铀化合物反应机理与微波激励硫发光的原子分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用量子力学从头计算法优化出UO、UH、UH_2、OUH、ArS、S_2、ArS_2和S_3的基态结构和一些激发态,采用原子分子反应静力学导出了相应的电子状态和离解极限。导出了双原子分子的势能函数曲线及其光谱数据以及三原子分子的解析势能函数。
     研究了铀化合物的反应碰撞过程。分析表明:铀与氢气反应生成UH_3的中间产物是UH_2,而不是UH。而且,U相对于H_2的相对动能增加(对应于体系温度升高)到271.96kJ/mol后,则不产生UH_2,这与在较高温度下UH_3分解释放氢气的实验现象相符合;无阈能的反应U+HO(v=j=0)主要生成UO+H,其次是OUH,还有少量的UH。而文献指出UO+O反应能无阈能地生成UO_2。这些结果与实验现象符合得很好,为铀在环境气氛中的抗氢化和氧化腐蚀研究提供了重要的理论依据。
     从光谱实验和理论两方面研究了微波激励硫发光的原子分子全新机理:①由S_3原的离解极限分析指出计算出的S_3的五种激发态中,只有两种激发态~3B_1和~3B_2可分解为S_2(B~3∑_u~-)+S(~3P_g),从而得到S_2发光的激发态B~3∑_u~-。②通过Ar和S原子对S_2(X~3∑_g~-)的碰撞,可以使基态S_2(X~3∑_g~-)逐步激发到激发态B~3∑_u~-。其他原子或分子(如He,Ne,Ke,Xe,S_2等)也可有类似作用。这些研究有利于硫灯的开发应用,具有重要意义。
The structure of ground states and some excitation states for UO, UH, UH2, OUH, ArS, S2, ArS2 and S3 molecules have been obtained by employing ab initio method. Using the general principle of Atomic and Molecular Reaction Statics (AMRS), we have studied their electronic states and the corresponding reasonable dissociation limits. While we have derived the curves of diatomic potential energy and the triatomic analysis potential energy function.
    We have studied the reaction dynamics processes of uranium compounds. The results indicated that the intermediate of the reaction of uranium with hydrogen forming UH3 is not UH but UH2. Furthermore, with the increase of the relative kinetic energy of U up to 271.96 kJ/mol, the trajectories of UH2 will tend to zero, this is in good agreement with the experiment mat the UH3 will dissociate to release the hydrogen under higher temperature. The reaction of U+HO without threshold energy mainly produces UO+H, some OUH and few UH. And the literature indicates that the reaction UO+O can produce UO2 without threshold energy, which is in good agreement with the experiment phenomenon. These results provide the important theoretical basis for the study of resisting hydrogenation and oxidation corrosion of uranium metal.
    We have studied the new-fire atomic and molecular mechanism of the microwave excitation of sulfur to illuminating from the experimental to the theory, i. e. ① we have calculated the ground state X1A, and five of the excitation states1A2 ,1B2,3A2, 3B1and3B2of S3, among them, only 3B1 and 3B2 can be resolved to obtain the B3(∑)-u that is the upper state of illumination. ②It is confirmed that the vibrational energy
    level of S2 ground state can be excited B3(∑)-u by the reaction dynamic processes for the collision Ar+S2(v=j=0)and S+S2(v=j=0). A similar action can be occurred on the other atoms and molecules such as He, Ne, Ke, Xe, S2, etc. These studies are propitious to the development and application of microwave lamp.
引文
[1] 潘毓刚,自然杂志,57(1984)727
    [2] 朱正和,分子结构与相互作用势,成都:成都科技大学出版社1988年
    [3] Levine R.D. and Bernstein R.B. Molecular Reaction Dynamics. OXFORD UNIVERSTY PRESS 1974
    [4] White D.K..and Grene F.D., J. Am. Chem. SOC, 100,1978,6760
    [5] 朱正和,原子分子反应静力学,北京:科学出版社,1996年
    [6] 朱正和,俞华根,分子结构与分子势能函数,北京:科学出版社,1997年
    [7] Morse P.M., Phys. Rev. 34(1929)57
    [8] Rydberg R.Z., Z.Physik. 73(1931)376
    [9] Murrell J.N., Sorbie K.S., J. Chem. Soc. Faraday Trans., 2(1974)1552
    [10] Huxley P. and Murrell J.N., J. Chem. Soc. Faraday Trans., 2(1974) 238
    [11] Zhu Z.H.,Shen S.Y.,Mou W. M.,Li L.,J. Mol. Sci. (China), 2(1984) 79
    [12] Sorbie K.S., and Murrell J.N., Mol. Phys, 29(1925) 138
    [13] Zhu Z.H., Chen Y. M., Yu H. G., Xu Z. R., Gou Q. Q., 原子分子物理学报,7(1990)1693
    [14] 朱正和,高等化学学报,3(1986)265
    [15] Murrell J.N., Zhu Z.H., J. Mol. Struct, 103(1983) 235
    [16] 俞书勤,微观化学反应,合肥:安徽科学技术出版社,1983
    [17] Karplus M., Porter R.N., Sharma R.D., J.Chem. Phys., 43(1965)3259
    [18] Ritchie, A. G., A review of the rates of reaction of uranium with oxygen and water vapour at temperatures up to 300℃. J. Nucl. Master. 1981, 102:170-182
    [19] C.A. Colmenares. Oxidation mechanisms and catalytic properties of the actinides. Prog. Solid State Chem., 1984,15:257-364.
    [20] 汪小琳,铀在还原气氛中的表面化学研究,中国工程物理研究院博士论文,1997
    [21] Luis R. Kahn, P. Jeffrey Hay and Rober D. Cowan, J. Chem. Phys., 1978, 68, 5:2386-2379
    [22] W.P. Ellis, Surf. Sci., 1976, 61: 37
    [23] Thomas J Tague, Jr, and Lester Andrews J. Phys. Chem., 1993,97,42: 10920—10924
    [24] Huber KP Herzbergh, Molecular Spectra and Molecular Structure Ⅳ, New york, 1979
    [25] J.C. Schultz, C. A. Colmenares, J. R. Naegele, et al. Surf. Sci., 1988,198:301.
    [26] T. Gouder, C. A. Colmenares, J. R. Naegele, et al. Surf. Sci., 1992, 264:354.
    [27] G.C. Allen, J. C. H. Stevens, J. Chem. Soc., Faraday Trans. 1, 1988, 84:165.
    
    
    [28] R.M. Alire, B. A. Mueller, C. L. Peterson, ct al., J. Chem. Phys., 1970, 52:37.
    [29] J.B. Condom E. A. Larson, 1. Chem. Phys., 1973, 59:855.
    [30] J.B. Condon, J. Phys. Chem., 1975, 79:392.
    [31] J.L. Stakebake, J. Electronchem. Soc., 1979, 126:1596.
    [32] J.B. Condon, J. Less-Common Met, 1980, 73:105.
    [33] J. Bloch. M. H. Mintz., J. Less-Common Met., 1981, 81:301.
    [34] J. B. Condon, Corrosion, 1981, 37:721.
    [35] J. Bloch, M. H. Mintz, J. Nucl. Mater, 1982, 110:251.
    [36] J. B. Condon, J. Less-Common Met, 1983, 90:L9.
    [37] J. Bloch, F. Cimca, M. Kroup, et al., J. Less-Common Met., 19804 103:165.
    [38] Libowitz, G. G. Metal Hydrides, W. M. Mueller, J. P. Blackedege, and G. G. Libowitz, Eds. Academic Press, New York, 1968.
    [39] Cordfunke, E. H. E In The Chemistry of Uranium; Elsevier Pub. Co. Amsterdam, 1969.
    [40] Katz, J. J.; Rabinowitch, E. In The Chemistry of Uranium; Dover Pub.; Inc., New York, 195 i.
    [41] Wenzl, H. d. Int. Met. Rev. 1982, 27, 140.
    [42] Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. 1994,116, 8322.
    [43] Tague, T. J., Jr.; Andrews, L. J. Am. Chem. Soc. 1993,115, 12111.
    [44] Tague, T. J., Jr.; Andrews, L. J. Am. Chem. Soc. 1994,116, 4970.
    [45] Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. 1995.
    [46] Bennett, M. J., Myatt, B. L., and Antill, J. E., The oxidation behavior of highly irradiated uranium in dry carbon dioxide at 375-500℃ and in dry air at 200-300℃, J. Nucl. Master, 1974, 50:2-10.
    [47] Ritchie, A. G., The kinetics and mechanism of the uranium-water vapour reaction-an evaluation of some published work, J. Nucl. Master, 1984, 120:143-153
    [48] McGillivray, G. W., Geen, D. A., and Greenwood, R. C., Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air: A model for determinating the oxidation over a wide range of temperature and water vapour pressures, J. Nucl, Master, 1994. 208:81-97
    [49] Weirick. L. J., The oxidation of uranium in low partial pressures of oxygen and water vapour at 100℃, Sandia national Laboratory Report SAND-0618. 1984
    [50] Kondo. T., Verink. E. D.. Beck, F. H., Gas chromatographic and gravimetric studies of uranium oxidation mechanism, Corrosion. 1964. 20:341t-320t
    
    
    [51] Winer, K.. Cohnenares. C. A., Smith. R. L.. Interaction of water vapour with clean and oxygen-covered uranium surfaces, Surface Science. 1987, 183:67-99
    [52] Haschke. J. M., Corrosion of uranium in air and water vapor: consequences for environmental dispersal. J. Alloys and Compounds. 1998, 278:149-160
    [53] Baker, M. M.. Less. L. N.. and Orman. S.. Uranium and water reaction. Part Ⅱ -effect of oxygen and other gases, Tran. Faraday Soc. 1966, 62:2525-2530
    [54] Orman, S., The effect certain gases on the rate of oxidation of uranium by water vapour, Chemistry and Industry, 1963, 1692-1693
    [55] Baker, M. M., Less, L. N., and Orman, S., Uranium and water reaction. Part Ⅰ -kinetics, products, and mechanism, Tran. Faraday Soc. 1966, 62:2513-2514
    [56] Toteneier, T. C., A review of corrosion and pyrophoricity behavior of uranium and plutonium, Argonne National Laboratory Technical Report ANL/ED/95-2, 1995
    [57] Colmenares. C. A., Howell, R., and McCreary, T., Oxidation of uranium studies by Gravimetric and positron-annihilation techniques, Lawrence Livermore National Laboratory Technical Report UCRL- 85549, 1981
    [58] Pekka Pyykkò,Jian Li,and Nino Runeberg J.Phys. Chem. 1994,98,4809-4813
    [59] J.N. Murrell, et., Molecular Potential energy Functions, John wiley & Sons Led. 1984
    [60] Pilar F.L., Elementary Quantunm chemistry, New York, 1968
    [61] P. Jeffrey Hay and Richartin L. Martin, Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree-Fock and density functional methods: UF_6, NpF_6 and PuF_6, J. Chem. Phys. 109, 10:3875, 1988
    [62] Silverstone,H.J. and Sinanoglu,O.J. Chem. Phys.,44(1966)1899
    [63] Pipano,A.,Gilman,R.R. and Shavitt,I.,Chem. Phys. Lett.,5(1970)285
    [64] Sinanoglu,O.,Proc. Nat. Acad. Sci. USA,47(1961)1217
    [65] Lowdin,P.O.,Adv. Chem. Phys.,2(1959)207
    [66] McQuarrie D.A.,Quantum Chemistry, University Science Books and Oxford University Press, 1983
    [67] 唐敖庆,量子化学,北京:科学出版社,1982
    [68] 徐光宪,黎乐民,王德民,量子化学(中),北京:科学出版社,1985
    [69] Langhoff S.R., and Davidson E.R., Int. J. Quantum Chem. 8(1974) 61
    [70] Moller C., and Plesset M.S., Phys. Rev., 46(1934)618
    
    
    [71] Hehre W.J.,and Pople J.A., J. Am. Chem. Soc.,94(1972)6901
    [72] Boss R.B. Powers J.M. and Chrisyiansen P.A.J. Chem. Phys. 93(1990) 6654
    [73] Berthelat J.C. and Durand D., Ital.108,225(1978)
    [74] Krauss M. and Stevens W.J.,Annu. Rev. Phys. Chem. 35,357(1984)
    [75] Christiansen P.A.,Ermler W.C. and Pitzer K.S.. Annu. Rev. Phys. Chem. 36,407(1985)
    [76] Szasz L. Pseudopotential theory of atoms and molecules. John,Wiley & Sons, New York, 1983
    [77] Balasubramanian K. and Pitzer K.S. Adv. Chem. Phys.67(1987)287
    [78] Durand P.and Malrieu J.P., Adv. Chem. Phys.67(1987)321
    [79] Hellmann H., J.Chem. Phys.,3(1935)61
    [80] Hellmann H., W. Kassatotschkm,J.Chem. Phys.,4(1963)324
    [81] Gombas P.Z.. Z.Physik., 94(1935)473
    [82] Phillips J.C., Kleinman L,Phys. Rev.,1l6(1959)287
    [83] Goddard W.A.,, Phys. Rev. 174(1968)659
    [84] Melius C.F. and Goddard Ⅲ W.A. Phys. Rev A.10(1974)1528
    [85] Melius C.F., Goddard W.A.Ⅲ, J.Chem. Phys.,56(1972)3348
    [86] Kahn L.R.,Baybutt P. and Truhlar D.G., J. Chem. Phys.65(1976)3826
    [87] Mendelsonhn,M.H.,Gruen,D.M. and Dwight, A.E., Adv. Chem. Series 1979,173,279
    [88] Pitzer K.S.,Relativistic Effects in Atoms. Molecules and Solids,Malli G.L.,Ed. Plenum,New York, 1983
    [89] Lee Y.S.,Ermler W.C. and Pitzer K.S. J.Chem. Phys. 67,5861(1977)
    [90] Ermler W.C.Lee Y.S., and Pitzer K.S. J.Chem. Phys. 69,976(1978)
    [91] Lee Y.S.,Ermler W.C. and Pitzer K.S. J.Chem. Phys. 70,288(1979)
    [92] Ermler W.C.,Lee Y.S., and Pitzer K.S. J. Chem. Phys. 70,293(1979)
    [93] Desclaux J.P. Comput. Phys. Commun. 9(1975)31
    [94] Christiansen P.A., Lee Y.S. and Pitzer K.S.J. Chem. Phys. 71,4445(1979)
    [95] Lee Y.S..Ermler W.C. and Pitzer K.S.J. Chem. Phys. 73,360(1980)
    [96] Christiansen P.A. and Pitzer K.S.J. Chem. Phys. 73,5160(1980)
    [97] Christiansen P.A. and Pitzer K.S.J. Chem. Phys. 74,1162(1981)
    [98] Pacios L.F. and Chrisyiansen P.A.J. Chem. Phys. 82(1985)2664
    [99] Hurley M.M., Pacios L.F. and Chrisyiansen P.A. J. Chem. Phys.84(1986)6840
    [100] Lajohn L.A. and Chrisyiansen P.A.J. Chem. Phys.87(1987)2812
    
    
    [101] Boss R.B. Powers J.M. and Chrisyiansen P.A.J. Chem. Phys. 93(1990)6654
    [102] P. Hohenberg and W. Kohn. Phys. Rev. 136(1964), B864
    [103] A.D. Becke, Phys. Rev. A38(1988), 3098
    [104] Boys S.F., Proc. Roy. Soc.. A200, (1950)542
    [105] Gaussian94 User's Guide Reference, Gaussian, Inc., Carnegie Office Park, Bldg.6, Pittsburgh, PA15106, U.S.A.
    [106] 高松,陈志达,黎乐民,分子对称群.北京:北京大学出版社.1996
    [107] Dunham. Phys. Rev. 1932.41:721
    [108] 高涛.博士学位论文.四川大学.1999
    [109] 王红艳.博士学位论文,四川大学.1999
    [110] (a)K. T. Tang, J. M. Norbeck and P. R. Certain, J. Chem. Phys., 64, 3063(1976). (b)G. P. Arrighini, F. Biondi, and C. Guidotti, Chem. Phys., 2, 85(1973)
    [111] A. F. Wagner, G. Das and A. C. Wahl, J. Chem. Phys., 601885(1974)
    [112] A. Conway and J. N. Murrell, Mol. Phys., 27, 873(11974)
    [113] J.N. Murrell and A. J. C. Varandas, Mol. Phys., 30, 223(1975)
    [114] J. P. Toennies, Chem. Phys. Lett., 20, 238(1973)
    [115] P. Huxley, D. B. Knowles, J. N. Murrell and J. D. Watts, J. Chem. Soc. Faraday Trans. 2, 80, 1349(1984)
    [116] Sato S J. J. Chem. Phys. 1955.23:2465
    [117] Murrel J N, Carter S, Farantos S C, Huxley P, and Varandas A J C. Molecular Potential Energy Function 1984
    [118] S.Frantos,et.al.,Mol. Phys.34(1977)947
    [119] S.Carter, I.M.Mills and J.N.Murrell, J. Chem. Soc. Faraday Trans. ;Ⅱ,1(1979)
    [120] 王红艳、谭明亮、朱正和、傅依备、汪小琳,中国核科技报告 CNIC-012021 SU-0015(1997)
    [121] Stakebake, J. L., Kinetics for the reaction of hydrogen with uranium powder, J. Electronchem. Soc. 1979, 126:1596-1601
    [122] Allen, G. C., Stevens, J. C. H., The behavior of uranium metal in hydrogen atmospheres, J. Chem. Soc., Faraday Trans. Ⅰ. 1988, 84:165-174
    [123] Totemeier, T. C., Pahl, R. G., Frank, S. M., Oxidation kinetics of hydride-bearing uranium metal corrosion products, J. Nucl. Master, 1999,26:308-320
    [124] Waber, J. T., The corrosion behavior of plutonium and uranium, 2nd U. N. International Conference on
    
    Peaceful uses of Atomic Energy. 1958, 204-214
    [125] S.R. Leone and K. G. Kosmic, Appl. Phys. Lett. 1977, 30:346
    [126] D. A. Peterson and L .A. Schlie, J. Chem. Phys. 1980, 73(4) : 1551
    [127] G. Lakshminorayana and C. G. Mahajan, J. quant. Spectrosc. Radiat. Transfer 16, 549(1976)
    [128] W. J. Mackinght and A. V. Tobosky, in Ref. 11,Chap. 5.
    [129] H. Braune, S. Peter, and V. Neveling, Z. Naturforsch. Teil A 6: 32(1951)
    [130] 王尔镇,真空电子技术,1988,3;11
    [131] M. E. Green and C. M. Western, J. Chem. Phys. 1996104(3): 848
    [132] K. S. Noll, M. A. McGrath, et al, Science 1995,267:1307
    [133] William C. Swope, Yuan-pern Lee, and Henry F. Schaefer, J. Chem. Phys. 1997, 71(9):3761
    [134] K. A.Meyer and D. R. Crosley, J.Chem. Phys. Lett. 1973,59:3153
    [135] K didenko, G. A. Lynkhov, K. F. Shipitov and I. A. Vinogradov, International Conference on Plasma Science, 1996.6.3-5, Boston, USA
    [136] N. Dgibson, U. Kortshagen and J. E. Lawler, J. Appl. Phys. 1996, 79(10): 7523
    [137] N. Dgibson and J. E. Lawler, J. Appl. 1996,Phys. 79(1): 86
    [138] A. D. Buckingham, Faraday Discussions of Chemical Society No.73, 1982
    [139] 朱正和,成都科技大学学报,1,21(1984)
    [140] G. Heryberg, Molecular Spectra and Molecular Structure of Diatomic Molecules,
    [141] 唐永建,赵永宽,朱正和,傅依备,物理学报,47(1998),1600[Y.J. Tang, Y. K. Zhao, Z. H Zhu, Y. B. Fu, ACTA PHYSICA SINICA, 47(1998), 1600(in Chinese)]
    [142] Kyoung K.Baeck, Jchn D.watts, and Rodney J. Bartlett, J. Chem. Phys, 1997,107(10):3853
    [143] K.Raghavachari, C.M.Rohlfing, J.S.Binkley, J. Chem. Phys 1990, 93(8):5862
    [144] K.Raghavachari. C.M.Rohlfing, J.S.Binkley, J. Chem. Phys 1990, 93(8):5862
    [145] P. Lenain. E.Picguenard. J.L.Lesen, and J. Corset. J.mol, Spectrose, 1986.142,355.
    [146] M.R. Nimlos and G.B.Ellison. J. Phys. Chem 1986.90:2574
    [147] 李雪梅,蒋刚,刘晓亚,朱正和,陈涵德,金行星,S_3分子的构型与离解极限,原子与分子物理学报,1999,16:482
    [148] P. Huxley and J. N. Murrell. J. Chem. Soc. Faraday Trans. (1983) 2. 79. 323
    [149] Dolan et al. United States patent [19]. US00579861/A, Patent number 5798611.1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700