光电经纬仪虚拟现实仿真平台设计及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电经纬仪被广泛应用于光电跟踪测量,随着其性能和跟踪测量要求的不断提高,基于实际外场实验的训练、测试方法和传统室内仿真测试方法,由于种种局限性,已经不能满足操作手训练和经纬仪测试的需求。针对这一现状,本文着眼于虚拟现实技术和系统仿真技术的结合,设计并研制了光电经纬仪虚拟现实仿真平台。平台具备手动跟踪、自动跟踪和半实物仿真三种功能模式,集操作手训练和经纬仪测试功能于一体,是对现有经纬仪模拟训练和仿真测试的重要拓展,具有较高的工程实用价值。
     简要介绍了光电经纬仪的基本工作过程;分析总结了等效目标法、等效正弦法和旋转靶标测试法等传统室内仿真测试方法的局限性;根据平台研制的预期目标,以其功能需求为设计思路,设计了仿真平台总体方案,包括其系统结构、软硬件组成、工作模式、关键技术问题等。就实际使用效果而言,最终研制出的平台是经济、实用、高效和可靠的。
     为了满足训练和测试对虚拟目标轨迹的要求,研究了两种目标轨迹仿真的方法。一种是基于实际外场实验数据,根据经纬仪单站或交汇测量模型进行轨迹仿真;另一种是基于目标各个阶段的运动特征,根据目标轨迹、速度和姿态之间的关系进行轨迹仿真。前者适用于针对外场任务进行针对性训练和测试,后者适用于仿真出满足经纬仪跟踪测试对角速度、加速度要求的目标轨迹。
     实现了仿真平台的基础,即原始虚拟场景的实时渲染。研究了Creator三维建模技术和Vega视景仿真技术;在研究OpenGL透视投影成像规律与经纬仪相机成像特性关系的基础上,实现了虚拟场景的经纬仪成像特性模拟;研究了虚拟场景中云图背景的模拟,包括Vega云仿真模型、粒子系统云仿真、Perlin与Simplex噪声模拟云等;结合Vega、OpenGL和VC开发了场景仿真程序。在文中所给原始场景渲染实例中,帧频保持在270fps左右,完全满足仿真平台实时性要求。
     为了让虚拟场景更加接近真实场景,研究了为原始场景实时添加所需图像效果的方法。基于Vega的程序结构和通道回调机制提出了对场景进行实时图像处理的方法:利用现代GPU(Graphics Processing Unit,图形处理单元)强大的图形能力和可编程性,用GLSL(OpenGL Shading Language, OpenGL着色语言)编写实现相应图像效果的着色器,代替OpenGL固定纹理映射功能完成对场景纹理的图像处理。用这种方法为原始虚拟场景添加了灰度化、噪声和降质模糊效果。噪声效果通过Perlin噪声和Simplex噪声实现,降质模糊效果通过对场景纹理进行卷积滤波实现。为了提高卷积滤波效率,提出了一种基于GPU线性纹理滤波功能的卷积滤波优化方法。对文中所给卷积滤波器实例,效率提高了60%以上。在文中给出的添加了以上效果的最终场景渲染实例中,帧频保持在240fps左右。
     最后,研究了仿真平台各个工作模式的实现。通过虚拟现实技术实时渲染虚拟场景,通过RTW(Real-time Workshop)由经纬仪相关传动或跟踪控制Simulink模型生成跟踪状态实时解算模块,二者结合实现了手动和自动跟踪模拟,可方便灵活地进行有针对性的、可重复的操作手训练。构建了半实物仿真测试系统,将仿真平台与实际经纬仪结合,通过RTW/xPC完成经纬仪跟踪控制算法的快速实现,可方便快速地对经纬仪跟踪控制系统进行测试。
Photoelectric theodolites are widely used in the field of photoelectric trackingmeasurement. With the continuous improvement of theodolite performance, theconventional methods for operator training and theodolite testing, which based on theoutdoor experiments or indoor simulation, have been unable to satisfy the requirement.In view of this situation, this thesis is devoted to the research for the combination ofvirtual reality technology and system simulation technology. And a virtual realitysimulation platform has been designed and set up. The platform, which can be used forboth operator training and theodolite testing, has three function modes: manual tracking,automatic tracking and semi-physical simulation. The research in this thesis, which hasimproved the existing methods for operator training and theodolite testing, is quitepractical in engineering application.
     The basic working process of the photoelectric theodolite is briefly introduced andthe limitations of the conventional indoor methods for simulation testing are analyzed.According to the desired objectives and function requirements, a design of the platform,which includes system structure, composition of the hardware and software, workingmodes and key technical problems, has been proposed. The performance of theapplication shows that the platform is economic, practical, efficient and reliable.
     In order to meet the requirements of the trajectory of the virtual target for trainingand testing, two methods for target trajectory simulating are studied. One of themethods uses the actual outdoor experiments result according to the single station orintersection measuring model; the other takes advantage of the target movementcharacteristics according to the relationship of the target trajectory, velocity and attitude.The former method is suitable for targeted training and testing for outdoor experiments,and the latter one is convenient in simulating the target trajectory whose angularvelocity and acceleration meets the requirement of the theodolite testing.
     Rendering the original virtual scene in real time, which is the foundation of thesimulation platform, is carried out. The3D modeling technology based on Creator andvisual simulation technology based on Vega are studied. The theodolite imagingcharacteristic of the virtual scene is simulated based on the principle of OpenGLperspective projection and the imaging characteristic of the theodolite camera. The simulation of the cloud background of the virtual scene, including Vega cloud model,particle system, Perlin noise and Simplex noise, is researched. The scene simulationprogram is developed with Vega, OpenGL and VC. In the instance given by this thesis,the frame rate keeps around270FPS, which completely satisfies the real-timerequirement.
     The research on adding desired image effects to original virtual scene in real timeis made for the sake of making the virtual scene closer to the real scene. Based onVega’s program structure and channel callback function, a method for the real-timeprocessing of the scene image is proposed. It makes use of modern GPU’s powerfulgraphics capabilities and programmability, and uses GLSL shader to replace OpenGL’sfixed texture mapping function to perform image processing on the scene texture. Theimage effects, including luminance, noise and blur, are added to original scene. Thenoise effect is realized based on Perlin and Simplex noise; the blur effect is realized byconvolution filtering. In order to improve the efficiency of convolution filtering, anoptimization method is proposed based on GPU’s linear texture filtering. For theconvolution filter in this thesis, the efficiency is improved by more than60%. For thefinal scene to which the image effects are added, the frame rate keeps around240FPS.
     Finally, the realization of the three working modes of the simulation platform isstudied. The manual and automatic tracking modes are realized by rendering the virtualscene in real time and generating tracking state solver module with RTW. These twoworking modes can be conveniently and flexibly used for operator training. Thesemi-physical simulation mode is set up based on the combination of the simulationplatform and real theodolite, and the theodolite tracking control algorithm is fastrealized with RTW/xPC. This working mode can be applied to the fast testing of thetheodolite tracking control system.
引文
[1]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989,3:1-42
    [2] Krishna Ramuhalli. Improved pointing accuracy using high-precision theodolitemeasurement[J]. SPIE,1996,28(12),199-209
    [3]刘缠牢.靶场动态目标跟踪测量及计算机辅助方法的研究[D].中国科学院西安光学精密机械研究所博士学位论文,2001
    [4]王建立,陈涛,陈娟等。提高光电经纬仪跟踪快速运动目标能力的一种方法[J].光电工程,2002,29(1),34-37
    [5]陈娟,郭劲.现代靶场光电测量工程的发展现状[J].光机电信息,2002,1:22-27
    [6]黄永梅.光电捕获跟踪瞄准系统的快速高精度跟踪控制技术研究[D].中国科学院光电技术研究所博士论文,2005
    [7] G. Downey. Electro-Optical tracking systems considerations[J]. SPIE,1989,1111:70-84
    [8] G. Downey. Electro-Optical tracking systems considerations Ⅱ[J]. SPIE,2003,5082:139-153
    [9] L. M. Bradley, J. P. Corriveau, N. E. Tindal. Launch area theodolite system[J]. SPIE,1991,1482:48~60
    [10]唐涛.加速度反馈在高精度跟踪控制系统中的应用研究[D].中国科学院光电技术研究所博士论文,2009
    [11] B. L. Ulich. Overview of acquisition, tracking and pointing system technologies[J]. Acquisition,Tracking and Pointing Ⅱ. SPIE,1998,887:40-63
    [12] W. J. Bigley. Supervisory control of electro-optic tracking and pointing[J]. SPIE,1990,1304:205-218
    [13]王戎瑞.美国机载激光武器发展现状[J].激光与红外,1999,29(4):195-198
    [14]张勇.光电经纬仪虚拟测试仿真与评估技术研究[D].中国科学院光电技术研究所博士论文,2009
    [15]王习文.光电经纬仪跟踪飞机的3D计算机视觉研究[D].中国科学院长春光学精密机械与物理研究所博士论文,2010
    [16]张勇,蒋平,吴钦章.经纬仪测试场景仿真系统研究[J].光电工程,2009,36(3):39-45
    [17]陈维义,王树宗,李树山.舰载光电跟踪系统的虚拟仿真系统研究[J].系统仿真学报,2002,14(12):1650-1652
    [18]郭天太.基于VR的虚拟测试技术及其应用基础研究[D].浙江大学博士学位论文,2005
    [19]苏国中.基于光电经纬仪影像的飞机姿态测量方法研究[D].武汉大学博士学位论文,2005
    [20]唐凯.一种空间战场视景仿真系统的开发[J].系统仿真学报,2004,16(11):2435-2437
    [21]卜正明.光学经纬仪动态仿真训练系统设计[D].国防科学技术大学研究生院硕士学位论文,2004
    [22]肖婧.图像跟踪器测试评估系统的虚拟仿真环境研究与实现[D].西安电子科技大学硕士学位论文,2009
    [23] A. Jonsson, J. Wall, G Broman. A virtual machine concept for real-time simulation machine tooldynamics[J]. International Journal of Machine Tools&Manufacture,2005,45:795-801
    [24] Yrivedi MM, ChenCX. Developing Tele-robotics System Using Virtual Reality Concepts[J].The1993IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama,Japan,1993
    [25] YoshikawaT, UedaH. Construction of Virtual World Using Dynamics Modules and InteractionModules[J]. The1996IEEE International Conference on Robotics and Automation Minneapolis,Minnesota,1996
    [26]韦有双,杨湘龙.虚拟现实与系统仿真[M].北京:国防工业出版社,2004
    [27]郭齐胜,张伟,杨立功.分布交互仿真及军事应用[M].北京:国防工业出版社,2003
    [28]康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2001
    [29]梁炳成,王恒霖,郑燕红.军用仿真技术的发展动向和展望[J].系统仿真学报,2001,13(1):18-21
    [30] G. Downey, H. W. Fountain, T. Riding. Sled tracking system[J]. SPIE,1991,1482:40~47
    [31] L. M. Bradley, J. P. Corriveau, N. E. Tindal. Launch area theodolite system [J]. SPIE,1991,1482:48-60
    [32]王建立.光电经纬仪电视跟踪捕获快速运动目标技术的研究[D].中国科学院长春光学精密机械与物理研究所博士论文,2002
    [33]邹湘军,孙建,何汉武.虚拟现实技术的演变发展与展望[J].系统仿真学报,2004,16(9):1905-1909
    [34] Blach R. Virtual reality technology-an overview[M]. Netherlands: Springer,2008
    [35] Burdea G, Coiffet P. Virtual Reality Technology[M]. NJ: John Wiley and Sons,1994
    [36] Karen C, Rapert E. Simulated and Virtual realities[M]. Basingstoke: Burgess Science Press,1995
    [37]刘勇奎,周晓敏.虚拟现实技术和科学计算可视化[J].中国图象图形学报,2009,5(A),794-798
    [38]郝爱民,张蓓,赵沁平.计算机虚拟北航的建造与人机交互的实现[J].中国图象图形学报,2009,5(A),794-798
    [39]黄柯棣等.系统仿真技术[M].长沙:国防科技大学出版社,1998
    [40]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用[M].北京:清华大学出版社,1996
    [41]潘云鹤,樊锦诗.敦煌真实与虚拟[M].杭州:浙江大学出版社,2003
    [42]李伯虎,柴旭东.复杂产品虚拟样机支撑平台的初步研究与开发[M].计算机仿真,2003,20(1):4-8
    [43] Arthur R P, Rechard L S. The SIMNET Network and Protocols. BBN Systems andTechnologies Corporation. Report No.7627,1991
    [44] Glor P J, Boyle E S. Design evaluation for Personnel, training and human factors (DEPTH). In:Reliability and Maintainability Symposium, Proceedings Annual.1993,18-25
    [45] Neira C C, Danie J S, Thomas A D, et al. The Cave: audio visual experience automatic virtualenvironment[J]. Commun ACM,1992,35(6):64-72
    [46] PopaDO, SinghSK. Creating Realistic Force Sensations in a Virtual Environment: ExperimentalSystem, Fundamental Issues and Results[J]. The1998IEEE International Conference onRobotics&Automation Leuven, Belgium,1998
    [47]赵沁平.分布式虚拟仿真战场环境-现代战场的试验场[J].系统仿真学报,2001,13:1-7
    [48]丁浩杰,徐福培.主动式三维汽车驾驶训练模拟器的设计与实现[J].系统仿真学报,2000,12(5):286-290
    [49]李华兵,王耀华,王永凤等.全视景飞机牵引与加油训练仿真器的设计与实现[J].解放军理工大学学报(自然科学版),2001,2(3):82-85
    [50]龚锦龙.光电经纬仪仿真训练系统的设计与实现[D].电子科技大学硕士学位论文,2007
    [51]于正林,谭微,姜涛.基于实景仿真的光电经纬仪模拟训练器[J].吉林大学学报(工学版),2011,41(2):509-513
    [52]张宇鹏.160电影经纬仪操控训练模拟仿真系统的研究[D].长春理工大学硕士学位论文,2002
    [53]郑万江.光电经纬仪模拟仿真训练器的研究[D].长春理工大学硕士学位论文,2006
    [54]庹霞.基于实景仿真的经纬仪模拟训练器设计[D].长春理工大学硕士学位论文,2009
    [55]马佳光,尹义林.778光电经纬仪跟踪控制系统[J].光学工程,1986,1:50-59
    [56]王世华.778光电经纬仪的动靶标导引[J].光学工程,1986,2:61-66
    [57]古光荣.经纬仪电视动态测角精度检测方法及装置研究[A].中国科学院长春光学精密机械与物理研究所内部报告,1999
    [58] Ma Jia-guang. Tracking and measuring technology of a tracking theodolite[J]. SPIE,1979:719-728
    [59]顾营迎,沈湘衡,贺庚贤等.光电经纬仪旋转靶标特性对目标跟踪的影响[J].光电工程,2010,38(3):19-24
    [60]贾峰,武征,修大朋.动态精度靶标与光电经纬仪的角度转换及应用[J].红外与激光工程,2008,37(2):338-342
    [61]李博,王伟娜,唐杰.新型光学动态靶标模拟空间目标研究[J].工程设计学报,2008,15(3):201-205
    [62]关志军.新型动态靶标的研究[D].中国科学院长春光学精密机械与物理研究所硕士学位论文,2004
    [63]张波.可编程动态靶标的研究[D].中国科学院长春光学精密机械与物理研究所硕士学位论文,2003
    [64]仇小鹏,杨平利,蒋阳.仿真建模利器——MultiGen Creator[J].计算机仿真,2007,24(5):279-282
    [65]王延红,杨利平,仇小鹏等.仿真建模软件Creator的应用技术[J].计算机仿真,2005,22(7):179-181
    [66]徐正,沈笑云,韩丹.基于Creator的飞行视景数据库建模技术[J].计算机工程,2009,35(9):265-268
    [67]刘航,王春水,王积忠.基于Creator/Vega的虚拟场景设计与实现[J].计算机仿真,2007,24(9):228-231
    [68]曾芬芳,梁柏林,刘镇等.基于数据手套的人际交互环境设计[J].中国图象图形学报,2000,5(A):153-156
    [69] Kumar R, et al. Representation of scenes from collections of images. In IEEE Workshop onRepresentation of Visual Scenes, Cambridge, MA,1995:10-17
    [70]胡海,刘鼎臣.飞航导弹弹道仿真的校核、验证和确认[J].系统仿真学报,2002,14(3):274-277
    [71]刘兴堂,吕杰,周自全.空中飞行模拟器[M].北京:国防工业出版社,2003
    [72]谭振江,郭丽虹,于拥等.经纬仪目标交汇测量及航迹曲线拟合[J].光电工程,2002,29(6):17-20
    [73] Jens Hacker, Bernd H Kroplin. An experimental study of visual flight trajectory tracking andpose prediction for the automatic computer control of a miniature airship[J]. Intelligentcomputing: Theory and Applications. SPIE,2003,25-63
    [74]左玲,张新国.用于大机动飞行仿真的四元数改进算法[J].系统仿真学报,2006,18(11):3018-3029
    [75] Jack C K Chou. Quatemion kinematic and dynamic differential equations[J]. IEEE,1992,8(1):53-64
    [76]王乘,周均清,李利军. Creator可视化仿真建模技术[M].武汉:华中科技大学出版社,2005
    [77]杨丽,李光耀.城市仿真建模工具——Creator软件教程[M].上海:同济大学出版社,2007
    [78]王乘,李利军,周均清等. Vega实时三维视景仿真技术[M].武汉:华中科技大学出版社,2005
    [79]杨丽,李光耀.城市仿真应用工具——Vega软件教程[M].上海:同济大学出版社,2007
    [80]吴晓军,王昌金.基于Creator/Vega的战场飞行视景系统的实时仿真[J].系统仿真学报,2005,17(9):2297-2300
    [81]潘雪萍,陈怀民,吴成富.基于Creator和Vega的红外飞行视景仿真[J].计算机仿真,2007,24(9):46-49
    [82]董博,马立元,刘鹏远.基于Vega的某型导弹瞄准训练仿真[J].计算机仿真,2006,23(8):263-265
    [83]杨思,段锦,祝勇等.基于Vega的红外探测器成像效果数字仿真[J].长春理工大学学报(自然科学版),2012,35(1):96-99
    [84]柴毅,史晶晶,冯大龙.基于Vega的航天发射场视景仿真系统实现[J].计算机仿真,2007,24(6):62-65
    [85] Vega Programmer’s Guide. Version3.7For Windows NT and Windows2000[M].MultiGen-Paradigm Inc.2001
    [86] Dave Shreiner, TheKhronos OpenGL ARB Working Group. OpenGL Programming GuideSeventh Edition, The Official Guide to Learning OpenGL, Versions3.0and3.1[M].Addison-Wesley,2009.
    [87]苏国中,郑顺义,张剑清. OpenGL模拟摄影测量方法研究[J].中国图象图形学报,2006,11(4):540-544
    [88]张勇,吴钦章.基于OpenGL的目标序列影像姿态仿真方法研究[J].系统仿真学报,2010,22(2):439-442
    [89] J Stam, E Fiume. Turbulent Wind Fields for Gaseous Phenomena[C]. Proc SIGGRAPH,1993:369-376
    [90] N Foster, D Metaxas. Modeling the Motion of a Hot, Turbulent Gas[C]. Proc SIGGRAPH1997:181-188
    [91] G Y Gardner. Visual Simulation of Clouds[J]. Computer Graphics,1985,19(3):279-303
    [92] R Fedkwi, J Stam, H W Jensen. Visual Simulation of Smoke[C]. Proc SIGGRAPH,2001:15-22
    [93] T Nishita, Y Dobashi, E Nakamae. Display of Clouds Taking into Account Multiple AnisotropicScattering and Sky Light[C]. Proc SIGGRAPH,1996:379-386
    [94] D S Ebert. Simulation Nature From Theory to Application [C]. Proc SIGGRAPH,1999:51-52
    [95] Reeves T. Particle System–A technique for modeling a class of fuzzy objects[J]. ComputerGraphics,1983,17:359-376
    [96] Unbescheiden M, Andrzej T. Cloud Simulation in Virtual Environments[C]. IEEE VisualizationProceedings,1998,98-104
    [97]熊帅,付承毓. Vega视景仿真中场景实时图像处理方法[J].哈尔滨理工大学学报,2012,17(5):74-78
    [98] Richard S. Wright Jr., Benjamin Lipchak. OpenGL SuperBible, Third Edition[M].SamsPublishing,2004:269-282
    [99] Randi J.Rost, Bill Licea-Kane. OpenGL Shading Language Third Edition[M]. Addison-Wesley,2009
    [100] Matt Pharr著,龚敏敏译.GPU精粹2——高性能图形芯片和通用计算编程技巧[M].北京:清华大学出版社,2007.5
    [101] Randi J.Rost著,天宏工作室译. OpenGL着色语言[M].北京:人民邮电出版社,2006.10
    [102] K Perlin. An image synthesizer[J]. Computer Graphics,1985,19(3):287-296
    [103] K Perlin. Perlin noise[EB/OL]. http://freespace.virgin.net/hugo.elias/models/m_perlin.html
    [104] M Fairclough. Cloud Cover[EB/OL]. http://freespace.net/hugo.elias/models/m_clouds.html
    [105]谢攀,康凤举,苏曼.基于Perlin噪声的海面仿真在Vega Prime中的应用[J].计算机应用研究,2009,26(11):4386-4389
    [106]齐越,沈旭昆,段米毅等.基于Perlin噪音绘制云的方法[J].系统仿真学报,2002,14(9):1204-1207
    [107]葛亮,姜晓峰,倪小军.一种云场景的实时渲染方法[J].计算机工程与应用,2011,47(11):167-170
    [108]王锐,谷永山,韦穗等.虚拟海洋场景的实时模拟研究与实现[J].计算机工程与设计,2012,33(2):695-699
    [109] Xiong Shuai, Fu Cheng-yu. Convolution Filtering Optimization Based on Linear TextureFiltering Function of GPU[J]. International Journal of Digital Content Technology and itsApplications,2013,7(3):579-586
    [110]吴志勇,于秀妍.经纬仪训练仿真系统单杆操纵器读值的处理方法[J].光学精密工程,1999,7(2):33-36
    [111]李珍国.交流电机控制策略[M].北京:化学工业出版社,2009
    [112]樊晓丹,孙应飞,李衍达.一种基于RTW的实时控制系统快速开发方法[J].清华大学学报(自然科学版),2003,43(7):895-898
    [113]唐凯,康凤举,褚彦军. Vega中云的仿真方法[J].系统仿真学报,2005,17(9):2051-2053

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700