地质空间三维动态建模关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质空间是一个非均质(nonhomogeneous)、非参数化(nonparametic),非直见性(non-eyeable)的三维空间,该空间中的三维地质体动态建模技术正成为三维空间信息技术领域的研究热点问题,也是当今三维空间信息技术中的难点问题之一。本文从三维地质空间的固有属性分析出发,对三维地质空间认知问题、三维地质体数据结构、三维地质建模体系与方法等关键问题进行了分析研究;并在三维地质体数据结构、三维地质体动态构模算法、三维地质体模型的插值拟合算法、三维地质体模型的简化算法以及三维混合空间索引方法等方面进行了深入探讨,提出了多种有效的算法,本文的主要研究内容包括:
     (1)通过对地质空间性质的归纳总结,提出地质空间的“非均质性、非参数化,非直见性”的三个特性和三维地质空间的“混合空间认知模型”;并基于该空间认知提出了“EBRIM集成数据结构模型”。
     (2)对三维地质空间中基于钻孔、基于剖面和基于散点的三维地质体动态建模方法进行研究;提出了“基于钻孔的连续地层序列匹配动态建模算法”,该算法通过首先对整个研究区地层出现情况进行分析判断,自动生成该研究区域的标准连续的地层字典,然后通过钻孔与字典的按照一定规则的动态匹配,实现钻孔地层自动对比与连接,有效的解决了在有断层和地层尖灭情况下基于钻孔的自动建模问题。
     (3)提出了“基于非共面剖面拓扑推理的三维地质体动态重构算法”;该算法将拓扑推理引入三维地质体动态建模过程中,实现了无拓扑变化、地层尖灭、地层分叉情况和断层滑移等四种情况的拓扑推理自动判别与剖面自动对比构模,实现了这四种情况下基于任意剖面序列的三维地质体自动重构。
     (4)提出了“基于凸包剪切与限定散点集剖分的动态重构算法”;该算法首先将地质钻孔或剖面等数据进行离散插值,并将相关地质信息作为边界限定条件附加在散点集上,然后对离散点集合进行地质年代分类,并计算每类点集的最小凸包,再对这些凸包集按照地质年代顺序相互循环裁剪并进行剖分得到混合地质体模型,最后建立模型拓扑关系并进行模型面片与体元简化。该算法在实现地质体自动构模的情况解决了面模型不支持自动构模,而支持自动构模的体元剖分构模又由于数据量巨大而不具有实用性的问题。
     (5)提出了“基于TIN和NURBS的虚拟钻孔插值算法”,该算法将NURBS曲面反算插值引入虚拟钻孔插值中,改进了以往单纯的基于TIN的虚拟钻孔插值算法构面比较粗糙的问题;提出了基于剖面拓扑推理的虚拟剖面插值算法,较好的解决了在无拓扑变化、地层尖灭、地层分叉情况和断层滑移等四种情况下虚拟剖面自动生成问题。
     (6)提出了任意维通用网格GM以及“基于Simplex-Collapse的GM简化算法,GMS”,实现了多种不同网格的统一简化算法,同时基于Simplex-Collapse的GMS比以往基于Edge-Collapse的简化算法具有更高的简化效率。
     (7)通过对R-Tree,Packed R-Tree,R+-Tree,R*-Tree以及Hilbert R-Tree的分析比较,提出了一种新的索引方法,CSR-Tree(Clustered Sorting Record Tree)索引方法;该算法首先通过空间对象距离相似性聚类,然后对聚类的各个分量集合进行X、Y、Z方向的扫描排序,选取两两距离累积最小的方向对当前分量进行升序排序;然后在对分量集合的中心点进行X、Y、Z方向的扫描排序,选取两两距离累积最小的方向对分量集合的集合进行升序排序,最后递归构造CSR-Tree。该算法充分考虑了空间对象的相邻相关性,有限减小了节点矩形面积,降低了节点矩形交叠概率,提高了R-Tree的查询效率。
     (8)提出了Grid+CSR-Tree三维混合索引方法(Mix Grid Clustering Sorting Record Tree, MGCSR-Tree);该方法通过两级索引机制将大量空间对象的索引项有机地组织到各个桶文件及其对应的MGCSR-Tree中,既降低了存储开销,又提升了索引的操作效率。
     上述算法与方法已多个实际项目中使用,取得了较好的实际效果;证明了上述算法的有效性和实用性。
Geological space is a three-dimensional space which is nonhomogeneous, nonparametic and non-eyeable. The dynamic modeling of the 3D geological solid in this space is becoming one of the focus problems of 3D spatial information technology research fields, and is also one of the difficult problems in these fields. With the analysis of the geological space attributes, some key problems such as the 3D geospatial cognition, 3D geological solid data structure, the system and methods of 3D geological modeling, the interpolation and fitting algorithms of 3D geological model, the 3D geological solid simplification algorithms and the spatial index, are researched in the paper. The main study contents composed of following items:
     (1)With concluding and summarizing the geological space attributes, the three basic attributes--nonhomogeneous, nonparametic and non-eyeable, and the mix spatial cognition model of the 3D geological space are presented. Based on this cognition, the extended boundary representation integration model (EBRIM)is presented in this paper.
     (2)The dynamic modeling methods of 3D geological solid based on borehole, section and disperse points, are studies on. The dynamic modeling algorithm based on continuous borehole stratum series matching is presented. This algorithm includes two main steps. The first is generating the continuous standard stratum dictionary automatically by analyzing and judging the stratums in the research area. The second is doing dynamic matching between borehole and dictionary with guiding by some certain rules. It resolves the dynamic modeling problems in the condition of having fault and stratum annihilating.
     (3)The dynamic modeling algorithm of 3D geological solid based on noncoplanar section topology reasoning is presented. This algorithm imports the topology reasoning into 3D geological dynamic modeling, realizes the topology reasoning, judging and section corresponding automatically for the four cases: having no topology change, stratum annihilating, stratum bifurcating and fault slippage. Furthermore the automatic reconstruction of 3D geological solid for the 4 cases is implemented.
     (4)The dynamic reconstruction algorithm based on convex hull cutting and restrictive disperse points division has been presented. This algorithm does interpolation of borehole and section data attached with geological information as boundary restrictive conditions at first. Then the disperse points are classified with the geological age, and the minimums convex hull of each classified points are calculated. Then the convex hulls are sorted by geological age and cutted the adjacent convex hull in sequence, and then the results are divided to receive the 3D geological solid based on EBRI model. The topology relationships are built and the model simplifications are done at last. It resolves the problem that the surface model can not support auto-reconstruction and the solid model can do it, but is not practical because of the huge data.
     (5)The virtual borehole interpolation algorithm based on TIN and NURBS is presented. It imports the NURBS surface reverse interpolation into this algorithm in order to solve the rough surface problem brought on the virtual borehole interpolation algorithm which only bases on TIN. The virtual section interpolation based on section topology reasoning is presented. This algorithm implements the virtual section auto-generation for the four cases: having no topology change, stratum annihilating, and stratum bifurcating and fault slippage.
     (6)The n-dimensional general mesh (GM)and the GM simplification (GMS)based on the simplex-collapse are brought out, and implement many kinds of grid general simplification algorithm. The GMS is more effective than the simplification algorithm based on edge-collapse.
     (7)A new index algorithm named clustering sorting record tree (CSR-Tree),which is not same as R-Tree, packed R-Tree, R+-Tree, R*-Tree, is presented and implemented in the paper. This algorithm includes three main steps. The first step is spatial objects center distance clustering. The second step is sorting the clustering results by scanning X, Y, Z axis, and selecting direction which has the minus sum of the adjacent distance between each two spatial objects. The last step is constructing CSR-Tree recursively. This algorithm reduces the probability of the covering of node boundary rectangle by thinking over the spatial objects’distance relativity, and improves the R-Tree searching efficiency.
     (8)A Grid+CSR-Tree 3D mix index method named mix grid clustering sorting record tree (MGCSR-Tree)is brought out. This algorithm uses two level index mechanisms to manage huge spatial data, which reduces the memory spending and enhances the index operation efficiency.
     The algorithms above all has been used in many projects, and obtained good practice effects, and proved these algorithms are valid and practicable.
引文
[1]吴冲龙.地质矿产点源信息系统的开发与应用[J].地球科学-中国地质大学学报, 1998, 23(2): 194~198
    [2]吴冲龙,刘刚,田宜平等.论地质信息技术[J].地质科技情报, 2005, 24(3): 1~8
    [3]吴立新,史文中.论三维地学空间构模[J].地理与地理信息科学, 2005(1): 1~4
    [4]邬伦,刘瑜,张晶,马修军,等.地理信息系统—原理、方法和应用[M].北京:科学出版社, 2002, 2
    [5]李德仁,关泽群.空问信息系统的集成与实现[M].武汉:武汉测绘科技大学出版社, 2000
    [6]龚健雅.地理信息系统基础.北京:科学出版社, 2001, 4
    [7]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社, 2000
    [8] Notley, K. R. and Wilson, E. B. Three Dimensional Mine Drawings by Computer Graphics. CIM Bulletin, 1975, 2: 60~64
    [9] Mallet J L. Discrete Smooth Interpolation in geometric modeling [J]. Computer Aided Design, 1992, 24: 199~219
    [10] Mallet, J. L. Discrete Smooth Interpolation. ACM Transactions on Graphics, 1989, 8(2): 212~144
    [11] Houlding S. W. . 3D Geosciences modeling-computer techniques for geological characterization [M]. New York: Springer-Verlag, 1994
    [12] Houlding S. W. . Practical geostatistics, modeling and spatial analysis [M]. New York: Springer一Verlag, 2000
    [13] Houlding S. W. . 3D Computer Modeling of Geology and Mine Geometry, Mining Magazine, 1987, 3: 226~231
    [14] Houlding, S. W. , Computer modeling Limitations and New Directions-Part 1 [J]. CIM Bulletin, 1991, Aug, 84 (952): 75~78
    [15] Houlding, S. W. , Computer modeling Limitations and New Directions-Part 2 [J].CIM Bulletin, 1991, Sept, 84 (953): 75~78
    [16]吴冲龙,毛小平,田宜平等.三维数字盆地构造-地层格架模拟技术[J].地质科技情报. 2006, 25(4): 1~9
    [17]张菊明.三维地质模型的设计和显示.中国数学地质7.北京:地质出版社, 1996: 158~167
    [18]陈昌彦,张菊明,杜永廉,等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用.岩土工程学报, 1998, 20(4): 1~6
    [19]柳庆武,吴冲龙,李绍虎.基于钻孔资料的三维数字地层格架自动生成技术研究.石油实验地质, 2003, 25(5): 501~504
    [20]武强,徐华.三维地质建模与可视化方法研究.中国科学一D辑地球科学, 2004, 34(1): 54~60
    [21]王勇,薛胜,潘懋,等.基于剖面拓扑的三维矢量数据自动生成算法研究[J].计算机工程与应用, 2003, 39(5): 1~2
    [22]鲁学军,秦承志,张洪岩,程维明.空间认知模式及其应用[J].遥感学报, 2005, 3: 1-9
    [23] Freundschuh S M, Egenhofer M J. Human Conceptions of Spaces: Implications for Geographic Information Systems[J]. Transactions in GIS, 1997, 2(4): 361~375
    [24] CouclelisH, Gale N. Space and Spaces[J]. Geografiska Annaler. 1986, 68: 1~12
    [25]李清泉,李德仁.三维地理信息系统中的数据结构.武汉测绘科技大学学报, 1996, 2(2): 128~133
    [26]曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术[D].中国地质大学(北京)博士论文, 2005
    [27]吴立新,史文中, Christopher G. M. 3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学, 2003, 19(1): 5~11.
    [28]易善桢,李琦. 3D-GIS数据表示和空间插值方法研究[J].中国图形图像学报, 1999, 4(8): 698~701
    [29]李明超.大型水利水电工程地质信息三维建模与分析研究[D].天津大学博士论文, 2006
    [30] Tipper J C. The study of geological objects in three dimensions by the computerized reconstruction of serial sections[J]. Geology, 1976, 84 (4): 476~484
    [31] Muller H, Klingert A. Surface interpolation from cross sections[C]. Focus on Scientific Visualization. Springer-Verlag, 1993: 139~189
    [32] Herbert M J, Jones C B. Contour correspondence for serial section reconstruction: complex scenarios in palaeontology[J]. Computers & Geosciences, 2001, (4): 427-440
    [33]屈红刚,潘懋,王勇,等.基于含拓扑剖面的三维地质建模[J].北京大学学报(自然科学版), 2006, 11, 42(6): 717~723
    [34]杜晓初.多重表达中空间拓扑关系等价性研究[D].武汉大学博士论文. 2005
    [35] Meyres D, Skinner S, Sloan K. Surfaces from contours[J]. ACM Transactions On Graphics, 1992, 11(3): 228~258
    [36]齐华,刘文熙.建立结点弧-弧拓扑关系的Qi算法[J].测绘学报. 1996, 25(3): 233~235
    [37]杨海宏等.利用双邻点判断法优化拓扑关系自动生成算法[J].中国图像图形学报. 1998, 3(7): 583~587
    [38]周立新,严静,潘云鹤.一个基于图的多边形拓扑关系生成算法[J].计算机应用. 1999, 19(10): 37~39
    [39]闫浩文等.基于方位角的拓扑多边形自动构建快速算法[J].中国图像图形学报. 2000, 5A(7): 563~567
    [40]高云琼,徐建刚,唐文武.同一结点上弧-弧拓扑关系生成的新算法[J].计算机应用研究. 2002(4): 58~59
    [41]齐安文,吴立新,李冰等.一种新的三维地学空间构模方法一类三棱柱法.煤炭学报, 2002, 27(2): 158~163
    [42]刘少华,刘荣,程朋根等.一种基于似三棱柱的三维地学空间建模及应用.工程勘察, 2003, 5: 52~54
    [43] Alan M. Lemon, Norman L. Jones. Building solid models from boreholes and user-defined cross-sections[J]. Computer&Geosciences, 2003, 29: 540~555
    [44]郭庆胜,杜晓初,闫卫阳.地理空间推理[M].科学出版社. 2006, 2,第一版: 1~15
    [45] Chiaruttini, C. ; Roberto, V. ; Buso, M. Spatial and temporal reasoning techniques in geological modeling. Physics and Chemistry of the Earth, 1998, 23(3): 261~266
    [46] Perrin, M. Geological consistency : an opportunity for safe surface assembly and quick model exploration. 3D Modeling of Natural Objects, A Challenge for the 2000’s, 1998, 3(6): 4~5
    [47] Roberto, Vito; Chiaruttini, Claudio. Modeling and reasoning techniques in geologic interpretation. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans. 1999, 29(5): 460~473
    [48] Schoniger, Matthias; Dietrich, Jorg; Hattermann, Fred. Geological reconstruction using conditional stochastic simulation for uncertainty analyses of water resources management. IAHS-AISH Publication, 2002, 273: 163~168
    [49] Minor, Mirjam; Koppen, Sandro . Design of geologic structure models with case based reasoning . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2005, 3698(9): 79~91
    [50] Perrin, Michel; Zhu, Beiting; Rainaud, Jean-Francois; Schneider, Sebastien. Knowledge-driven applications for geological modeling. Journal of Petroleum Science and Engineering. 2005, 47(1-2): 89-104
    [51] SEM, Shared Earth Model project, http: //www. posc. org/workprgm/sem. shtml.
    [52] Zheng, Liang; Li, Deren; Wei, Shuangfeng. The application and research of an improved event-based spatio-temporal data model. Proceedings of SPIE - The International Society for Optical Engineering. Geoinformatics 2006: Geospatial Information Science. 2006, 6420~6429
    [53]王士同.人工智能教程[M].北京:电子工业出版社, 2006, 8
    [54]孔德慧.有界域三维数据场可视化研究[D].北京航空航天大学博士论文, 1996
    [55]李志刚.广义域散乱三维数据场的通用可视化技术研究[D].北京航空航天大学博士论文, 1997
    [56]徐永安.约束Delaunay三角化的关键问题研究与算法实现及应用[D].浙江大学博士论文, 1999
    [57]杨钦.限定Delaunay三角剖分[D].北京航空航天大学博士论文, 2001
    [58]朱大培.三维地质建模与曲面带权限定Delaunay四面体剖分的研究[D].北京航空航天大学博士论文, 2002
    [59]赵建军,王启付.边界一致的Delaunay四面体网格稳定算法[J].机械工程学报, 2004, 40(6): 100~106
    [60]张永春,达飞鹏,宋文忠.三维点集的曲面三角剖分[J].中国图像图形学报, 2003, 12(8): 1379~1388
    [61]侯恩科.三维地学模拟的若干关键问题研究[D].中国矿业大学博士论文, 2002
    [62]周培德.计算几何-算法分析与设计[M]清华大学出版社, 2000
    [63]杨勋年,汪国昭.三维凸包的快速算法[J].浙江大学学报(自然科学版), 1999, 3, 33(2): 111~114
    [64] Hang Si. A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator. http: //tetgen. berlios. de/
    [65]田宜平.盆地三维数字地层格架的建立与研究[D].中国地质大学(武汉)博士论文, 2001
    [66] Bentley J L, Faust G M, Preparata F P. Approximation algorithms for convex hulls[J]. Comm ACM, 1982, 25: 64~68
    [67] Day A M. Planar convex hull algorithms in in theory and practice[J] . Cornput Graph Forum, 1988, 7: 177~193
    [68] Preprata F P, Hong S J. Convex hulls of finite point sets in two and three dimensions[J]. Comm ACM, 1977, 20: 87~93
    [69] Swart G. Finding the convex hull facet by facet[J]. J Algorithms, 1985, 6: 17~48
    [70]颜慧敏.空间插值技术的开发与实现[D].西南石油学院硕士论文, 2005
    [71]朱求安,张万昌,余钧辉.基于GIS的空间插值方法研究[J].江西师范大学学报(自然科学版), 2004, 28(2): 183-1 88
    [72]李庆杨,王能超,易大义.数值分析,第3版.武汉:华中理工大学出版社, 1986
    [73]白世彪,陈哗,王建.等值线绘图软件SU RFER7. 0中九种插值法介绍[J].物化探计算技术, 2002, 5, 24(2): 157-162
    [74]唐泽圣.三维数据场可视化[M].北京:清华大学出版社, 1999
    [75] Vistelius, A. B. Principles of Mathematical Geology. Dordrecht: Kluwer Academic Publishers, 1989
    [76] Longley, P. A. , Goodchild, M. F. , Maguire, D. J. , et al. Geographical Information Systems, Volume 1, Principles and Technical Issues, Second Edition. New York: John Wiley&Sons, 1999
    [77]侯景儒,尹镇南,李维明,等.实用地质统计学.北京:地质出版社, 1998
    [78]彭芳瑜,周云飞,周济.基于插值与逼近的复杂曲面拟合[J].工程图学学报, 2002, 23(4): 87-96
    [79] Horsman, J. , Bethel, W. Methods of constructing a 3D geological model from scatter data[C]. In Proceedings of AVS95, 1995
    [80]吴春发,李星.地质模拟中数据插值方法的应用[J].地球信息科学, 2004, 6(2): 50-52
    [81]谭志斌,朱小平,孙兰凤,等.自由曲线曲面重构的数据结构设计[J].天津大学学报, 2004, 37(2): 148-151
    [82] Apprato, D. , Gout, Ch. , Komatitsch, D. A new method for Ck-Surface approximation from a set of curves with application to ship track data in the Marianas trench[J]. Mathematical Geology, 2002, 34(7): 831-843
    [83] http: //zh. wikipedia. org, 2008
    [84] De Kemp, E. A. , Sprague, K. B. Interpretive tools for 3-d structural geological modelling Part I: Bezier-based curves, ribbons and grip frames[J]. GeoInformatica, 2003, 7(1): 55-71
    [85] Sprague, K. B. , De Kemp, E. A. Interpretive tools for 3-D structural geological modelling Part II: Surface design from sparse spatial data[J]. GeoInformatica, 2005, 9(1): 5-32
    [86] Fisher, T. R. , Wales R. Q. 3-D solid modeling of sandstone reservoirs using NURBS: a case study of Noonen Ranch field, Denver basin, Colorado[J]. Geobyte, 1990, 5(1): 39-41
    [87] Fisher, T. R, Wales, R. Q. Three Dimensional solid modeling of geo-objects using non-uniform rational B-splines(NURBS). In: Turner, A. K. (Ed. ), Three-Dimensional Modeling with Geoscientific Information Systems. Dordrecht: Kluwer Academic Publishers, 1992, 85-105
    [88] Marschallinger, R. CAD-based 3D modeling in geosciences: application of the NURBS concept[C]. In: Proc. Int. Assoc. Mathem. Geol. meeting. Prague, 1995, 1-5
    [89] Les Piegl, Wayne Tiller. The NURBS book. Springer, 1997, second edition
    [90]钟登华,李明超,王刚,刘东海.复杂地质体NURBS辅助建模及可视化分析[J].计算机辅助设计与图形学学报, 2005, 17(2): 284-290
    [91]施法中.计算机辅助儿何设计与非均匀有理B样条(CAGD&NURBS)[M].北京:北京航空航天人学出版社, 1994
    [92] Cignoni, P. , Montani, C. , and Scopigno, R. A comparison of mesh simplification algorithms[J]. Computers & Graphics, 1998, 22, 1: 37–54
    [93] Cignoni, P. , Rocchini, C. , and Scopigno, R. Metro. Measuring error on simplified surfaces[J]. Computer Graphics Forum, 1998, 17, 2 : 167–74
    [94] Garland, M. . Multiresolution modeling. Survey & future opportunities. In State of the Art Report. Eurographics, 1999, 111–131
    [95] Garland, M. . Quadric-based polygonal surface simplification[D]. Ph. D. thesis, Carnegie Mellon University, CS Dept. Tech. Rept. CMU-CS-99-105, 1999
    [96] Luebke, D. , Reddy, M. , Cohen, J. D. , Varshney, A. , Watson, B. , and Huebner, R. . Level of Detail for 3-D Graphics[M]. Morgan Kaufmann , 2002
    [97] L. De Floriani, L. Kobbelt, E. Puppo . A Survey on Data Structures for Level-Of-Detail Models. Department of Computer Science, University of Genova, Genova, Italy , 2005
    [98] Chopra, P. , Meyer, J. . TetFusion. An algorithm for rapid tetrahedral simplification. In IEEE Visualization 2003, 2002: 133–140
    [99] Rossignac, J. , Borrel, P. . Multi-resolution 3D approximations for rendering complex scenes. In Modeling in Computer Graphics. Methods and Applications, B. Falcidieno and T. Kunii, Eds. Springer-Verlag, Berlin, 1993: 455–465
    [100] Turk, G. . Re-tiling polygonal surfaces[J]. Computer Graphics (SIGGRAPH’92 Proc. ), 1992, )26, 2: 55–64
    [101] Schroeder, W. J. , Zarge, J. A. , Lorensen, W. E. . Decimation of triangle meshes[J]. Computer Graphics (SIGGRAPH’92 Proc. ), 1992, 26, 2 : 65–70
    [102] Hoppe, H. , DeRose, T. , Duchamp, T. , McDonald, J. , Stuetzle, W. . Mesh optimization[C]. In SIGGRAPH’93 Proc. 1993: 19–26
    [103] Hoppe, H. . Progressive meshes[C]. In Proceedings of SIGGRAPH 96. ACM SIGGRAPH, 1996, 99–108
    [104] Hoppe, H. . New quadric metric for simplifying meshes with appearance attributes[C]. IEEE Visualization’99 , 1999: 59–66
    [105] Garland, M. , Heckbert, P. S. . Surface simplification using quadric error metrics[C]. In Proceedings of SIGGRAPH 97. ACM SIGGRAPH, 1997: 209–216
    [106] Garland, M. and Heckbert, P. S. . Simplifying surfaces with color and texture using quadric error metrics[C]. In IEEE Visualization 98 Conference Proceedings. 1998: 263–269
    [107] Lindstrom, P. , Turk, G. . Fast and memory efficient polygonal simplification[C]. In Proceedings of IEEE Visualization 98, 1998: 279–286
    [108] Michael, G. , Yuan, Z. . Quadric-Based Simplification in Any Dimension[J]. ACM Transactions on Graphics. 2005, 4, 24 (2): 209-239
    [109] Schroeder, William J. A Topology Modifying Progressive Decimation Algorithm[C]. In Proceedings of IEEE Visualization’97, 1997: 205-212
    [110] Isenburg, M. , Lindstrom, P. . Streaming meshes[C]. in IEEE Visualization 2005, 2005, 8: 231-238
    [111] Huy, T. Vo, Steven P. Callahan, Lindstrom, P. , Valerio Pascucci, Cláudio T. Silva. . Streaming Simplification of Tetrahedral Meshes[J]. IEEE Transactions on Visualization and computer graphics, 2005
    [112] Renze, K. J. and Oliver, J. H. . Generalized unstructured decimation[J]. IEEE Computer Graphics & Applications , 1996, 11, 16(6): 24–32
    [113] Ruppert, J. and Seidel, R. . On the difficulty of triangulating three-dimensional nonconvex polyhedra[J]. Discrete & Computational Geometry, 1997, 7: 227–253
    [114] Gelder, A. V. , Verma, V. , Wilhelms, J. . Volume decimation of irregular tetrahedral grids. In Computer Graphics International, 1999: 222–231
    [115] Trotts, I. J. , Hamann, B. , Joy, K. I. , Wiley, D. F. . Simplification of tetrahedral meshes[C]. In IEEE Visualization’98, 1998: 287–296
    [116] Trotts, I. J. , Hamann, B. , Joy, K. I. . Simplification of tetrahedral meshes with error bounds[J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(3): 224-237
    [117] Cignoni, P. , Costanza, D. , Montani, C. , Rocchini, C. , Scopigno, R. . Simplification of tetrahedral meshes with accurate error evaluation[C]. In IEEE Visualization 2000, 2000: 85–92
    [118] Cignoni, P. , De Floriani, L. , Magillo, P. , Puppo, E. , and Scopigno, R. . Selective refinement queries for volume visualization of unstructured tetrahedral meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(1): 29–45
    [119] Popovi′c, J. Hoppe, H. . Progressive simplicial complexes[C]. In Proceedings of SIGGRAPH 97. ACM SIGGRAPH, 1997: 217–224
    [120] Staadt, O. G. and Gross, M. H. . Progressive tetrahedralizations[C]. In IEEE Visualization 98 Conference Proceedings. , 1998: 397–402
    [121]何珍文,吴冲龙,汪新庆,刘刚.空间数据应用程序性能优化问题探讨[J].计算机应用, 2001, 4, 21(4): 66-67
    [122]何珍文,吴冲龙,汪新庆,翁正平.基于SQLSERVER外挂空间数据库的设计与实现[J].计算机应用, 2002, 1, 22(1): 50-52
    [123]何珍文,吴冲龙,张夏林,汪新庆.数据库应用程序中通用动态查询实现方法研究[J].计算机工程, 2001, 11, 28(11): 353-360
    [124]何珍文,田宜平,熊明,吴冲龙等.基于GeoView长江河道数据录入与存储管理解决方案[J].人民长江, 2005, 3: 25-30.
    [125] Zhenwen He, Chonglong Wu, Yiping Tian etc. Dynamic Multi Source Spatial Data Collection and Object-Oriented Grid Storage Framework of Digital Yangtze[C].2005 IAMG, Toronto, Canada , 2005, l2 : 970-975
    [126] Zhenwen He. Progressive Simplification of General Meshes in Geological Modeling. 2007 IAMG, Beijing, China, 2007, 739-745
    [127]何珍文,田宜平,吴冲龙等.基于拓扑推理的三维地质动态建模方法. 2007工程勘察信息化学术研讨会.武汉, 2007, 11: 32-38
    [128] Zhenwen He, Yiping Tian, Chonglong Wu etc. . Three- dimensional Geological Solid Dynamic Reconstruction Based on Section Topology Reasoning[C]. ICEEG 2008, Wuhan, China, 2008, In Press
    [129]朱庆,龚俊.一种改进的真三维R树空间索引方法[J].武汉大学学报:信息科学版, 2006, 31(4): 340-343
    [130]郭晶,刘广军,董绪荣.基于空间网格和Hilbert R-tree的二级R-tree空间索引[J].武汉大学学报. 2005, 30 (12): 1084-1088
    [131]张厅.空间索引技术研究[D].中南大学硕士论文, 2007, 5
    [132] Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching. In: Proc. ACM SIGMOD, Massachusetts, 1984, 47-57
    [133] M Kornacker, C Mohan, J M Hellerstein. Concurrency and Recovery in Generalized Search Trees[C]. In Proceedings ACM SIGMOD International Conference 1997, 62-72
    [134] Timos Sellis, Nick Roussopoulos, Christos Faloutsos. The R+-Tree: A dyanmic index for multi-dimensional objects[C]. In: VLDB 1987, 507-518
    [135] Beckmann N, Kriegel H P, Schneider R, et al. The R*-tree: An efficient and robust access method for points and rectangles[C]. In: Proceedings ACM SIGMOD International Conference on Management of Data, 1990, 322-331
    [136] S T Leuteegger, M A Lopez, J M Edgington. STR: A Simple and Efficient Algorithm for R-Tree Packing[C]. In: Proceedings of the International Conference on Data Engineering, 1997
    [137] Kamel I, Faloutsos C. Hilbert R-Tree: An improved R-tree using fractals[C]. In: Bocca J B, eds. Proceedings of the 20th International Conference on Very Large DataBases, San Francisco: Morgan Kaufmann Publishers Inc, 1995, 500-509
    [138] P W Huang, P L Lin, H Y Lin. Optimizing storage utilization in R-tree dynamicindex structure for spatial database[J]. the Journal of Systems and Software, 2001, 55: 291-299
    [139]宋晓宇,周新伟,王永会.三维GIS中混合树空间索引结构的研究[J].沈阳建筑大学学报(自然科学版), 2006, 5, 22(3): 478-482
    [140] Kamel I, Faloutsos C. . On packing R-trees[C]. In: Proceeding of the 2nd conference on information and knowledge management ( CIKM), Washington DC. 1993, 490-499
    [141] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transaction on pattern analysis and machine intelligence, 2002, 24(7): 881-892

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700