静止系射流与旋转系移动水膜流间时空相互干涉
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进行冲击式水轮机水斗的优化设计,提高冲击式水轮机整体水力性能,本研究开发了可计算静止系射流与旋转系移动水膜流之间的时空同期干涉的流体解析软件。利用该解析软件得到冲击式式水轮机各个时空同期非定常流动解析,实现了水斗内不可见流的可视化,为冲击式水轮机水斗优化设计提供理论依据和技术支持。
     本文首先定义了描述水斗形状的直角水斗坐标系,用于分析射流的静止坐标系及转动的旋转坐标系,说明了不同坐标系之间的坐标变换。利用边界贴体网格描述水斗复杂的三维形状,计算了局部非正交曲线坐标系下贴体网格点的自然基本矢量及偏微分。基于微分几何,提出利用边界贴体网格点来进行空间局部自由曲面的创建理论,为流动数值解析作准备。
     利用不同坐标系下的位移、速度、加速度三角形理论来进行静止系射流与旋转系移动水膜流间时空同期干涉的矢量分析。在静止坐标系下,利用微分几何阐述了自由射流与水斗内移动水膜流之间的时空同期相互干涉,成功开发了自由射流时空同期着陆于水斗三维曲面的计算软件。在旋转坐标系下,利用微分几何阐述了着陆于水斗的新水膜流与水斗上已存在的旧水膜流之间的时空同期相互干涉,成功完成了新旧水膜流动及水斗中部分不可见流可视化的计算软件。
     本研究利用边界贴体网格描述了冲击式水轮机水斗复杂的三维几何形状,基于微分几何创建了空间局部三维自由曲面,进而进行了流动数值解析,根据流动解析结果对水斗进行优化设计。依照水斗在旋转坐标系下的安装进行了比转速的定义,对于任何比转速的冲击式水轮机都可以进行静止系射流与旋转系移动水膜之间时空同期干涉的流动解析及预测。完成了射入水斗的入射面和被水斗缺口分离的偏流射流的后缘面计算,使流入水斗两分支自由射流三维形状的时空同期可视化成为可能。分析射入水斗的新水膜流与已存在的旧水膜流之时空干涉流动,使新旧水膜流时空同期干涉的三维可视化成为可能。本论文提出的时空同期干涉计算软件,不需要使用高价服务器,也不需要长时间的计算,只要在普通的计算机上在非常短的时间内即可完成时空同期的有效流量、无效流量、欧拉能量、转轮力矩、水力效率预测等的计算,可以进行水斗的优化设计。
In order to maximize the hydraulic performance of Pelton turbines by an innovative optimum design criteria based on the visualization of invisible flow in the Peloton buckets, the research developed the basis theory and algorithm for the flow analysis software to simulate the space-time synchronous interaction between the free jet in stationary frame and the moving water sheet in rotating runner frame. The space-time synchronous hydraulic performance based on the unsteady flow interaction was numerically computed and visualized in every space-time step. According to the acquired flow visualization, the innovative optimum design criterion is established.
     An isolated coordinate system of bucket frame is used for the design of bucket geometry. The boundary-fitted grids (BFG) of non-orthogonal curvilinear frame were applied to discretize the geometry of bucket with the natural basis vectors in differential geometry math. After mounting the bucket frame onto the rotating runner frame of Cartesian based on the standardization of specific speed, the unsteady flow interaction of a free water jet in the stationary frame with the free moving sheet on the bucket in the rotating runner frame was discretized in space-time synchronously. The frame transformations among the three frames on the isolated bucket with BFG, on the moving sheet in rotating runner, and on the free jet flow in stationary were theoretically described and computed.
     An unique space-time synchronous theory of displacement, velocity and acceleration triangle was used to connect the two frames of stationary jet and of rotating moving sheet flow. This theory is used for the vector analysis to the space-time synchronous interactions between free jet in stationary frame and moving water sheet in rotating runner frame. Under the world of stationary frame, the space-time synchronous interaction between the stationary free jet and the moving water sheet flow in rotating frame was elaborated to the innovative software of the free jet landing on the 3D curved surface of rotating buckets successfully. On the other hand, under the world of rotating runner frame, the space-time synchronous interaction between the new water sheet landing on a bucket and the existing old water sheet in the bucket was creatively solved by differential geometry, and completed the innovative software for the flow analysis of free water sheet moving in a bucket with the visualization of invisible flow successfully.
     Since the complicated 3D geometric free-surface of Pelton bucket has exactly been described by the local curved surface based on differential geometry, an innovative design is possible by optimizing any local curved surface of Pelton buckets according to the results of flow analysis. Any specific speed of Peloton turbine can be analyzed by the software, as the mounting of bucket onto the runner frame was standardized by the specific speed. It is possible to visualize the landing surface of impinging jet branch on the relevant bucket and the trailing edge surface of deflected jet branch toward the preceding bucket, as well as the flow interaction between newcomer and old-timer of flow water sheet in a bucket. The numerical software to compute the space-time synchronous interaction presented in the research doesn’t require expensive engineering workstation with long computing hours. This software can predict the effective discharge and invalid discharge, Euler energy, stress on bucket, torque of runner and hydraulic efficiency within a short minute in a personal computer. It supplies the efficient design-tool to optimize the design of Pelton buckets quickly.
引文
[1]周双超,田宗伟.我国水能资源富甲天下[J].全国水力资源复查工作综述.中国三峡建设, 2005, (06):68-73
    [2]曹青,冀兆良.我国水能资源的开发和利用[J].节能, 2007, 299(6): 58-59
    [3]唐雪松.我国水电能源开发利用浅谈[J].技术与市场, 2008, 5:42
    [4]张超,陈武.关于我国2050年水电能源发展战略的思考[J].北京理工大学学报(社会科学版), 2002, 51(4):63-66
    [5]马一太,邢英丽.我国水力发电的现状和前景[J].能源工程, 2003, 4: 1-3
    [6]胡永平.水力发电前景和趋势[J].科技天地, 2005:44
    [7]陆佑楣.我国水电开发和可持续发展[J].水力发电, 2005, 31(2): 1-4
    [8]高季章.中国水力发电现状问题和政策建议[J].中国能源, 2002, 8:4-6
    [9]贾金生.国外水电发展概况及对我国水电发展的启示(三)[J].中国水能及电气化, 2010, 5: 7-10
    [10]周金昭.发展我国小水电问题的探讨[J].福建能源开发与节约,2003(2):26-28
    [11]程良骏.水轮机[M].第1版.机械工业出版社, 1981: 5-9
    [12] James W..高比转速冲击式水轮机[J].东方电机股份有限公司.冲击式水轮机译文集,1999, (18): 7-14
    [13]马锐,宫游,窦纯玉.冲击式水轮机设计的探讨和发展趋势[J].大电机技术,2002(4):49-52
    [14] Brekke H.. A review on Turbine Design[C]. Proceedings of the 22th IAHR Symposium, Lausanne, Switzerland, 2002
    [15] Angehrn R.. Safety Engineering for the 423 MW-Pelton-Runners at Bieudron[C]. 21st IAHR Symposium, Lausanne , Sept, 2002
    [16]刘宇华,马锐.高水头冲击式水轮机的设计与发展趋势的探讨[J].西北水电, 2003(2): 27-29
    [17]童建栋,冲击式水轮机[M].杭州:河海大学出版社,1991
    [18]田树棠.冲击式水轮机及其选择方法[J].西北水电, 1997, 15: 49-54
    [19] Brekke H..冲击式水轮机设计及布置的新动态[J].东方电机股份有限公司.冲击式水轮机译文集, 1999, 18: 37-41
    [20] Keck H..冲击式水轮机的改进——增加效益与更换转轮的比较[J].水利水电快报, 2001, 22(11): 1-3
    [21] Liu Jie, Han Fengqin, Kubota T., et al. Effect of free jet enlargement on the bucket flow in pelton turbine[C]. Proceedings of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [22] Nakanishi Y., Kubota T.. Deviation Angle of Free Water Jet Penetrated by Pelton Bucket[C]. 5th Asian Int. Conf. on Fluid Machinery, Seoul, 1997, II: 487-493
    [23] Kubota T., Nakanishi Y., Han Fengqin, et al. Deviation Angle of a Free Jet in Pelton Turbines[C]. 20th IAHR-Symposium, Charlotte, 2000, B-6: 1-8
    [24] Kubota T., Han Fengqin, Kamiyama T.. CFD of Semi-Free Water Jet in Pelton Turbines[C]. Int. Conf. on Fluid Machinery, Fukuoka, 2003, 30003: 1-7
    [25] Lin Zhiwen, Han Fengqin, Xiao Yexiang, et al. Statistical Prediction of Unsteady Water Jet Flow by CFD[C]. 8th Asian Int. Conf. on Fluid Machinery, Yichang, 2005
    [26]韩凤琴,林志文,肖业祥,等.非定常喷嘴射流形状预测研究[J].水电能源科学, 2005, 23(3): 14-16
    [27]周晶林,韩凤琴,吴迪,等.两相射流的最小半径数值研究[J].水电能源科学, 2007, 25(5): 110-114
    [28]韩凤琴,周晶林,吴迪,等.三维自由射流缩流及扩散的数值研究[J].工程热物理学报, 2008, 29(8): 1323-1326
    [29]中西裕二,久保田喬,福井雅士.多ノズルペルトン水車のジェット干渉 (第1報,相対軌跡によるジェット干渉度の予測)[J].日本機械学会論文集, 1995, 591(61): 3934-3938
    [30]中西裕二,久保田喬,福井雅士.多ノズルペルトン水車のジェット干渉 (第2報,自由ジェットの流速減衰を考慮したジェット干渉度の予測) [J].日本機械学会論文集, 1995, 591(61): 3939 -3944
    [31]中西裕二,久保田喬.多ノズルペルトン水車のジェット干渉 (第3報,自由ジェットの流速減衰モデルを用いた切欠き流れ強さの予測) [J].日本機械学会論文集, 1999, 630(65): 684- 689
    [32] Adriana C., Mircea B., Cristina H.. Numerical simulation of a free jet in Pelton turbine[C]. 6th international conference on Hydraulic Machinery and Hydrodynamics,Romania, 2004:79–84
    [33] Nakanishi Y., Kubota T., Fukui M.. Jet Interference in multi-nozzle turbines (in Japanese)[J], 1st and 2nd Reports: Trans. JSME, 1995: 3934-3944
    [34] Nakanishi Y., Kubota T.. Scale Effect of Jet Interference in Multi-nozzle Pelton Turbines[C], 18th IAHR-Symposium, Valencia, 1996: 333-341
    [35] Kubota T., Nakanishi Y., Takeuchi H.. Effect of Decay of Jet on Bucket Flow in Pelton Turbines[C]. Int.Conf. on Fluid Eng., Tokyo, 1997, 203(97): 1341-1346
    [36] Nakanishi Y., Kubota T.. Component Analysis of Acceleration Acting on Pelton Buckets[C]. Int.Conf. on Fluid Eng., Tokyo, 1997, 203(97): 1353-1358
    [37] Kubota T., Nakanishi Y., Xia J.. Component Analysis of Acceleration Acting on Pelton Buckets[C]. Int.Conf. on Fluid Eng., Tokyo, 1997, 203(97): 1359-1364
    [38] Nakanishi Y., Kubota T., Xia J.. Numerical simulation of water sheet flow on Pelton bucket (1st report: Discretization of unsteady flow using animated cartoon method)[J]. Trans. JSME, 1997, 615(63): 3617-3622
    [39] Kubota T., Nakanishi Y., Xia J.. Unsteady Output Power Generated by a Rotating Pelton Bucket[C]. 5th Asian Int. Conf. on Fluid Machinery, Seoul, 1997, II: 479-486
    [40] Reiner M., Wolfgang R.. Using the potential of CFD for Pelton turbine development[C]. Proceedings of 19th IAHR-Symposium, Yokohama, 2006, 1-12
    [41] Hana M.. A discussion on numerical simulation in Pelton Turbines[C]. In Proceedings of the 19th IAHR Symposium, Singapore, 1998: 306–315
    [42] Santolin A., Cavazzlni G., Ardizzon G., et al. Numerical investigation of the interaction between jet and bucket in a Pelton bucket[J]. Power Energy, 2009, 223:721–727
    [43] Nakanishi Y., Kubota T., Shin T.. Numerical simulation of flows on Pelton bucket by particle method (flow on a stationary/rotating flat plate). Proceedings of 21st IAHR Symposium, Lausanne, 2002
    [44] Xiao Yexiang, Han Fengqin, Kubota,T.. Hydraulic Gradient in Free Surface Flow on Rotating Bucket of Pelton Turbine[C]. 8th Asian Int. Conf. on Fluid Machinery, Yichang, 2005
    [45]肖业祥,韩凤琴,久保田乔.非定常水斗表面自由水膜的流动机理[J].华南理工大学学报(自然科学板), 2006, 34(4): 75-79
    [46] IO.y.埃杰尔.水斗式水轮机[M].第一版.黄益生.机械工业出版社. 1990: 1-10
    [47] IEC Publication. Hydraulic turbines, storage pumps and pump-turbines—Model acceptance tests[M].1997: 60193
    [48] IEC Publication. Determination of the performance from model acceptance tests of hydraulic machines[M]. 1998: 593
    [49] Kubota T.. Observation of Jet Interference in 6-nozzle Pelton Turbine[J]. Journal of Hydraulic Research, 1989, 27(6): 753
    [50] Bachmann P., Sch?erer Ch., Staubli T., et al. Experimental flow studies on a 1-jet model Pelton turbine. Proceedings of the Hydraulic Machinery and Systems 15th IAHR Symposium. Belgrade, 1990
    [51] Kvicinsky S., Kueny J., Avellan F., et al. Experimental and numerical analysis of free surface flow in a rotating bucket[C]. Proceedings of 21st IAHR Symposium, Lausanne, 2002
    [52] Kvicinsky S., Kueny J.L., Avellan. Numerical and experimental analysis of free surface flow in a 3D non-rotating Pelton bucket[C]. Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2002: 18
    [53] Reiner M., Thomas A., Wolfgang R., et al. Validation of bucket flow simulation using dynamic pressure measurements[C]. Proceedings of 22nd IAHR Symposium, Stockholm, 2004
    [54] L.热佩尔.优化卧轴三喷嘴冲击式水轮机的模型试验[J].水利水电快报EWRHI,1996, 25(3):15-16
    [55] Geppert L., Amrein J., Hugentobler R., et al. Model tests for an optimized horizontal three-jet Pelton turbine[J]. International Journal on Hydropower and Dams, 2003, 10(4): 97-99
    [56]许萍,韦彩新.水斗数对转轮性能影响的试验研究[J].华中科技大学学报,2003, 31(3): 89-91
    [57] Keck H..冲击式水轮机的改进——增加效益与更换转轮的比较[J].水利水电快报EWRHI, 2001, 22(11): 1-3
    [58] Hana M..冲击式水轮机水斗内流动计算图解法的改进.东方电机股份有限公司.冲击式水轮机译文集,1999, 18:77-81
    [59] Kvicinsky S., Longatte F., Avellan Fr., et al. Free surface flow: experimental validation of the Volume of Fluid (VOF) method in the plane wall case[C]. Proceedings of 3rd ASME/JSME, San Francisco, CA, 1999: 8-23
    [60] Drtina P.; Sallaberger M.. Hydraulic turbines - basic principles and state-of-the-art computational fluid dynamics applications[C]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(1): 85-102
    [61] Berntsen G., Brekke, H., Haugen J.O., et al. Analysis of the free surface non-stationary flow in a Pelton turbine[J]. International Journal on Hydropower and Dams, 2001, 10(8): 79-84
    [62] Etienne Parkinson. Developments in numerical flow simulations applied to pelton turbines[R]. CFX Update, No.23
    [63] Monique T., Pierre L., Zoppe B., et al. Numerical study of pelton bucket flow comparison of fluent and CFX results[C]. Proceedings of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [64] Parkinson E., Vullioud G.; Geppert L., et al. Analysis of Pelton turbine flow patterns for improved runner-component interaction[J]. International Journal on Hydropower and Dams, 2002, 9(5): 100-103
    [65] Perrig A., Farhat M., Avellan F., et al. Numerical flow analysis in a Pelton turbine bucket[C]. Proceedings of 22nd IAHR Symposium, Stockholm, 2004
    [66] Gass, Matthew E.. Modernization and performance improvements of vertical pelton turbines[C]. Proceedings of the International Conference on Hydropower - Waterpower, 1997, 3: 2073-2082
    [67] Dubas M.. Some theoretical considerations on energy exchange in Pelton turbines[J]. International Journal on Hydropower & Dams, 1995, 2(1): 28-32
    [68] Felix M., Zhang Zhengji. On the way towards the fully simulated Pelton turbine[J]. Sulzer Technical Review, 2003, 85(1): 10-13
    [69] Lowy R.. Efficiency Analysis of Pelton Wheels[J]. Trans ASME, 1944, 8: 527-538
    [70] Kubota T.. Numerical Analysis of Free Water Sheet Flow on Pelton Buckets[C], 19th IAHR Symposium, Singapore, 1998, I: 316-329
    [71]郑爱玲.自由射流与冲击式水轮机旋转水斗背后的不定常干涉[D].广州:华南理工大学, 2007
    [72]孙红伟.冲击式水轮机的选择[J].小水电, 2006, 131(5): 36-39
    [73]高海军.冲击式水轮机水斗三维造型[J].中国新技术新产品, 2009, 4: 93-94
    [74]韩凤琴,久保田乔,韦彩新.冲击式水轮机性能换算的新理论提案(I)[J].华中理工大学学报, 2000, 28(3): 105-107
    [75]韩凤琴,刘洁,韦彩新,等.冲击式水轮机性能换算的新理论提案(II)[J].华中理工大学学报, 2000, 28(11): 11-13
    [76] Janetzky B., G?de E., Ruprecht A., et al. Numerical simulation of the flow in a Pelton Bucket[C]. Proceedings of the 19th IAHR Symposium, Singapore, 1998: 276–284
    [77]刘洁,韩凤琴,久保田乔.移动边界水膜厚度的CFD解析及预测研究[C].中国机械工程学会全国流体机械技术会议,南京,2002
    [78] Xiao Yexiang, Han Fengqin, Kubota T.. Hydraulic Gradient in Free Surface Flow on Rotating Bucket of Pelton Turbine[C], The 8th Asia International Conference on Fluid Machinery, Octorber, 2005, China, Yichang: pp323-330.
    [79]韩凤琴,肖业祥,久保田乔.水斗非定常自由水膜流三维贴体数值模拟[J].工程热物理学报, 2006, 27(4), 601-603
    [80]肖业祥,韩凤琴,久保田乔.非定常水斗表面自由水膜的流动机理[J].华南理工大学学报(自然科学版), 2006, 34(4), 75-79+90
    [81]周文桐,周晓泉.水斗式水轮机基础理论与设计[M].北京:中国水利水电出版社, 2007: 93-98
    [82]彭芳瑜,周云飞,周济.基于插值与逼近的复杂曲面拟合[J].工程图学学报, 2002, 4 :87-96
    [83]齐学义,杨帆,刘在伦,等.微分法生成贴体坐标网格技术的研究[J].大电机技术,2000, 4: 36-39
    [84]韩凤琴,刘平安,肖业祥,等.复杂急曲率变化水斗贴体坐标的曲面拟合[J].水电能源科学, 2005, 23(4): 68-70
    [85]谭志斌,朱小平,孙兰凤,等.自由曲线曲面重构的数据结构设计[J].天津大学学报, 2004 ,37(2): 148-151
    [86]柳海峰,史小平,姚郁.一种超曲面拟合方法及其应用研究[J].系统仿真学报, 2001, 13(3):321-323
    [87] Nakanishi Y., Kubota T., Saito T.. Spline Curve Fitting for 3-D Shape of Pelton Turbine[C]. JSME ICFE-97-622, 1997: 1365-1369
    [88] Farin G.. Curves and Surfaces for Computer Aided Geometry Design (CAGD): A Practical Guide[M]. Fifth edition. San Francisco: Morgan Kaufmann Publishers, 2002:42-80
    [89]肖业祥,沈娜,韩凤琴,等.水斗曲面三维非正交贴体网格数值生成[J].工程热物理学报,2008,29(4):595-598
    [90]韩凤琴,李龙祥,沈娜,等.三维自由曲面上特殊点的自然基本矢量[J].工程热物理学报,2009,30(8):1135-1138
    [91]小林昭七.曲线曲面的微分几何[M].裳华房株式会社,东京,1998: 24-60
    [92]韩凤琴,肖业祥,久保田乔,等.自由射流缩流机理研究[J].工程热物理学报, 2004, 25(6): 421-423
    [93]韩凤琴,林志文,肖业祥,等.非定常喷嘴射流形状预测研究[J].水电能源科学, 2005, 23(3): 14-16
    [94]韩凤琴,周晶林,吴迪,等.三维自由射流所流及扩散的数值研究[J].工程热物理学报, 2008, 29(8): 1323-1326
    [95] Nakanishi Y., Kubota T.. Negative Scale Effect and Jet Interference in Pelton Turbines[C]. 2nd ASME-JSME Fluid Engineering Conf., 1995, 08, F-113:1-7
    [96]周晶林.自由射流缩流扩散机理的数值特性研究[D].广州:华南理工大学, 2007
    [97]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社, 1993:52-100
    [98]韩凤琴,久保田乔,刘洁.数值模拟冲击式水轮机内部非定常流动[J].华中理工大学学报, 28 (11): 14-16
    [99]刘洁.冲击式水轮机内部流动数值模拟及性能研究[D].武汉:华中科技大学, 2004
    [100]肖业祥.非定常射流及水膜流干涉解析法研究[D].广州:华南理工大学, 2006
    [101]韩凤琴,郑爱玲,肖业祥,等.相对轨迹在冲击式水轮机非定常流研究中的应用[J].水电能源科学, 2006, 24(2): 5-7
    [102]肖业祥,郑爱玲,韩凤琴,等. CFD法研究多喷嘴冲击式水轮机的射流干涉[J].华南理工大学学报(自然科学版), 2007, 35(3): 66-69
    [103] Zheng Ailing, Han Fengqin, Xiao Yexiang, et al. Unsteady interference between free water jet and rear surface of rotating buckets in Pelton turbine[C]. The 8th Asia International Conference on Fluid Machinery. Yichang, 2005: 302-310
    [104] E.帕金森.用CFD法分析冲击式水轮机流态[J].水利水电快报, 2003, 24(8): 31-33
    [105]王松岭.流体力学[M].中国电力出版社, 2004: 20-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700