季芬,徐静年等.中空纤维膜组件分离酸性气体[J].化工冶金,2000(03):268-273.
    [29]Yeon S H,Lee K S,Sea B,et al.Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas[J].Journal of Membrane Science,2005,257(1-2):156-160.
    [30]陈炜,朱宝库,王建黎等.中空纤维膜接触器分离CO_2/N_2混合气体的研究[J].膜科学与技术.2004,24(1):32-37.
    [31]王建黎,徐又一,徐志康等.膜接触器从混合气中脱氨性能的研究[J].环境化学.2001,20(6):588-594.
    [32]袁力,王志,王世昌.膜吸收技术及其在脱除酸性气体中的应用研究[J].膜科学与技术,2002,22(4):55-59.
    [33]Zhu Z Z,Hao Z L,Shen Z S,et al.Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors[J].Journal of Membrane Science,2005,250(1-2):269-276.
    [34]王冠平,方喜玲,施汉昌等.膜吸收法处理高氨氮废水的研究[J].环境污染治理技术与设备.2002,3(7):56-60.
    [35]朱振中,郝卓莉,沈志松等.膜吸收法处理焦化厂废水中的氨及苯酚[J].工业水处理.2006,26(5):50-53.
    [36]Marcel Minder.膜技术基本原理[第二版][M].北京:清华大学出版社,1999:1-242.
    [37]张慧峰,张卫东,张泽廷等.中空纤维膜吸收法脱除SO_2的实验研究[J].环境科学与技术.2003,26(5):8-10.
    [38]金美芳,曹义明,邢丹敏等.膜吸收法脱除二氧化硫[J].膜科学与技术,1999,19(3):44-46
    [39]Kim Y S,Yang S M.Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents[J].Separation and Purification Technology,2000,21(1-2):101-109.
    [40]Gabelman A,Hwang S T.Hollow fiber membrane contactors[J].Journal of Membrane Science,1999,159(1-2):61-106.
    [41]Wang K L,Cussler E L.Baffled membrane modules made with hollow fiber fabric[J].Journal of Membrane Science,1993,85(3):265-278.
    [42]Dindore V Y,Brilman D W F,Versteeg G F.Modelling of cross-flow membrane contaetors:Mass transfer with chemical reactions[J].Journal of Membrane Science,2005,255(1-2):275-289.
    [43]Dindore V Y,Brilman D W F,Versteeg G F.Modelling of cross-flow membrane contactors:physical mass transfer processes[J].Journal of Membrane Science,2005,251(1-2):209-222.
    [44]Sengupta A,Peterson P A,Miller B D,et al.Large-scale application of membrane contactors for gas transfer from or to ultrapure water[J].Separation and Purification Technology,1998,14(1-3):189-200.
    [45]Cooney D O,Jackson C C.Gas absorption in a hollow fibre device[J].Chem.Eng.Comm,1989,79:153-163.
    [46]Chen H L,Sun L,Zhou Z J.Study on CO_2 removal from air by hollow-fibermembrane contaetor[A].International Symposium on Membrane Technology and Environmental Protection[C].Beijing.China:2000.146-151.
    [47]Dindore V Y,Brilman D W F,Geuzebroek F H,et al.Membrane-solvent selection for CO_2removal using membrane gas-liquid contactors[J].Separation and Purification Technology,2004,40(2):133-145.
    [48]Li J L,Chen B H.Review of CO_2 absorption using chemical solvents in hollow fiber membrane contactors[J].Separation and Purification Technology,2005,41:109-122.
    [49]Li K,Kong J F,Wang D.Tailor-Made asymmetric PVDF hollow fibres for soluble gas removal[J].AIChE J,1999,45(6):1211-1219.
    [50]Jansen A E,Feron P H M,Hanemaaijer J H,et al.Apparatus and method forperforming membrane gas/liquid absorption at elevated pressure.WO Pat:51,1998,11-19.
    [51]Li K,Wang D,Koe C C,et al.Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method[J].Chemical Engineering Science,1998,53(6):1111-1119.
    [52]叶向群,孙亮,张林等.中空纤维膜基吸收法脱除空气中二氧化碳的研究[J].高校化学工程学报,2003,17(03):237-242.
    [53]Kumar P S,Hogendoorn J A,Feron P H M,et al.New absorption liquids for the removal of CO_2 from dilute gas streams using membrane contactors[J].Chemical Engineering Science,2002,57(9):1639-1651.
    [54]黄冬兰,王金渠,贺高红等.膜吸收技术研究进展[J].化工进展.2003,22:297-300.
    [55]Keshavarz P,Ayatollahi S,Fathikalajahi J.Mathematical modeling of gas-liquid membrane contactors using random distribution of fibers[J].Journal of Membrane Science,2008,325:98-108.
    [56]谭大志,范文杰,张永春等.DEA溶液吸收/再生CO_2的研究[J].化学工程师,2005,116(5):62-64.
    [57]Gawronski R,Wrzesinska B.Kinetics of solvent extraction in hollow-fiber contactors[J].Journal of Membrane Science,2000,168(1-2):213-222.
    [58]Rangwala H A.Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors[J].Journal of Membrane Science,1996,112(2):229-240.
    [59]陆建刚,王连军,刘晓东等.湿润率对疏水性膜接触器传质性能的影响[J].高等学校化学学报,2005,26(05)912-917.
    [60]Evren V.A numerical approach to the determination of mass transfer performances through partially wetted microporous membranes:transfer of oxygen to water[J].Journal of Membrane Science,2000,175(1):97-110.
    [61]沙庆云等.传递原理[M].2003:279-282.
    [62]Kreulen H,Smolders C.A,Versteeg G F,et al.Microporous hollow fibre membrane modules as gas-liquid contactors Part 1.Physical mass transfer processes Aspecific application:Mass transfer in highly viscous liquids[J].Journal of Membrane Science,1993,78:197-216.
    [63]Wickramasinghe S R,Semmens M J,Cussler E L.Mass transfer in various hollow fiber geometries[J].Journal of Membrane Science,1992,69(3):235-250.
    [64]Viegas R M C,Luque S,Alvarez J R,et al.Mass transfer correlations in membrane extraction:Analysis of Wilson-plot methodology[J].Journal of Membrane Science,1998,145(1):129-142.
    [65]Yang M C,Cussler E L.Designing Hollow-fiber Contactors[J].AIChE J,1986,32(11):1910-1916.
    [66]Prasad R,Sirkar K K.Dispersion-free solvent extraction with microporous hollow-fiber modules[J].AIChE J,1988,34:177-188.
    [67]Dahuron L,Cussler E L.Protein extractions with hollow fibers[J].AIChE J,1988,34(1):130-136.
    [68]戴猷元,王秀丽,汪家鼎.膜萃取过程的传质特性研究[J].高校化学工程学报,1991,5(2):87-93.
    [69]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [70]Wang R,Li D F,Liang D T.Modeling of CO_2 capture by three typical amine solutions in hollow fiber membrane contactors[J].Chemical Engineering and Processing,2004,43(7):849-856.
    [71]Rogers J D,Long R L.Modeling hollow fiber membrane contactors using film theory,Voronoi tessellations,and facilitation factors for systems with interface reactions[J].Journal of Membrane Science,1997.134(1):1-17.
    [72]Costello M J,Fane A G,Hogan P A,et al.The effect of shell side hydrodynamics on the performance of axial flow hollow fibre modules[J].Journal of Membrane Science,1993,80(1):1-11.
    [73]Wu J,Chen V.Shell-side mass transfer performance of randomly packed hollow fiber modules[J].Journal of Membrane Science,2000,172(1-2):59-74.
    [74]Chen V,Hlavacek M.Application of Voronoi tessellation for modeling randomly packed hollow fiber bundles[J].AIChE J,1994,40:606-612.
    [75]Zheng J,Xu Y,Xu Z.Flow distribution in a randomly packed hollow fiber membrane module[J].Journal of Membrane Science,2003,211(2):263-269.
    [76]Bao L,Lipscomb G G.Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules[J].Desalination,2002,146(1-3):243-248.
    [77]Wang Y Y,Chen F,Wang Y,et al.Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function[J].Journal of Membrane Science,2003,216(1-2):81-93.
    [78]Zheng J M,Xu Z K,Li J K,et al.Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance:a novel model prediction[J].Journal of Membrane Science,2004,236(1-2):145-151.
    [79]Zheng J M,Dai Z W,Wong F S,et al.Shell side mass transfer in a transverse flow hollow fiber membrane contactor[J].Journal of Membrane Science,2005,261(1-2):114-120.
    [80]张卫东,李云峰,戴猷元.中空纤维膜萃取器的子通道模型[J].膜科学与技术,1996.16(1):56-61.
    [81]Zheng J,Xu Y Y,Xu Z K.shell side mass transfer characteristics in a parallel flow hollow fiber membrane module[J].Separation Science and Technology,2003,38(6):1247-1267.
    [82]Zhang H Y,Wang R,Liang D T,et al.Modeling and experimental study of CO_2 absorption in a hollow fiber membrane contactor[J].Journal of Membrane Science,2006,279(I-2):301-310.
    [83]陈澍,张卫东,张泽廷等.酸性气体膜吸收过程的数学模型及模拟[J].北京化工大学学报(自然科学版),2005,32(5):14-18.
    [84]Li K,Kong J,Tan X.Design of hollow fibre membrane modules for soluble gas removal[J].Chemical Engineering Science,2000,55(23):5579-5588.
    [85]Mavroudi M,Kaldis S P,Sakellaropoulos G P.Reduction of CO_2 emissions by a membrane contacting process[small star,filled][J].Fuel,2003,82(15-17):2153-2159.
    [86]Happl J.Viscons flow relation to arrays of cylinders[J].AIChE Journal,1959.5(2):174-177.
    [87]Patankar.Numerical Heat Transfer and Fluid Flow[M].Hemisphere Publishing Corporation,1980.
    [88]孔祥谦.有限单元法在传热学中的应用第三版[M].北京:科学出版社,1998.
    [89]李人宪.有限体积法基础第二版[M].北京:国防工业出版社,2008.
    [90]Davis M E.Numerical methods and modeling for chemical engineers[M].John Wiley &Sons Inc.1984.
    [91]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics The finite volume method[M].Longman Scientific&Technical:New York,1995:85-206.
    [92]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004:35-40.
    [93]Iversen S B,Bhatia V K,Dam J K,et al.Characterization of microporous membranes for use in membrane contactors[J].Journal of Membrane Science,1997,130(1-2):205-217.
    [94]Scovazzo P,Hoehn A,Todd P.Membrane porosity and hydrophilic membrane-based dehumidification performance[J].Journal of Membrane Science,2000,167(2):217-225.
    [95]Supakorn Atchariyawut,Chunsheng Feng,Rong Wang,et al.Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers[J].Journal of Membrane Science,2006,285(1-2):272-281.
    [96]Kenneth H.Keller T R S.A two-dimensional analysis of porous membrane transport[J].Mathematical Bioscience,1967,1:421-437.
    [97]Malone D M,Anderson J L.Diffusional boundary-layer resistance for membranes with low porosity[J].AICHE.J,1977,23(2):17.
    [98]Wakeham W A,Mason E A.Diffusion through Multiperforate Laminae[J].Industrial &Engineering Chemistry Fundamentals,1979,18(4):301-305.
    [99]Zeting Zhang,Weidong Zhang,Zhongqi Ren.Experimental Study of the Effect of Membrane Porosity on Membrane Absorption Process[J].Separation Science and Technology.2006.41(14):3245-3263.
    [100]郝欣,孔隙率对多孔膜气体吸收过程传质性能的研究[D].北京:北京化工大学,2004.
    [101]高坚,膜吸收过程传质性能的研究[D].北京:北京化工大学,2006.
    [102]徐士良.FORTRAN常用算法程序集 第二版[M].北京:清华大学出版社,1997.
    [103]《化学工程手册》编辑委员会,化学工程手册 第1篇 化工基础数据[M].北京:化学工业出版社,1980.
    [104]Gary D C.Analytical chemistry.New YorK:Wiley,2004.
    [105]王正烈,周亚平,李松林等.物理化学.北京:高等教育出版社,2001.
    [106]Kreulen H,Smolders C A,Versteeg G F,et al.Microporous hollow fibre membrane modules as gas-liquid contactors Part 2.Mass transfer with chemical reaction[J].Journal of Membrane Science,1993,78:217-238.
    [107]Sakarin Khaisria,David de Montignyb,et al.Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor[J].Separation and Purification Technology,2009,65:290-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700