燃煤电厂烟气二氧化碳捕集纯化系统节能优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体的过量排放将会造成全球范围内的气温变化,CO_2的排放控制及回收技术已经是当前的一项重要工作。目前的回收技术对整个系统的能耗情况、节点的相互影响、能量利用的薄弱环节还缺乏整体把握。本文在现有回收技术的基础上,改进现有的脱除工艺,分析各影响因素对脱除率的影响,进行综合的能耗分析及热经济性分析。
     本文以燃煤电厂烟气为对象,根据燃煤厂烟气中二氧化碳的特点,选择MEA化学吸收法进行捕集纯化,对MEA化学吸收法进行了机理分析,探讨了MEA化学吸收法的优缺点。
     基于PRO/II软件的AMSIM模块,建立了MEA化学吸收法工艺系统的流程分析模型,分析了吸收温度、吸收剂流量、吸收剂浓度及解吸温度对脱除率、热负荷、再生率等的影响。分析表明:吸收温度越高,脱除率越高,但吸收温度不是越高越好,30~40℃是常规系统适宜的温度;吸收剂流量越大,脱除率越高,但是吸收剂流量选择要适宜,常规系统适宜的吸收剂流量为80~120 m3/h;吸收剂浓度越高,脱除率越高,但是吸收剂浓度选择要适宜,常规系统适宜选用吸收剂浓度为15%~20%;解吸温度升高,富液的解吸率随着升高,解吸温度宜取100℃~120℃。
     以热力学第一定律和第二定律为理论基础,确定了捕集系统的能分析方法,建立了捕集系统能分析模型,利用黑箱模型对捕集系统进行了热负荷计算,能量衡算及可用能分析,分析表明:分离过程可用能效率只有12.8%。根据火用分析方法建立了捕集系统的火用分析模型,利用黑箱模型对捕集系统及子系统进行了火用分析和火用损耗分析,分析表明:再沸器的火用效率最低,吸收塔的火用损耗很大,有很大的节能潜力。对系统再生能耗进行了分析,分析表明:提高吸收液浓度可以降低再生能耗,但吸收液质量浓度必定会存在一个极限值φmax;提高富液的再生度ξ,能降低再生能耗qs tr,但ξ不是越高越好;改善贫富液热交换器的换热性能可以降低总再生能耗。
     以热经济学基本思想为基础,确定了适合于捕集系统的热经济学分析方法,建立了捕集系统热经济学分析模型和火用成本方程,确定了优化目标函数,并对捕集系统进行了热经济学分析,分析表明:回收CO_2大概需要的成本为582元/t。
     探讨了捕集系统的节能降耗方案,为化学吸收法二氧化碳捕集系统的节能优化技术奠定了理论基础和经济基础。
The higher temperature of the world appeare because of overmeasure greenhouse gas. The control and recycle of CO2 was very important. The energy consumption、the interaction of nodes and the weakness of the whole system couldn’t be holded. In this paper, the process was improved, the influence factors of removal rate were analyzed, the energy consumption analysis and themal economic analysis were done.
     The flue gas in coal-fired power plant is the object in the paper, MEA chemical absorption method was selected to capture, the mechanism of MEA chemical absorption method was analyzed, the advantages and disadvantages of MEA chemical absorption method were analyzed.
     The process analyzed model of MEA chemical absorption method was built based on AMSIM module of PRO/II sofeware, the effect of carbon dioxide removal rate, themal load and regeneration rate with absorption temperature, absorbent flow, absorbent concentration and regeneration temperature were analyzed. the analysis results showed the higher absorption temperature was, the higher removal rate was, the better absorption temperature was 30~40℃; the higher absorbent flow was, the higher removal rate was, the better absorbent flow was round 80~120m3/h; the higher absorbent concentration was, the higher removal rate was, the better absorbent concentration was round 15%~20%; the higher regeneration temperature was, the higher regeneration rate was, the better regeneration temperature was 100℃~120℃.
     The themal analyzed method was analyzed based on themal first law and second law, the energy analyzed method for carbon dioxide captured system was decided, the energy analyzed model for carbon dioxide captured system was built, the heat load calculation, energy balance calculation, theory power consumption and energy analysis ?for carbon dioxide captured system was done with black-box model, the analysis results showed that the separation rate was 12.8%. The exergy analyzed model for carbon dioxide captured system was built according to exergy analyzed method, the exergy analysis and exergy consumption analysis were done to system and subsystems with black-box model, the analysis results showed that the exergy efficiency of reboiler was lowest, the exergy consumption of absorption was very high. the regeneration exergy consumption was analyzed, the results showed the higher absorbent concentration could decrease regeneration exergy consumption, but absorbent concentration had a highest valueφmax; the higher the regeneration degreeξwas, the lower the regeneration exergy consumption qs tr, butξhad a limit value; the high property poor and rich exchanger could decrease regeneration exergy consumption.
     The themal economic analysis method for captured system was built based on themal economy, the themal economic analysis model and energy cost equation were built, the optimizing objective function was determined, and the themal economic analysis was done, the result showed that the cost of recycle CO2 was 582 per tun.
     The solution of energy-saving and consumption reducing was discussed. The theory basis and economic basis were established for energy-saving and optimization thenology of carbon dioxide captured system with chemical absorption method according to the study in this paper.
引文
[1]晏水平,方梦祥,王金莲等.烟气CO2吸收分离工艺再生能耗的分析与模拟[J].动力工程, 2007(27): 969-974.
    [2]毛玉如,张永刚,张国胜等.火电厂CO2的排放控制和分离回收技术研究[J].锅炉制造, 2003(1): 20-22.
    [3]晏水平,方梦祥,张卫风等.烟气中CO2化学吸收法脱除技术分析与进展[J].化工进展, 2006, 25(9): 1018-1024.
    [4]张昀,李振中,李成之等.电站烟气中CO2减排新技术双重效益的研究[J].现代电力, 2002, 19(3): 1-7.
    [5]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].浙江大学, 2003.
    [6] Jing-Liang Li, Bing-Hung Chen. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactor[J]. Separation and Purification Technology, 2005, 41: 109-122.
    [7]盖群英.醇胺溶液富集CO2的研究[M].
    [8]景晓燕,董吉川,张密林等.醇胺吸收和解吸CO2的研究[J].化学工程师, 1999, (5): 8-10.
    [9]项菲,施耀,李伟.混合有机胺吸收烟道气中CO2的实验研究[J].环境污染与防治, 2003, 25(4): 206-208.
    [10]周泽兴.火电厂排放CO2的分离回收和固定技术的研究开发现状[J].环境科学进展, 1996, 9(3): 19-24.
    [11]张永平,杨久宜,杨青山等. MDEA脱碳二氧化碳吸收塔腐蚀探源[J].中氮肥, 2008, (3): 34-37.
    [12]谭大志,范文杰,张永春等. DEA溶液吸收/再生CO2的研究[J].化学工程师, 2005, 116(5): 62-64.
    [13] Aroonwilas A, Tontiwachwuthikul P. High-efficiency Strutured packing for CO2 absorption using 2-amine-2-methyl-1-propanol. M. A. Sc. Thesis[D]. University of Regina, Regina, Saskatchewan, Canada, 1996.
    [14] Adisorn Arronwilas, Amomvadee Veawab, and Paitoon Tontiwachwuthikul. Behavior of the Mass-transfer Coefficient of Strutured Packings in CO2 Absorbers with Chemical Reactions[J]. Ind. Eng. Chem. Res. 1999(38): 2044-2050.
    [15] James T. Y., Henry W.P.. Study of CO2 absorption and desorption in a packed column[J]. Energy&Fuel, 2001(15): 274-278.
    [16]肖九高.烟道气中二氧化碳回收技术的研究[J].现代化工, 2004, 24(5): 47-49.
    [17]黄黎明,陈赓良.二氧化碳的回收利用与捕集储存[J].石油与天然气化工, 2006, 35(5): 354-358.
    [18] Tolmasquim M T, Machado G. Energyand carbon embodied in the international trade of Brazil [J]. Mitigation andAdaptation Strategies for Global Change, 2003(8): 139-155.
    [19] Lin J. A light diet for a giant appetite. An assessment of China's fluorescent lamp standard [J]. Energy, 2005, 30: 1873-1887.
    [20] Nwaobi G C. Emission policies and the Nigerian economy. Simulations from a dynamic applied general equilibrium model [J]. Energy Economics, 2004, 26: 921-936.
    [21] Miradna M L, Hale B.A taxing environment. Evaluating the multiple objctives of environmentaltaxes[J]. Environmental Science&Thechnolgy. 2002, 36(24): 5289-5295.
    [22]杨明芬.膜吸收法和化学吸收法脱除电厂烟气中二氧化碳的试验研究[M].
    [23] Zhang C, May M M,Heller T C. Impact on global warming of development and steuctural changes in the electricity sector of Guangdong Provice, China[J]. Energy Policy, 2001, 29: 179-203.
    [24] SHIKAWAMotoo, UMoToJuro. Proposal for a high efficiency power generation System with CO2 recovery by oxygen coal fired MIID-steam combined cycle. Energy ConversMglnt, 1995, 36(6-9): 809-812.
    [25]叶勇军.冷凝式燃气锅炉的节能与环保特性研究[M].南华大学, 2005.
    [26]钦淑均,张成芳,冯国祥等.改良MDEA脱碳过程热力学分析[J].华东理工大学学报, 1995(10): 541-547.
    [27]张永平,杨久宜,杨青山等. MDEA脱碳二氧化碳吸收塔腐蚀探源[J].中氮肥, 2008, (3): 34-37.
    [28]费维扬,艾宁,陈健.温室气体CO2的捕集和分离[J].化工进展, 2005, 24(1): 1-4.
    [29]彭淑婧.烟气中二氧化碳化学吸收法回收技术的研究[D].河北科技大学, 2007.
    [30]武智永.热经济学理论在空冷凝汽机组经济性分析中的应用[D].太原理工大学, 2007.
    [31]杨东华.火用分析和能级分析[M].北京:科学出版社, 1986.
    [32] Jassim M S,Rochelle G T. Innovative absorber/stripper configuration for CO2 capture by aqueous monoethanolamine[J]. Ind. Eng. Chem. Res., 2006(45): 2465-2472.
    [33]姜世楠.一乙醇胺CO2吸收剂的理化性质[J].舰船防化, 2006, (2): 19-23.
    [34]周洁.集中供热系统热经济学优化方法的研究[D].山东科技大学, 2007.
    [35]王清照,宋乃辉,王加璇.用“燃料”、“产品”概念进行热力系统计算[J].中国电力, 2002, 35(6):27-31.
    [36]伍小林,李国胜.大型直接空冷机组在国内的首次应用[J].国际电力, 2005, 9(2).
    [37]谢苗诺娃,列伊捷斯.工艺气体的净化[M].南京化学工业公司研究院译.第二版.北京:化学工业出版社. 1982.
    [38]杜亚荣. 600MW机组热力系统的热力学分析与优化[D].华北电力大学, 2007.
    [39]袁一,胡德生.化工过程热力学分析法[M].北京:化学工业出版社, 1985.
    [40]廉乐明,李力能,吴家正等.工程热力学[M].北京:中国建筑工业出版社, 2003.
    [41]李雪峰.稠油集输系统的热力学分析[D].大庆石油学院, 2007.
    [42]陈文亮,杨东华.化工系统热经济学分析方法研究[J].工程热物理学报, 1995, 26(2): 129-132.
    [43] Alie C , Backham L,Croiset E, et al.Simulation of CO2 capture using MEA scrubbing: a flowsheet decompositionmethod[J]. Energy Conversion and Management, 2005(46): 475– 487.
    [44]刘天齐.三废处理工程技术手册——废气卷[M].北京:化学工业出版社,1999:451.
    [45] Royo J, Zaleta A, Valero A. Theromeconomic analysis of steam turbines: an approach to marginal cost allocation[J]. Proceeding of ASME, 1996,(36), 437-444.
    [46] Jassim M S,Rochelle G T. Innovative absorber/stripper configuration for CO2 capture by aqueous monoethanolamine[J]. Ind. Eng. Chem. Res., 2006(45): 2465-2472.
    [47] Oyenekan B A, Rochelle G T. Energy performance of stripper configurations for CO2 capture by aqueous amines[J]. Ind. Eng. Chem. Res., 2006(45): 2457-2464.
    [48]方国元,彭启珍,张数芳.联合循环电厂成本的热经济学分析[J].燃气轮机技术, 2003, 16(3).
    [49] Von Spakovsky M. R.,and Evans R. B. The optimal Design and Performance of Thermal Systems and Their Conponents[J]. Analysis and Design of Advanved Energy Systems Fundamental ASME. ATS-3-1,1987.
    [50]杨勇平,王加璇.确定热电厂供热成本的热经济学方法[J].热能动力工程, 1995, 10(2).
    [51]伍小林.我国火力发电厂空气冷却技术的发展现状[J].国际电力, 2005, 9(1).
    [52]王佩璋.表凝式间接空冷系统在火电机组上的实践和改进[J].热力发电, 1998, (1).
    [53]骆仲央,张卫风,方梦祥等.温室气体CO2的回收技术[J].能源技术, 2005, 26: 206-209.
    [54]高增宝,彭继业.空冷技术在华北电网的应用[J].华北电力技术, 1995, (8).
    [55]程伟良,陈党慧,徐寿臣等.火电机组的热经济性分析[J].动力工程, 2004, 24(4):580-583.
    [56]陈文亮,杨东华.化工系统热经济学分析方法研究[J].工程热物理学报, 1995, 26(2): 129-132.
    [57]杨东华.热经济学《连载》[J].能源研究与信息, 5(4): 49-55.
    [58]武献华,石振武.工程经济学[M].北京:科学出版社, 2006.
    [59]王明红.集中空调系统热经济学分析方法的探讨[J].山东科技大学学报, 2003, 22(2): 99-101.
    [60] Yeon.S.H, Lee.K.S, Sea.Betal. Application of pilot-scale membrane contactor hybrid system for removal of carbondioxide from flue gas[J]. Journal of Membrane Science, 2005 (257): 156-160.
    [61]里森费尔德PC,科耳A.L.气体净化[M].北京:中国建筑工业出版社, 1982: 5-30.
    [62]张成芳,钦淑均,刘时贤.改良MDEA法脱碳[J].小氮肥, 1994(3), 3.
    [63]郁永章.热泵[M].北京:机械工业出版社, 1983.
    [64]国立清华大学(台湾).以吸收法回收二氧化碳之技术手册[M].台湾:经济部工业局, 2002(11).
    [65] Sheng H Lin, Ching T Shyu. Performance characteristic and modeling of carbon dioxide absorption by amines in a packed column[J]. Waste Management, 1999(19): 255-262.
    [66]张阿玲,方栋主编.温室气体的控制回收利用[M].北京:中国环境科学出版社, 1996: 77-96.
    [67] Shrikar Chakravarti,Amitabh Gupta,Balazs hunek. Advanced technology for the capture of carbon dioxide from flue gases[C]//First National Conference on Carbon Sequestration, Washington D C, 2002: 1-11.
    [68] Wong Sam, Bioletti Rob. Carbon dioxide separation technologies.[EB/OL]. http://www.aidis.org.br/span/ftp/CARBON%20DIOXIDE%20SEPARATION%20TECHNOLOGIES.PDF.
    [69]赵文,王晓红,唐继国等.化工原理[M].山东东营:石油大学出版社, 2001.
    [70]李兰廷,解强.温室气体CO2的分离技术[J].低温与特气, 2005, 23(4): 1-5.
    [71]陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社, 1991.
    [72]谈天恩,李伟等.过程工程原理[M].北京:化学工业出版社, 2004.
    [73]刘光启,马连湘,邢志有.化工物性算图手册[M].北京:化学工业出版社, 2002.
    [74]张乃文,陈嘉宾,于志家.化工热力学[M].大连:大连理工大学出版社, 2006.
    [75]彭秉璞.化工系统分析与模拟[M].北京:化学工业出版社, 1990.
    [76]刘振华.海勒式空冷机组冷端设备研究[D].天津大学, 2003.
    [77]刘文毅,袁桂丽,杨勇平.供热机组的热经济学法性能在线分析及运行考核[J].电站系统工程, 2005, 2(1).
    [78]王加璇,张衡良.动力工程热经济学[M].北京:水利电力出版社, 1995.
    [79]王加璇,张树芳.火用方法及其在火电厂中的应用[M].北京:水利电力出版社, 1991.
    [80] Con Spakovsky M.R.,and Evans R. B. M. The Optimal Design and Performance of Components in the Thermal Systems[J]. Second-Law Ansis in Heat Mass Transfer andenergy Conversion, ASME,AES-vol, 6, HTD-Vol.97,1988.
    [81]胡光,陈琦.电厂循环水供热经济性探讨[J].黑龙江电力, 2002, 24(6).
    [82]李芬容.地源热泵系统的热经济性分析[D].华中科技大学, 2006.
    [83] Herzog H J. The economics of CO2 separation and cap ture [R]. Presented at 2nd Dixy Lee Ray Memorial Symposium, Washington, DC, 1999.
    [84] Gerald Ondrey.Carbon Dioxide Gets Grounded[J]. Chemical Engineering, 2001, 107(3): 41-45.
    [85] ISLAM M R. CHAKMAA.Storage and utilization of CO2 in petroleum reservoirs A simulation study[J]. Energy Conversion and Managemen, 1993, 34(9-11): 1205-1210.
    [86] Ranken A C M, Nolten J A N , Mulder M H V, et al.Wetting criteria for the applicability of membrane distillation[J ]. Journal of Membrane Science, 1987 (33): 315 -328.
    [87] Mimura.T. Matsumoto,K.lijuma Metal.Development andapplication of flue gas carbon dioxide recovery technology[C]. Proceedings of the Fifth International Conference onGreenhouse Gas Control Technologies, Caims, Australia, 2001: 138-142.
    [88]王金莲.吸收CO2的新型化学吸收剂和工艺研究[M].浙江大学, 2007.
    [89]幡野佐一等编.李云倩、林义英译.热交换器[M].北京:化学工业出版社, 1987.
    [90] G.ASTARITA, D.W.SAVAGE. Gas Treating with Chemieal Solvents[M]. NewYork: John Wiley&Sons, 1983.
    [91] EIA report. Emission of Greenhouse Gases in the US, Appendix E [R]. US: 2002.
    [92]张成芳,钦淑均,刘时贤.改良MDEA法脱碳[J].小氮肥, 1994(3): 3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700