CO和超临界CO_2钝化金属铀的原子分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用密度泛函理论的B3LYP方法,在Gaussian 98程序中,对铀原子采用14个价电子(6s~27s~26p~66d~15f~3)的准相对论有效原子实势(RECP),及(6s5p2d4f)/[3s3p2d2f]收缩价基集合(P.J.Hay,1998),碳、氧原子采用6-311G~(**)全电子基集合,对UC、UO、CUO和UCO_2的分子结构、势能函数、光谱性质、热力学性质和动力学性质进行了系统研究,在本课题组提出了防止铀表面腐蚀的“钝化层”模型的基础上,应用热力学原理研究了铀在CO、CO_2气氛中的表面钝化反应,探讨了CO、CO_2对铀金属表面抗氧化机理。
     防止铀的腐蚀,关键在于改变其表面的物理、化学性质。现有铀的防腐技术:如表面合金化,离子注入铌,阳极氧化,PVD,CVD及表面涂层等。美国曾用超临界二氧化碳清除核部件的表面有机物粘污,并探讨其与核材料的相容性问题;各国学者也在一直探讨铀与环境气体的相互作用机理,并寻找一种合适的抗腐蚀方法。国内汪小琳、刘柯钊以及本课题组发现,用CO、CO_2气体对铀样品表面有抗氧化作用。超临界CO_2流体除了有清洗功能外,还有对铀的抗氧化作用,因此研究超临界CO_2流体对金属铀的抗氧化机理显得尤为重要。
     在原子分子反应静力学基础上,根据分子电子状态构造的群论原理,首次用B3LYP方法对CUO和UCO_2体系进行优化,发现角形结构(C_s)的CUO(~3A″)分子比线形结构(~3∑~+)更稳定,UCO_2(C_(2v)构型)分子~5A_1态的能量最低;然后,根据微观过程的可逆性原理、微观过程的传递性原理和能量最优原则,导出它们正确的电子状态和合理的离解极限,迄今未见有文献报道过这些分子的电子状态和离解极限。使用多体项展式理论方法,导出了CUO(~3A″)分析势能函数,该势能表面准确地再现了平衡稳态结构构型及能量关系。使用其势能函数等值图讨论了U(~3I_u)+CO(X~1∑~+)反应的势能面静态特征,在这些反应通道上均无鞍点,即无能垒出现。此外,在(5s4p3d4f)/[3s3p2d2f]收缩价基集合(P.J.Hay,1983)下,通过对UOC、UCO和CUO三种分子结构、能量和电性质的讨论,发现UCO分子角形结构(~3A″)的能量最低、完全离解能最大。研究了铀碳氧系统结构的多样性与特征,这会有利于进一步探明金属铀表面钝化机理。
    
     四)!【大学博士学位论文
     在导出的**O分子(扩A”)多体项展式势能函数基础上,采用准经典的
    Monte(arlo轨迹法首次研究了 U+CO*,0)反应的碰撞轨迹,反应截面和产
    物散射角分布,根据反应截面与能量之间的关系,得出它是无阈能反应;并讨
    论了碰撞络合物形成的原因,U+CO碰撞可直接生成稳定络合物CUO。在碰撞
    初始平动能低于刀5刀KJ.mOI*时,该反应可以生成长寿命络合物CUO(X3A”);
    其反应通道的反应截面随平动能增加而减少,从而表明该反应是无阈能反应。
    这一结论与前面用多体项展式理论计算的CUO势能曲线结果一致。这为U在
    CO气氛中的抗氧化研究提供了理论依据,具有重要意义。
     根据热力学原理和固体能量理论,用从头计算和统计热力学方法计算得物
    质的热力学函数值。由算得的 CUO格抒 CUOk)分子在不同温度下的生成自由
    能变,分别讨论了CUO伦)分子和CUOk)的稳定性。
     用B3LYP方法在6l *”基集合水平上优化CO。二聚体的几何构型和离
    解能时,获得与MPZ方法相当或更优的结果。文中首次给出了CO。二聚体C川
    构型的十二个正则振动频率分析图,其中代表 van der Waals分子特征的四个振
    动频率与文献值相符。从正则振动频率、离解能以及单体间距来看,CO力。确
    系弱结合的 van der W8lls分子。正因为有这个特性,在超临界下 CO。仍具有很
    强的动力学特征,该观点尚属首次提出。
     B3LIP方法在 6刁 树基集合水平上对气态 CO。(X‘z。)分子全优化,
    直接得到了热力学性质嫡S和定压热容CP,其结果与实验值相当吻合,计算得
    到的 CO。分子的生成烩包含电子焰(为习93.31 kJ.mol”‘)和核部分烩(为
    1石53kJ.mol’‘)两部分,其相对误差为 0.37%。研究表明,用本理论方法计算气
    态CO。分子在latin下的热力学性质是可行的。这种理论计算CO。分子在latin
    下的热力学性质方法未曾见报道。
     将 Benedict-WCbbl)方程应用于超临界 COz流体,采用非线性最
    小二乘法,拟合出适用于温度为310巧00K、压强为7.5上0刀Mpa范围的超临界
    CO。流体的有关参数,进而根据热力学公式可导出超临界状态下体系的嫡、热
    容和烩。分析发现,这些热力学函数具有明显的超临界特性,即在超临界点附
    近,体系条件的微小改变都将引起热力学性质的显著变化。其数据为进一步从
    理论上研究超临界CO。与金属铀表面反应的热力学行为提供了依据。
     首次进行了超临界CO。流体与金属铀表面钝化形成覆盖层物质的反应
     11
    
     四川大学博士学伎论文
    一
    U(Q)+COZ(SCF)=UOZ(syC(GTSPhitC)和 ZU(Q)+COZ(SCL)”UUZ(S)+UC(S)w#t
    力学研究。研究表明:这两个钝化反应在超
The molecular structure, potential energy function, spectroscopic property, thermodynamics property and dynamics property of UC, UO, CUO and UCO2were systematically studied in this paper , by using Density functional B3LYP method and Gaussian98W program in which the 14 valence electrons (6s27s26p66d15f3) relativistic effective core potential (RECP) and the contract valence basis set(6s5p2d4f) /[3s3p2d2f] of uranium atom and full electronic basis set 6-311Gof carbon and oxygen were used. Based on "the bluntly thin skin" model which established by our research group for prevention of the surface corrosion of uranium, the blunt surface of uranium in CO, CO2 and the anti- oxidation mechanism of CO, CO2 for metallic U were studied under the thermodynamics principle.
    To prevent the corrosion of uranium, the key point is to change the surface physical and chemical property of uranium. The reported corrosion prevention technology of uranium includes the surface alloying of uranium, iron implantation of niobium, the oxidation of cathode, PVD, CVD and surface coating. In US the super critical CO2 was used to clean the surface organic stains of nuclear components and the compatibility between C02 and nuclear materials was discussed; In the meantime, the inter-reaction mechanism between uranium and environmental atmosphere and the suitable method to prevent corrosion were studied by many researchers. In China professor Wangxiaoling, Liukezhao and our research group found that besides the clean function, the super critical CO and COa gas had anti-oxidation function for the surface of uranium, so it was very important to study the anti-oxidation mechanism of the super critical CO and C02 gas for metallic U.
    Based on the Group Theory and the Atomic and Molecular Reaction Static, the CUO and UCO2 system were optimized by means of B3LYP method for the first time. It is shown that the CUO ( 3 A ) molecular with angular structure ( Cs ) was more stable than that of linear structure ( 3 + ) , and the energy of UCO2 ( C2v ) molecular at 5A1 state was the lowest. Then according to the convertible and transmit principle of macrocosmic process and the energy optimization principle, the correct electronic states and rational dissociation limit of those molecular were derived for the first
    
    
    
    time. By using the many-body expansion method, the analytical potential energy function of CUO (3A ) which reappeared the equilibrium stable state geometry and energy relationship accurately was also derived. According to the potential energy function figure potential surface static characteristics of U(3IU) +CO(X1+) reaction were discussed, it was shown that there was no saddle point and threshold energy in those reaction channels. Additionally by discussing the molecular structure, energy and electrical property of the UOC, UCO and CUO under the contract valence basis set (5s4p3d4f) /[3s3p2d2f], it was found that the UCO molecular with angular structure (3A ) had the lowest energy and the highest dissociation energy. In the meantime the structure variety and characteristic of uranium-carbon-oxygen system were discussed for the further study of the surface blunt mechanism of metallic U.
    Based on the many-body expansion potential energy function of CUO (X3A") molecular, the collision trajectory ,the reaction section as well as the distribution of scattering angle of products of U+CO (0,0) reaction were studied for the first time by means of the Monte-Carlo quasi-classical trajectory approach, and according to the relationship between reaction section and energy, the no threshold energy reaction could be concluded, it also indicated that the stable complex compound CUO could be formed directly after collision of U +CO, because of the long lived complex compound CUO (X3A " ) could be formed when collision initial transition energy was lower than 215.0KJ.mor1, and the reaction section of reaction decreased with the increase of transition energy, so it could be concluded that this reaction was no threshold energy reaction, this conclusion was co
引文
[1]Stephanie J H. Supercritical fluids carbon dioxide cleaning of plutonium parts.Enviromentally Conscious Manufacturing congress'93, 1993 Arlington: VA. August 30
    [2]汪小琳,傅依备,谢仁寿.金属铀在 CO 气氛中表面反应的 X 射线光电子能谱研究.核技术,1998,21(4):234-237
    [3]刘柯钊,愈勇,赖新春,邹觉生.CO 在金属铀表面吸附行为的 XPS 研究.‘98核材料会议文集,95-103
    [4]汗小琳,段荣良,傅依备,等.CO 对金属铀表面氧化层影响研究.核化学与放射化学,1997,19(1):18-22
    [5]汪小琳,傅依备,谢仁寿.铀在 CO 气氛中表面抗氧化性研究.原子能科学技术,1999,33(1):1-7
    [6]刘柯钊.用 X 射线光电子能谱研究 CO_2 在金属铀表面的初期氧化行为.中国核科技报告,CNIC-01382.北京:原子能出版社,1999
    [7]汪小琳,铀在还原气氛中的表面化学研究,中国工程物理研究院博士论文,1997
    [8]罗文华.离子注入铌提高铀及铀铌合金的抗腐蚀性能研究.硕士论文.中国工程物理研究院研究生部,1998
    [9]王红艳,谭明亮,朱正和等,CO和H_2 系统抗铀表面腐蚀的热力学研究,中国核科技报告,CNIC-01202.北京:原子能出版社,1997
    [10]王红艳,博士学位论文,成都:四川大学,1999
    [11]朱自强,超临界流体技术-原理和应用,北京:化学工业出版社,2000
    [12]张镜澄,超临界流体萃取,北京:化学工业出版社,2000
    [13]E.M.Russdick, G.A.Poulter, C.L.J.Adkins and N.P. Sorensen., Corrosive Effects of Supercritical Carbon Dioxide and Cosolvents on Metals. DE94012921
    [14]W. Dale Spall, Sarah B.Williams, Kenneth E.Laintz. Precision Cleaning with Supercriticai Carbon Dioxide for the Elimination of Organic Solvents and the Reduction of Hazardous Waste. LA-UR 94-3136
    [15]Sarah B,Williams, K.E.Laintz, J.C.Barton, and W.D.Spall. Elimination of Solvents and Waste by Supercritical Carbon Dioxide in Precision Cleaning. LA-UR-94-3313
    [16]Robert F. Salerno. High Prtessure Supercritical Carbon Dioxide Efficiency in Removing Hydrocarbon Machine Coolants from Metal Coupons and Components Parts. MLM—3744(OP),DE92 014129
    [17]M.R.Phelps W. A. Willcox,L.J.Silva,R.S.Butner. Effects of Fluid Dynamics on Cleaning
    
    Efficacy of supercritical Fluids, PNL—8579,DE93 010606
    [18] M.R.Phelps,M.O.Hogan,L.J.Silva. Fluid Dynamic Effects on Precision Cleaning with Supercritical Fluids. PNL-SA-24365(DE940015001)
    [19] MN. Craig, L.S.Tayor and James B.Rubin. Superceitical fluid Carbon Dioxide Cleaning of Nuclear Weapon Components. LA-UR-97-4420
    [20] S.J.Hale. Supercritical Fluid Carbon Dioxide Cleaning of Plutonium Parts. LA-U R-93-3103
    [21] S.J.Hale EG&G Rocky Flats. INC. Supercritical Fluid Carbon Dioxide Cleaning of Plutonium Parts. DE92-004003
    [22] 朱正和,俞华根.分子结构与分子势能函数,北京:科学出版社,1997
    [23] White D.K.,and Grene F.D., J. Am. Chem.SOC., 100,1978,6760
    [24] 朱正和,原子分子反应静力学,北京:科学出版社。1996
    [25] P. M. Mosre, Phys. Rev. 34(1929): 57
    [26] R. Z. Rydberg, Z. Physic. 73(1931):376
    [27] K. S. Sorbie, J. N. Murrell, Mol. Phys. 29(1925):138
    [28] Zhu Z.H., Shen S.Y., Mou W.M., Li L., J. Mol. Sci. (China), 2(1984)79
    [29] Murrell J.N., Zhu Z.H., d. Mol. Struct, 103(1983)235
    [30] 金家俊,分子化学反应动态学,上海:上海交通大学出版社,1988年
    [31] 俞书勤,微观化学反应,合肥:安徽科学技术出版社,1983
    [32] M. Karplus, R. N. Porter, R. D. Sharma, J. Chem. Phys. 43(1965):3259
    [33] Luis R.Kahn,P.J.Hay and R.D.Cowan,J. Chem. Phys., 1978,68:2386-2379
    [34] C.A.Colmenares, Oxidation mechanisms and catalytic properties of the actinides. Prog. Solid State Chem., 1984,15:257-364
    [35] Hay,.P.J.;;J.Chem. Phys., 1983, 79:54695481
    [36] Hay,.P.J.;Martin, R.L.;J.Chem. Phys., 1998, 109:3875-3881
    [37] Murrell J.N.,Sorbie K.S., J. Chem. Soc. Faraday Trans., 1974,2:1552
    [38] Pilar F.L., Elementary Quantunm chemistry, New York, 1968
    [39] Silverstone,H.J. and Sinanoglu,O.J. Chem. Phys.,44(1966)1899
    [40] Pipano,A.,Gilman,R.R. and Shavitt,I,,Chem. Phys. Lett.,5( 1970)285
    [41] Sinanoglu,O.,Proc. Nat. Acad. Sci. USA,47(1961)1217
    [42] Lowdin,P.O.,Adv:Chem. Phys.,2(1959)207
    [43] 唐敖庆,量子化学,北京:科学出版社,1982
    [44] 徐光宪,黎乐民,王德民,量子化学(中),北京:科学出版社,1985
    [45] Gaussian 98 user's Reference, Gaussian, Inc., Carnegie office Park, Bldg.6. January, 1999
    [46] Langhoff S.R., and Davidson E.R., Int.J. Quantum Chem. 8(1974)61
    [47] Moiler C., and Plesset M.S., Phys. Rev., 46(1934)618
    
    
    [48] Hehre W.J.,and Pople J.A.,J.Am.Chem.Soc.,94(1972) 6901
    [49] 刘晓亚.博士学位论文.四川大学.2001
    [50] 李权.博士学位论文.四川大学.2001
    [51] P.Hohenberg and W.Kohn, Phys.Rev. 136(1964) , B864
    [52] A.D. Becke, Phys. Rev. A38(1988) , 3098
    [53] Berthelat J.C. and Durand D., Ital. 108,225(1978)
    [54] Krauss M. and Stevens WJ. Annu. Rev.phys.Chem.35,357(1984)
    [55] Christiansen P.A.,Ermler W.C. and Pitzer K.S.,Annu.Rev.Phys.Chem.36,407(1985)
    [56] Szasz L. Pseudopotential theory of atoms and molecules. John,Wiley & Sons, New York,1983
    [57] Balasubramanian K. and Pitzer K.S. Adv.Chem Phys.67(1987) 287
    [58] Durand P.and Malrieu J.P.,Adv.Chem.Phys.67(1987) 321
    [59] Hellmann H., J.Chem.Phys.,3(1935) 61
    [60] Hellmann H, W.Kassatotschkm,.J.Chem..Phys.,4(1963) 324
    [61] Gombas P.Z., Z.Physik.,J. Phys. Rev. 94 (1935) 473
    [62] Phillips J.C., Kleinman L.,Phys. Rev.,116(1959) 287
    [63] Goddard W.A.,, Phys.Rev. 174(1968) 659
    [64] Melius C.F. and Goddard W.A. Phys.RevA, 10(1974) 1528
    [65] Melius C.F., Goddard W.A.,J.Chem.Phys.,56(1972) 3348
    [66] Kahn L.R.,Baybutt P. and Truhlar D.G., J.Chem.Phys.65(1976) 3826
    [67] Mendelsonhn,M.H.,Gruen,D.M. and Dwight,A.E., Adv. Chem. Series 1979,173,279
    [68] Pitzer K.S.,Relativistic Effects in Atoms.Molecules and Solids,Malli G.L.,Ed.Plenum,New York,1983
    [69] Lee Y.S.,Ermler W.C. and Pitzer K.S. J.Chem.Phys.67,5861(1977)
    [70] Ermler W.C.Lee Y.S., and Pitzer K.S. J.Chem.Phys.69,976(1978)
    [71] Lee Y.S.,Ermler W.C. and Pitzer K.S. J Chem.Phys.70,288(1979)
    [72] Ermler W.C.,Lee Y.S., and Pitzer K.S. J.Chem.Phys.70,293(1979)
    [73] Desclaux J.P. Comput.Phys.Commun. 9(1975) 31
    [74] Christiansen P.A., Lee Y.S. and Pitzer K.S. J Chem. Phys.71,4445(1979)
    [75] Lee Y.S.,Erm!er W.C. and Pitzer K.S. J.Chem.Phys.73,360(1980)
    [76] Christiansen P.A. and Pitzer K.S. J.Chem.Phys.73,5160(1980)
    [77] Christiansen P.A. and Pitzer K.S. J.Chem.Phys.74,1162(1981)
    [78] Pacios L.F. and Chrisyiansen P.A. J.Chem.Phys.82(1985) 2664
    [79] Hurley M.M., Pacios L.F. and Chrisyiansen P.A. J.Chem.Phys.84(1986) 6840
    [80] Lajohn L.A. and Chrisyiansen P.A. J.Chem.Phys.87(1987) 2812
    [81] Boss R.B. Powers J.M. and Chrisyiansen P.A. J.Chem.Phys. 93(1990) 6654
    [82] Boys S.F., Proc.Roy.Soc., A200, (1950) 542
    [83] Gaussian94 User's Guide Reference, Gaussian, Inc., Camegie Office Park, Bldg.6, Pittsburgh, PA15106,U.S.A.
    
    
    [84]蒋刚,谢洪平,谭明亮,朱正和.弱结合分子 Kr-HF 结构与相关效应[J],物理学报,2000,49(4):665-669
    [85]Dunham. Phys. Rev. 1932.41:721
    [86]高涛,博士学位论文,成都:四川大学,1999
    [87]Morse P.M., Phys. Rev. 34(1929)57
    [88]Sato S J. J. Chem. Phys. 1955.23:2465
    [89]Murrell J.N.,Zhu ZH.d. Mol. Struct., 1983,103:235
    [90]Murrel J N, Carter S, Farantos S C, Huxley P, and Varandas A J C. Molecular Potential Energy Function 1984
    [91]S.Frantos,et.al.,Mol. Phys.34(1977)947
    [92]S.Carter,I.M.Mills and J.N.Murrell,J. Chem. Soc. Faraday Trans. Ⅱ,1(1979)
    [93]C.E.Holley, Jr.J. Nucl. Mater. 1974,51:36
    [94]Pyykka P, Li J and RunebergN. d. Phys. Chem.,1994,98:4809-4813
    [95]张广丰、薛卫东、汪小琳等,铀碳氧系统分子结构的 DFT 计算,原子与分子物理学报,2001,18(4):372-376
    [96]W. Mclean, C.A. Colmenares, R, Smith L,et al. 1982, Phys. Rev. B, 105:196.
    [97]Gouder T, Colmenares C.A., Naegele J.R.,et al. 1992, Surf. Sci., 264:354-364
    [98]付金明,硕士学位论文,成都:四川科技大学,1991
    [99]陈嫒梅,硕士学位论文,成都:四川科技大学,1991
    [100]付金明,朱正和,原子与分子物理学报,1991,8(3):1901-1908
    [101]朱正和,刘幼成,王红艳等,金属镍吸附氢同位素的量子力学计算[J].原子与分子物理学报,1998,15(4):435-443
    [102]薛卫东,朱正和,邹乐西,张广丰,原子与分子物理学报,2002,19(1):24-26
    [103]Robert,Melvin. CRC Handbook of Chemistry and Physics, 73rd ed.CRC Press,Inc.,Boca Roton,Florida, 1992- 1993
    [104]梁英教,车荫昌,无机物热力学数据手册,沈阳:东北大学出版社,1993
    [105]Bukowski S,Sadlej J,Jeziorski B.J.Chem. Phys., 1999,110:3785
    [106]Chen H, Light J C.d, Chem. Phys., 2000, 112:5070
    [107]Tsuzuki S,Uchimaru T, Mikami M and Tanable K.J.Chem. Phys., 1988,109:2169
    [108]Tsuzuki S,Tanabe K.Comput. Mater. Sci., 1999,14:220
    [109]Yoshio I,Hirohisa U,Yoshio K et al. Ind. Eng. Chem. Res., 1996,35:3782
    [110]周健、陆小华、王延儒、时钧,物理化学学报(Wuli Huaxue Xuebao),1999,15:1017
    [111]Coelho G L. Inf. Technol., 1997,8:127
    [112]Zheng X Y, Li P, Yoshio I, Yasuhiko A.Mern. Fac, Eng. Kyushu Univ., 1997,57:53
    [113]Eggenberger R, Gerber S and Huber H.Mole. Phys., 1991,72:433
    [114]Tsuzki S, Uchimaru T, Tanabe K,et al. J.Phys. Chem., 1996,100:4400
    [115]Becke A D.Phys. Rev.A., 1988,38:3098
    [116]Lee C, Yang W, Parr R G.Phys. Rev. B., 1988,37:785
    [117]Vosko S H, Wilk L, Nusair M.Can.d. Phys., 1980,58:1200
    
    
    [118]Harmony M D, Laurie V W, Kuczkowski R L, et al. J.Phys. Chem.Ref.Data., 1979,8:619
    [119]Herzberg G. Molecular Speetre and Molecular Structure Ⅱ.Infrared and Roman Spectra of Polyatomic Molecules, 1945:535;Ⅲ. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Litton Educational publishing, Inc. 1966:598
    [120]朱正和,成都科技大学学报,1984,(1):23].
    [121]Illils A J, Mckee M L and Schlegel H B. J. Phys. Chem., 1987,91:3489
    [122]Walsh M A, England T H, Dyke T R and Howard B J.Chem. Phys. Lett., 1987,142:265
    [123]Jucks M A, Huang Z S, Miller R E,et al.J. Chem. Phys., 1988,88:2185
    [124]薛卫东,张广丰,朱正和等,CO_2二聚体分子弱结合作用的DFT计算,物理化学学报,2001,17(6):502
    [125]M.B.伏肯斯坦,分子的结构及物理性质,北京:科学出版社,1960。
    [126]Reid R C,Prausnitz J M,Poling B D,The Properties of Gases and Liquids.4tb ed, New York: Mc Graw-Hill, 1987
    [127]Maffiolo G, Vidal J,Asselineau L,Chem. Eh. Science, 1985,30:625-630
    [128]Soave G, Chem. En. Science, 1984,39:359-361
    [129]李辉,用聚集型状态方程关联CO_2在超临界区的PVT数据,西南民族学院学报(自然科学版),1999,25(2):156-160
    [130]童景山,李辉,分子聚集理论方程,工程热物理学报,1988,9(4):428-431
    [131]杨传路,朱正和,谭明亮等,临界点附近H_2气体的状态方程,原子与分子物理学报,1999,16(3):375-380
    [132]Benedict M, Webb G B, and Rubin L C, J. Chem. Phys.,1940,8:334-345
    [133]Beattie and Bridgeman, Proc. Am.Acad. Arts Sci., 1928,63:229
    [134]Angus S, Armstrong B, Reuck K M de, International Thermodynamic Tables of the Fluid State Carbon Dioxide, pergamon,1976
    [135]M. A. 费良德,Е.И.谢明诺娃.稀有元素特性手册,上海:商务印书馆,1955:291.
    [136]Hale S.J., Supercritical fluids carbon dioxide cleaning of plutonium parts[R]. Los Alamos National Laboratory. Enviromentally Conscious Manufacturing congress'93, 1993 Arlington: VA. August 30
    [137]Hannay J.B.,Hogarth J.,Proc. Roy. Soc. 1879,29:324
    [138]Debenedetti RG., J. AIChE. 1990,36:1289
    [139]Krukonis V.J.Presented at AIChE Ann. Metg. SF. 1984.Nov.
    [140]Dixon D.J.,Johnston K.P.J. AIChE. 1991,37:1441
    [141]Gao Y et al.,J.Supercritical Fluids. 1998,13:369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700