金等离子体高离化离子双电子复合的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双电子复合过程是金等离子体的重要原子动力学过程。研究高离化金离子的双电子复合过程对于金等离子体的状态参数(电子温度、密度、电荷状态分布以及平均电离度等)诊断具有重要作用。本文根据准相对论多组态Hartree-Fock方法的Cowan程序包(RCN34/RCN2/RCG9),计算了金等离子体高离化Co-like~Ga-like离子在低电子密度下的双电子复合过程。同时,以碰撞-辐射模型为基础,考虑相关的动力学过程后,推导并计算了Co-like~Ga-like金离子高电子密度下的双电子复合过程以及双激发自电离态的性质。另外,从“星光-Ⅱ”激光器轰击金靶得到的实验数据出发,利用Ni-like~As-like金离子的27条谱线的强度比得到了该金等离子体的电荷状态分布和平均离化程度。
     全文共分七章。第一章叙述了双电子复合过程研究的发展与本工作的意义;第二章分别介绍了低电子密度和高电子密度的双电子复合理论方法;第三章系统地研究了Co-like~Ga-like金离子在低电子密度的总双电子复合速率系数自电离几率、态-态双电子复合速率系数的规律与特点;第四章详细研究了在高电子密度等离子体中Co-like~Ga-like金离子的辐射跃迁发生在3d-5f的总双电子复合速率系数、各相关动力学过程对双电子复合速率系数的影响以及双激发自电离态离子的平均能级宽度和寿命。第五章主要讨论了双激发自电离态的能级结构和nl(n=5、6、7,l=s、p、d、f)轨道的电子云径向分布;第六章提出了一种快捷、方便的计算金等离子体的电荷状态分布的半经验方法并得到了初步的结果;最后是研究工作的主要结论。
     研究结果表明:在低电子密度的等离子体中1、Co-like、Ni-like金离子(Δn_c=1)内、外层电子衰落的双电子复合中,复合过程与电子温度、双激发自电离态的轨道角动量、宇称密切相关。Co-like金离子复合前离子组态的宇称与复合后离子双激发自电离态的宇称相反且轨道角动量大的复合通道占优势。Ni-like金离子(Δn_c=1)在外层电子衰落中,双激发自电离态是奇宇称
    
    四川大学博士学位论文
    且活动电子都处于轨道角动量大的复合交替占优势。在内层电子衰落的复合
    中,双激发自电离态是偶宇称且旁观电子处于轨道角动量大的复合交替占优
    势。
     2、cu一like、Zn一l汝e、Ga-l让e金离子(帆=l)的价电子(45或4P)激
    发的双电子复合中,自由电子与Cu一like金离子碰撞后容易被俘获到奇宇称的
    双激发自电离态上,而处于这些态上的电子更趋于通过外层电子衰落以完成双
    电子复合。zn-l派金离子与电子碰撞后其价电子4s被激发到5s和5P轨道的
    复合优先。而Ga-l派金离子知电子容易被激发到5s和5P轨道上且双激发自
    电离态为偶宇称的复合占优势。在原子实电子3d激发到4f的复合中,电子与
    Cu一like金离子碰撞后被俘获到较高能量的双激发自电离态3d,4s4枷和
    3扩454时的复合占优势,而zn一1议e和Ga一l议e离子则是自由电子被俘获到:和
    d轨道上的复合占优势。
     3、Cu一1议e州Ga-1议e金离子价电子激发和原子实电子激发的复合相比,在
    低温段前者优先于后者,在高温段后者远大于前者,使得三种离子的总双电子
    复合速率系数随电子温度变化的曲线出现“双峰”的特点。
     在研究金高离化离子的双激发自电离态的能级结构中首次发现:4、双激
    发自电离态3尹45一4户,,nllnZz‘(m产o一。,。2.m,=o一2,,,=4一5,,2=5一7,2.1’=:,夕,d,,)
    中,由于nZs轨道上的电子与其它轨道上的电子间的库仑排斥作用和交换作用
    使得nZs轨道能量增大,造成组态能级间隔“随着外层激发电子nZf的轨道角
    动量增加(主量子数n2不变)不是单调减少而出现
    △(E nzd一气,)>△(气,一凡,)>△(凡zf一凡刃的反常现象。当3d轨道上电子数目不
    断增加,这种反常现象越明显。主量子数n2较小,能级间隔的反常现象较明
    显,反之则越弱,当珑>10,能级间隔逐渐趋于O,且组态能量表现出质类氢
    形式。
     5、高离化金离子的nI‘n=,、‘、7,卜:、p、d、户轨道向原子实强烈收
    缩,当主量子数n固定而轨道角动量l不同时,电子云径向分布的主峰对应的
    空间位置及主峰的大小具有重合趋势,且主量子数n越大重合性越好.这些离
    子的电子云径向分布强烈依赖主量子数n而与轨道角动量l的关系并不密切,
    使得径向分布呈现出质类氢形式。
     在高电子密度的等离子体中,首次推导并计算了含电子密度修正的双电子
    复合速率系数,.双激发自电离态能级宽度和寿命。研究发现:6、密等离子体
    
    四川大学博卜学位论文
    Co一likc心a一like金离子辐射衰落发生在3d一5f的双电子复合中,双电子复合速
    率系数随电子密度增加发生不同的变化,电子密度为10’scm一3一1护ocm一3时速率
    系数与零密度时的值相等,当电子密度取1护’cm一3一1护4cm一,,在低电子温度范围
    内,双电子复合速率系数(与零电子密度相比)随电子密度增加逐渐增加,在
    一特定电子温度时其值与零电子密度相比保持不变,在中、高电子温度范围
    内,其值随电子密度的增加而不断减小,且电子密度越大则复合速率系数减小
    得越快。且当电子密度逐渐变大时,复合速率系数的峰值以不同程度减小,该
    值所对应的电子温度也向低温移动。
     7、双激发自电离态平
In gold plasma, the dielectronic recombination (DR) process, which is one of research tasks on atomic structure and spectrum, plays an important role in the diagnosis on basic parameters such as electron temperature, electron density, charge state distribution and so oa In this paper, the dielectionie recombination of solar model on Co-like-Ga-like gold ions have been studied based on the quasi-relative muIlti-oonfiguration Hartree-fock theory and Cowan code(RCN34/RCN2/RCG9). Meanwhile, on the basis of collision-radiation model, the dielectronic recombination rate coefficient, which is the function of electron temperature and electron density, have been deduced and computed. The calculation of doubly-excited autoionization stale energy level characters have been performed in dense plasma. In addition, the charge stale distribution and mean ioniability of gold plasma produced by "X1NGGUANG-II" laser facility have been obtained using the relative intensity ratio of 27 lines.There are seven chapters in this paper. Chapter one narrates the development to study of dielecbonic recombination and the sense of this work. Chapter two introduces the theoretical methods on dielectronic recombination oflow and high electron density plasmas respectively. In thkd chapter, the systematic study on the regulars and trails of dielectronle recombination rate coefficient, autoionization rate, state-state dielectronic recombination rate coefficient have been performed for Co-like-Ga-like gold ions in low electron density. In chapter four we have computed the dielectronic recombination rate coefficient of 3d-Sf transition, the mean width and life of doubly-excited autoionization states in dense plasma, and discussed the effects on dielectronic recombination rate coefficient from the related dynamic processes. Chapter five focuses on the energy level structure of doubly-excited autoionization states and the radial distribution of orbits nl (n=5,6,7;l=5,p,d f). In the sixth chapter a semi-empirical method has been developed to study the charge state distribution of gold plasma and the fist fruit has been obtained. The major results have been set out in the test one.The results clearly indicate that: in the low electron density plasma, 1. for the Co-like and Ni-like gold ions the dielectronic recombinations (nc = 1) including outer and inner electron transitions have in touch with electron temperature, orbital angular momentum and parity. The channels, which two excited electrons
    
    of doubly-excited autoionization state are in orbits with great orbital angular momentum and the parities of doubly-excited autoionization state is not inconsistent between the lore-and post-recombinations, prevail over others for Co-like ion.. For Ni-like gold ion, in the recombination of outer electrn transition the channels with odd parity doubly-excited autoionization state which active elections are in great orbital angular momentum orbits have active behavior than others, and in inner electron transition recombination the channels with even parity doubly-excited autoionization stale which spectator electrons are in great orbital angular momentum orbits tend to be dominant in turn..2. For Cu-like, Zn-like, Ga-like ions the dielectionic recombinations with valence electron (4s or 4p) and core electron (3d) excited have different peculiarities. In the former, after collision with Cu-like gold ion the free electron can be easily captured into doubly-excited autoionization stales with oil parity, and ion likes to decay though outer electron transition to complete the dielectronic recombination. For Zn-like ion the fiee electron can be easily captured into small angular momentum orbits (s or p). For Ga-like ion the valence electron 4p can be easily excited to orbits with small angular momentum, and the channels with even parity doubly-excited autoionization states preponderate over others In the latter, the recombinations ,which the free can be captured into the doubly-excited autoionization states with high energy3d94s4fiid and 3d94s4fhf, prevails over others for
引文
[1] J. Dubai and S. Volcnte, Rep. Prog. Phys., 43,199(1980) [2] A. Burgess, Astrophys. J., 139,776(1964); 141,1589(1965)[3] M.J.Seaton and P. J. Storey in Atonic processes and Applications, P. G. Burke andBLMoiseiwitsch eds., (North Holland, Amsterdam) pl33 (1976) [4] A. Dasgupta, K. G. Whitnry, M. Blaha, and M. Buic, Phys. Rev. A 46,5973 (1992) [5] P. B. Hoiden, S. B. Healy, M T. M Lightbody, el at., J. Phys. B, 27,41 (1994) [6] Pengjun Guo, Jianguo Wang, Tieqiang Chang, High Power Laser and Particle Beams, 1075(1998)[7] J.H Parkinson,Nature Phys. Sci., 44 233(1971) ;Nature Phys.Sci., 68 236(1972) [8] BLwhitten.A.U.Hazi.M.H.Chen, Phys. Rev. A, 33 2171(1986) [9] A.Burgess and M J.Seaton, Mon Not R Astron. Soc 127.355(1964) [10] Y.Hahn, Advances in Atonic and Molecular Physics, Vol.21, D.R.Bate and B Bederson, 123(Acedanic Press, New York, 1985)[11] J.H Parkinson, et al., Solar Phys. 60,123(1978)[12] L W.Acton, R.CCatura,A. J.Msyerott,C J.Wolfson and J.L Culhane, Solar Phys, 26 183(1972)[13] ft S. W. Massey and D. R Bates, Rep. Prog. Phys., 9 62 (1942)[14] B Shor, Astrophys J., 158 1205(1969)[15] A. Burgess and E P. Sunmers, Astrophys. J., 157 107(1969)[16] P. de A. P/Martins and M. J. Seatoa J. Phys. B, 2 333(1969)[17] M. Blaha, Astrophys. Lett., 10 179(1972)[18] J.Dubau and J.Weils, J.Phys a,6 1452(1973)[19] J.R Parkinson, et al., Solar Phys., 42 183(1975)[20]L P. Prenyakov. Sov. Phya, 19 387 (1976)[21] V. A. Bpilo, A. Ya Faenov and S. A. Pikuz, I. Quant, Spectrosc Radiat. Transfer., 19 11 (1978)[22] A.R.Dupree, Astrcphys. Lett, 1 25(1968)[23] A.H Gabriel and T.M Paget, J.Phys B, 5 673(19720[24] C P.Bhallq, A.R . Gabriel and L P. Prenyakov, Mon Not R Asrt Soc, 172 359(1978)[25] S.MRAnsari, B Alam, Solar Phys., 4197(1975)[26] A. L Merts, R D. cowan, and N. H Magee, LASL Report LA -6220, MS(1976)[27]L J.Roszman, Phys, Rev,A., 35 2138(1987)[28] M. R Chen, Phys. Rev. A., 35 4129 (1987)[29] P. L Hagelstein, J. Phys. B, 20 5785) 1987)[30] L Zhao, G. Han and S. Li, High Power Laser and Particle Beams, 7 373(1995)[31] L Zhao, and S. Li. Chinese J. At Mol. Phys, 13 17(1996)[32] Y.Hahn,Phys.Rev.A 22 2896(1980)[33] D. J.Mclaughlin and Y.Hahn, Phys.Rev.A 29 712(1984)[34] I. Nasser And Y. Hahn, J. Quant. Spectrosc. Radiat Transfer 29 1 (1983)
    
    [35]S. M. Younger , J. Quant Spectrosc. Radiat Transfer 29 67(1983)
    [36] F. Bely-Duban, A, H. Gabriel and s Volorte, ton, Not Astr. Soc 189 801 (1979)
    [37] C P. Bhalla and T. W Turmell, Phys. Lett 18A 22(1985)
    [38] M. S. Pindzola and N. R Badnell, Phys. Rev. A 42 6526(1990)
    [39] Y.Qiu,S.Li and Y. Sun, At Data Nucl. Data Tables 55 1(1993)
    [40] 叶安培,朱正和,谭明亮,原子与分子物理学报,12 233(1995)
    [41] M H Chen.Phys.Rev.A., 31 1449(1985); Phys. Rev. A.33 994(1986); Phys. Rev. A., 39 2332(1988)
    [42] H P. Saha Phys. Rev. A., 49 894(1994)
    [43] S.Dalhed J.Nilson and P. Hagelstein, Phys. Rev. A., 33 264(1986)
    [44] M. H Chea and R Crasenamn, At Data Nucl. Data Tables 37,49(1987)
    [45] J.Nilsen, At Data Nucl. Data Tables 38 339(1988)
    [46] N. R Badnell and M. S>Pindzola Phys. Rev. A 43 570(1991)
    [47] M. J. Seaton , Rep. Prog. Phys. 46 167 (1983)
    [48] J.Wang et al., Phys. Rev. A ., 52 4274(1995)
    [49] Robert D. Cowan 1981 The theory of Atonic Structure And Spectra (Universty of California Press )
    [50] Bar-Shalom A. Klapisch M, The Hebrew University Lawrence Livemore Atonic Code (HULLAC) 1998 unpublised
    [51] CBretcn et al., Phys.Rev.Lett 41 110(1978) and J. Quant Spectrosc. Radiat Transfer., 19 367 (1978)
    [52] m. Bitter et al., Phys. Rev. Lett, 43 129(1979)
    [53] R C>lsler, E C Crune and D. E Amarius, Phys Rev. A 26 215(1982)
    [54] D.S.Belic et al. Phys. Rev. Lett, 50 339(1983)
    [55] LF. Williams, Phys Rev. A 29 2936(1984)
    [56] J.A.Tanis et al. Phys. Rev. Lett 53 255) (1984)
    [57] P.F.Dittner et al Phys Rev.A., 33 24(1986); Phys Rev.A.,35 3668(19987)
    [58] L E Anderson et al., Phys Rev. A., 41 1293(1990); Phys Rev. A., 45 6332(1991)
    [59] R R>Harr et al., Phys Rev. A., 47 R3472(1993)
    [60]S. Schemach et al., Z. Phys. D30 29(1994)
    [61] D.R Dewitt et al., Phys Rev.A.,50 1257(1994); J.Phys.B,28 L147(1995)
    [62] M. Cohen, K. R Foumier, and W. H Goldsrein, Phys Rev. A. 57 2651 (1998)
    [63] W. Zong. R Schuch, E Lindroth, et al. Phys Rev. A., 56 386(1997)
    [64] MR Schneider, D. A. Knapp,MH. Chen, et al., Phys Rev. A. 45 R291 (1992)
    [65] D. W. Savin, L D. Gardner, D. R Reisenfeld, et al., Phys Rev. A., 53 280(1996)
    [66] A.Lanpert,A.Wolf d Habs et al. Phys Rev.A., 53 1413(1996)
    [67] W. Spies et al. Phys Rev. Lett 69,2768(1992) ;Nucl,Instr.Meth.B98,158(1995)
    [68] [68] Y. Hahn and k. LaGattuta, Phys. Rev. A 26 1378 (1982)
    [69] Glenger S.H et al Phys Rev Lett 82 97(1999)
    [70] E Behar,A.Peleg, R Dornon . et al, JQSRT.58, 449(1997)
    
    [71] L Goldberg, A. K. Dupree Nature, 215 41 (1967)
    [72] A. Burgess, Surmers, Astrophys J., 157 1007(1969)
    [73] V.P. Zhdanov. Sov J Plasma Phys 5 320(1979)
    [74] J. C Weishcit, J. Phys. B., 8 2556(1975)
    [75] V. L. Jacobs, M. Blaha. Phys Rev. A, 21 525 (1980)
    [76] A. Zigler, V. L. Jacobs. et al., Phys Rev. A., 45 1569(1992)
    [77] 陈波 四川大学博士学位论文(1998)
    [78] A. B. C. Walker and H. R. Rugge, Astrophys. J. 164 181(1971)
    [79] J.H. Parkinson, et al., Solar Phys. 60 123(1978)
    [80] L. W. Acton, R. C. Catura, A. J. Meyerott. et al., Solar Phys., 26 183(1972)
    [81] J. Dubau et al., Mon. Not. R. Astron. Soc. 195 705(1981)
    [82] W. M. Neupert and M. Swartz, Astrophys. J. Lett. 160 L189(1970)
    [83] W. M. Neupert., Solar Phys, 18 474(1971)
    [84] G. A. Doschek et al., Astrophys. J. 170 573 (1971)
    [85] G. A. Doschek, Space Sci. Rev. 3 765(1972)
    [86] I. Yu Grineva et al., Solar Phys, 29 441 (1973)
    [87] A. B. C. Walker.,Space Sci.Rev.,3 672(1972)
    [88] J. L. Culhane and L. W. Acton Ann. Rev. Astron. astrophys., 2 359 (1974)
    [89] C. L. Sarazin and J. N. Bahcall, Astrophys. J. suppl., 34 451 (1977)
    [90] J.N. Bachcall and C.L. Sarzin,Astrophys.J.,219 781(1978)
    [91] R.F.Berthelsdorf and J.L Culhane ., Mon. Not.R. Astro, Soc, 187 17(1979)
    [92] I. Martinson and L. J. Curtis., Contemp. Phys., 30 173(1989)
    [93] E. Hinnov., Phys Rev. A., 14 1533 (1976)
    [94] D. M. Mead, Nucl. Mater., 14 289 (1974)
    [95] S. Dallhed, J. Nilsen and P. Hagelstein, Phys Rev. A. 33 264(1986)
    [96] J.P. Apruzese et al., Phys Rev. Lett. 55 187(1985)
    [97] A. Dasgyupta, K. G. Whitney, M. Blaha and M. Buic, Phys Rev. A. 46 5973(1992)
    [98] P. B. Holden, S. B. Healy. et al., J.Phys. B., 27 41(1997)
    [99] 叶安培,四川大学博士学位论文(1994)
    [100] Yongquan Zhang et al., High Power Laser and Particle Beams, 10 54(1998)
    [101] 常铁强,赖东显等,激光Au笆耦合与X光发射,全国激光等离子体软X光成象技术研讨会,国家高技术863-416-3专题,珠海(1998)
    [102] 杨国洪,张继彦等,物理学报2000年第49卷第12期
    [103] R. D Cowan and D. C. Griffin., Phys Rev. A., 36 26(1987)
    [104] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Qne and Two-electron Atoms (Springer. Berlin, 1957)
    [105] 焦荣珍,程新路,孟川民等,《强激光与粒子束》第12卷第4期416页(2000)
    [106] 焦荣珍,陈新路 2002物理学报 51
    [107] I. E Grant, J. J.Phys. B., 7 1458(1974)
    [108] 李向东,四川大学博士学位论文(2000)
    
    [109] Alan Burgess and Hugh P. Summers, The Astrophysical Journal, Vol 157,1007(1969)
    [110] Peter L. Hagelstein and Mprdecai D. Rosen., Phys. Rev. A., 34 1931(1986)
    [111] E. Behar,, R. Dornon. P. Mandelbaum, et al, JQSRT. 65, 83(2000)
    [112] 张继彦 杨国洪 张保汉等强激光与粒子束 第13卷,第186页(2001)
    [113] Zhou Yuqing, 2hang Baohan, Lei anle et al; Phys. Lett. A204, 379(1995)
    [114] B. Edlen, Phys. Scr, 19 255(1979)
    [115] E. B. C. Fawcett and A. Rideley, J. Phys. B, 14, 203(1981)
    [116] R. L. Kelly, NRL Report, 7599(1973); ORNL 5922(1982)
    [117] R. Doron, E. Eehar, P. Mandelbaum, J. Quant. Spectrs. Radia. Trans. 65 161(2000)
    [118] Griem HR. Phys Fluida. B 1992; 4: 2346
    [119] Lindl J. Phys Plasms 1995; 2: 3933
    [120] Wong K L, Springer P T. et al, Phys Rev Lett 1998; 80: 2334
    [121] Young BKF, Goldstein WH. et al, J Phys B 1989; 22: 4533
    [122] Young BKF, Osterheld Al. et al, ournal of Quantitative Spectroscopy & Radiative Transfer, 1994; 51: 417
    [123] Merdji H, Miballa F. et al, Phys Rev E 1998; 57: 1042
    [124] K. G. Dyall, I. P. Grant et al, Comput, phys. Conmyn, 1989, 55: 425
    [125] N. Tragin, J. P. Geindre, et al, Phys. Scripta, 37 (1988). 72
    [126] A. Zigler, M. Koapisch, P. Mandelbaum, Phys, Lett., A 117 (1986), 31
    [127] H. V. Regemorter, Astrophys. J. 136, 906(1962)
    [128] Bailey J, et al, J phys. B 19 (1996) 2639
    [129] Goldstein W. H, et al, Phys. Rev. Lett, 58 (1987) 2300
    [130] Karim K. R, et al, Phys. Rev. A, 45(1992)3932
    [131] Morley P. D, et al, Appl. Phys. B, 50 (1990) 173
    [132] 黄文忠等,强激光与粒子束,5(1993)464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700