骨质疏松条件下椎弓根螺钉的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在骨质疏松(Osteoporosis, OP)条件下,椎弓根螺钉与周围骨质结合强度明显下降,螺钉松动、移位、脱出等并发症时有发生。为了提高螺钉稳定性和减少并发症的发生,许多学者采用各种方法对螺钉行强化处理,均取得了一定的效果。近年来一些学者开始使用膨胀式椎弓根螺钉来提高螺钉的稳定性,通过螺钉的机械性膨胀,增加螺钉在椎体内与骨的接触面积,增大钉-骨界面的摩擦力,从而提高了螺钉的稳定性。本课题组在前期研究工作中,自行研制开发了一种新型的膨胀式椎弓根螺钉,在动物体内外实验及临床初步应用中均取得了良好的疗效。
     但是由于螺钉自身材质弹性模量远远高于骨组织的弹性模量,特别是在OP条件下,这种螺钉与骨组织的弹性模量的不匹配更加明显,可能会导致应力不能很好的传递到螺钉周围骨质中去,从而产生“应力遮挡”效应,造成螺钉周围骨质吸收,增加螺钉松动的可能。同时由于螺钉自身材质本身不具有生物活性,因而在螺钉-骨界面上,只能发生机械性的锚合而不可能发生生物化学性的嵌合,因此降低了螺钉-骨界面的结合强度,从而增加了螺钉潜在松动的可能。
     目的:1.研究低弹性模量椎弓根螺钉对改善螺钉固定强度的作用;2.研究微弧氧化表面改性的椎弓根螺钉对提高螺钉固定强度的作用。
     方法:
     1.将普通椎弓根钉(pedicle screw, PS),膨胀椎弓根螺钉(expandable pedicle screw, EPS)和低弹性模量(Ti24Nb4Zr7.9Sn, 42GPa)膨胀椎弓根螺钉(low elastic modulus expandable pedicle screw, L-EPS)以相同的方法制备钉道,植入OP生物力学模块后,行X线检查和轴向拔出实验;2.将EPS和L-EPS植入OP绵羊体内12周后,行轴向拔出实验,Micro-CT分析和组织学分析;3.检测经MAO处理后材料表面的特征,并将大鼠成骨细胞(osteoblasts, OB)接种于材料试件表面,观察OB在试件表面粘附、增值和分化能力;4.将MAO处理的L-EPS(MAO treated L-EPS,MAO-L-EPS)和L-EPS植入OP绵羊体内12周后,行轴向拔出实验、Micro-CT分析和组织学观察。
     结果:
     1.OP骨质疏松模块实验中,L-EPS组和EPS组之间的最大轴向拔出力(the maximum pullout strength, Fmax)和能量吸收值(energy absorbed to failure, E)均显著高于PS组(P < 0.05),但是两组之间无统计学差异(P > 0.05);2.在OP绵羊体内植入实验中,L-EPS组的Fmax和E均显著高于EPS组(P < 0.05),同时Micro-CT检测和组织学检测显示L-EPS组螺钉周围及膨胀缝隙内骨小梁结构、密度均显著优于EPS组(P < 0.05);3.经过MAO处理,在材料表面形成一层均一的、多孔的富含Ca、P元素的氧化膜,成骨细胞在其表面的增值、粘附和分化能力均显著优于未处理组(P < 0.05);4.OP绵羊体内植入实验中,MAO-L-EPS组的Fmax和E均显著高于L-EPS组(P < 0.05),Micro-CT检测和组织学检测显示大量骨小梁在MAO-L-EPS组周围形成,在骨小梁数量和质量上均优于L-EPS组(P < 0.05),扫描电镜(Scaning electron microscope,SEM)检测显示,MAO-L-EPS较L-EPS有更好的钉-骨界面,与骨组织结合更加紧密。
     结论:
     1.L-EPS和EPS一样都能较PS显著提高螺钉的稳定性;
     2.L-EPS通过降低螺钉的弹性模量,减少了因为螺钉与骨质弹性模量不匹配而导致的“应力遮挡”效应,使应力能够更好的传递到螺钉周围的骨质中去,促进了螺钉周围骨质的生长,减少了螺钉周围骨质的吸收,提高了螺钉在骨组织中的稳定性,从而有利于螺钉在生物体内的长期生存;
     3.经过MAO处理的材料,其表面形成的特异性的氧化膜,有利于成骨细胞的粘附、增值和分化。
     4.MAO-L-EPS通过MAO处理提高了螺钉表面的生物活性,使得螺钉与周围骨组织的结合从单一的机械性锚合模式变成了机械性锚合和生物化学性键合相结合的复合型结合模式,这种复合性钉-骨界面结合模式有利于进一步提高了螺钉的稳定性;
     5.从PS到EPS,再从EPS到L-EPS,最后从L-EPS到MAO-L-EPS,我们成功构建了新型椎弓根螺钉,其良好的机械性能以及优秀的表面生物活性,使其在临床应用成为可能。
The bonding strength of pedicle screw is significantly decreased in the osteoporosis (OP), which results in screw loosening, migration or back-out. In order to enhance the stability of the screw and limit the complications, many methods have been used. Resent years, some researchers have used expandable pedicle screw to increase the stability of screw. Due to the mechanical expansion, the bone-screw contact and friction are increased, which improves the stability of the screw. In our previous studies we designed a novel expandable pedicle screw (EPS), and it was proved that the EPS can significantly improve the stability of the screw in both experiments and clinical practices.
     However, the elastic modulus of screw is much higher than that of bone tissue, and the modulus mismatch will be more obvious in the OP, which causes“stress shielding effect”, peri-screw bone resorption, and finally screw loosening. Moreover, the material of screw has no bioactivity, so that only mechanical intergration not including biochemical bonding can be formed at the screw-bone interface, which decreases the bonding strength of the screw-bone interface and increases the possibility of screw loosening.
     Objective: 1. to study the impact of low elastic modulus on the fixation of pedicle screw; 2. to study the impact of micro-arc oxidation on the fixation of pedicle screw.
     Methods: 1. After the pedicle screw (PS), expandable pedicle screw (EPS) and low elastic modulus (Ti24Nb4Zr7.9Sn, 42GPa) expandable pedicle screw (L-EPS) were implanted into the OP biomechanical tests block through the prepared pilot holes, the X-ray and axial pull-out tests were performed; 2. The EPS and L-EPS were inserted into the OP sheep spine, after 12 weeks implantation, the axial pull-out tests, Micro-CT analysis and histological observation were performed; 3. The features of micro-arc oxidation (MAO) treated surface were detected, the osteoblasts (OB) were seeded onto the MAO treated disks and the adhesion, prolification and differentiation abilities of the OB were observed, moreover, the bone formation genes were also detected; 4. The MAO treated L-EPS (MAO-L-EPS) and L-EPS were put into the OP sheep spine, after 12 weeks implantation, the axial pull-out tests, Micro-CT analysis and histological observation were performed.
     Results: 1.In OP biomechanical tests block, the maximum pull-out strength (Fmax) and energy absorbed to failure (E) in EPS and L-EPS groups were significantly higher than those in PS group (P < 0.05), but there was no significant difference in both Fmax and E between EPS and L-EPS groups (P > 0.05); 2. In OP sheep spine, the Fmax and E in L-EPS were significantly higher than those in EPS group (P < 0.05), Micro-CT analysis and histological observation showed that the density and structure of trabecular bone in L-EPS group were superior to those in EPS group (P < 0.05). 3. After the MAO treated, a homogeneous, polyporous oxided coating with Ca and P elements was formed onto the surface of materials. The adhesion, prolification and differentiation abilities of the OB were significantly improved after seeded onto the MAO treated group compared to untreated group (P < 0.05). 4. In OP sheep spine, the Fmax and E in MAO-L-EPS were significantly higher than those in L-EPS group (P < 0.05). A large of newly formed trabecular bone was detected in MAO-L-EPS group, which was better in both quantity and quality than those in L-EPS group (P < 0.05), moreover the better screw-bone interface was found in MAO-L-EPS group compared to L-EPS group.
     Conclusions:
     1.Compare with PS, the L-EPS and EPS can significantly improve the stability of the screw.
     2.With low elastic modulus, the L-EPS reduces the“stress shielding effect”caused by mismatch of the modulus between screw and bone tissue and makes the stress transferred into the peri-screw bone tissue. This encourages the bone formation, reduces the peri-screw bone resorption, enhances the stability of screw and longens the screw survival time.
     3.After MAO treated, a special oxide coating is formed which is benefit for OB to adhere, proliferate and differentiate.
     4.After MAO treated, the bioactivity of MAO-L-EPS is significantly improved, which makes the screw-bone bonding changed from single mechanical intergration to mechanical and biochemically combined intergration. This combined intergration will further improve the stability of the screw.
     5.From PS to EPS, EPS to L-EPS, and L-EPS to MAO-L-EPS, we have successfully established a novel pedicle screw which maybe use in the clinical practice owning to its superior mechanical properties and superficial bioactivity.
引文
[1]胥少汀。实用骨科学(第三版)。人民军医出版社,2005, 1198-1199.
    [2]中国老年学学会骨质疏松委员会骨质疏松诊断标准学科组。中国人原发性骨质疏松症诊断标准(试行)。中国骨质疏松杂志,1999, 5(7): l-3.
    [3] World Health Organization. Prevention and management of osteoporosis. World Health Organ Tech Rep Ser, 2003, 921: 1-164.
    [4]戴如春,张丽,廖二元。骨质疏松的诊治进展。中国医刊,2008, 43(4): 4-6.
    [5] Mithal A, Dhingra V, Lau E. The Asian audit: Epidemiology, costs and burden of osteoporosis in Asia. Beizing, China: An International Osteoporosis Foundation (IOF) publication; 2009
    [6] Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 2007, 22(3): 465-475.
    [7] Kanis JA, Delmas P, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int, 1997; 7:390-406.
    [8] Bonura F. Prevention, screening, and management of osteoporosis: an overview of the current strategies. Postgrad Med. 2009, 121(4): 5-17.
    [9] He Y. The investigation present condition and progresion of bone density determination technique. Foreign Medical Seiences-Section of Radimion Medicine and Nuclear Medicine, 2001, 25(4): 161-162 (inChinese).
    [10] Cameron JR, Sorenson JA. Measurement of bone mineral in vivo: an improved method. Science 1963 11,142:230-232.
    [11] Cullum ID, Ell PJ, Ryder JP. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Br J Radiol 1989, 62(739): 587– 592.
    [12] Genant HK, Block JE, Steiger P, Glueer CC, Smith R. Quantitative computed tomography in assessment of osteoporosis. Semin Nucl Med 1987, 17(4):316-333.
    [13] Guglielmi G, Lang TF. Quantitative computed tomography. Semin usculoskelet Radiol 2002,6 (3):219-227
    [14] Hajimc Orimo. Diagnostic criteria for primary osteoporosis. ICBMR, Sept. Bejing, China, 2001, 15-19.
    [15]赵亮,李来,黄敬,代丽红,张平平。探讨应用QCT诊断骨质疏松症。中国骨质疏松杂志, 2004; 10(3): 293-295.
    [16]吴子祥。骨质疏松绵羊模型的建立与纤维蛋白胶复合骨形态发生蛋白对提高骨质疏松椎体强度的实验研究。《第四军医大学博士论文》2007,5
    [17]刘绪立。兔骨质疏松模型的快速建立和硫酸钙复合bBMP在椎体强化中的实验研究。《第四军医大学博士论文》2009,5
    [18] Boucher HH. A method of spinal fusion. J Bone Joint Surg Br, 1959, 41-B (2): 248-259.
    [19] Tokuhashi Y, Ajiro Y, Umezawa N. Outcomes of posterior fusion using pedicle screw fixation in patients > or = 70 years with lumbar spinal canal stenosis. Orthopedics, 2008, 31(11): 1096.
    [20] Hee HT, Yu ZR, Wong HK. Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine (Phila Pa 1976), 2007, 32(14): 1533-1542.
    [21] Krag MH, Beynnon BD, Pope MH, et al. An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine: design and testing. Clin Orthop Relat Res. 1986, (203):75-98.
    [22] Seebeck J, Goldhahn J, Morlock MM, Schneider E. Mechanical behavior of screws in normal and osteoporotic bone. Osteoporos Int. 2005,16 S2:S107-11
    [23]邑晓东,卢海霖,陈明。医用骨水泥在骨质疏松患者行椎弓根螺钉固定中的作用。中国脊柱脊髓杂志,2005, 15(2): 95-97.
    [24] Kiner DW, Wybo CD, Sterba W, et al. Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine, 2008, 33(24): 2618-2622.
    [25] Bostan B, Esenkaya I, Gunes T, Erdem M, et al. A biomechanical comparison of polymethylmethacrylate-reinforced and expansive pedicle screws in pedicle-screw revisions. Acta Orthop Traumatol Turc, 2009, 43(3): 272-276.
    [26] Konno S, Olmaker K, Byrod G. The European Spine Society Aero Med Prize 1994: acute thermal nerve root injury. Eur Spine J, 1994, 3(1): 299-302.
    [27] Wilkes RA, Mackinnon J, Thomas W. Neurologic deterioration after cement injection into a vertebral body. J Bone Joint Surg, 1994, 76 (1): 155 -160.
    [28] Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine, 2004, 29(11): E212-216.
    [29] Leung KS, Siu WS, Li SF, Qin L, Cheung WH, Tam KF, Lui PP. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Master Res B Appl Biomaster, 2006, 78(1): 153-160.
    [30] Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J, 2009, 9(5): 404-410.
    [31] Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures. Orthop, 2004, 27(1): 103-107.
    [32] Derincek A, Wu C, Mehbod A, Transfeldt EE. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J Spinal Disord Tech, 2006, 19(4): 286-291.
    [33] Yi X, Wang Y, Lu H, Li C, Zhu T. Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine, 2008, 33(23): 2503-2509.
    [34] Da Liu, Wei Lei, Zi-xiang Wu, Ming-xuan Gao, Shi-yong Wan, Suo-chao Fu, Lei Shi. Augmentation of pedicle screw stability with calcium sulfate cement in osteoporotic sheep: biomechanical and screw-bone interfacial evaluation. J Spinal Disord Tech, 2010 Sep 14. [Epub ahead of print].
    [35] Noorda RJ, Wuisman PI, Fidler MW, Lips PT, Winters HA. Severe progressive osteoporotic spine deformity with cardiopulmonary impairment in a young patient. A case report. Spine, 1999, 24(5): 489-492.
    [36] Wuisman PI, Van Dijk M, Staal H, Van Royen BJ. Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique. Eur Spine J, 2000, 9(6): 528-533.
    [37]庄全魁,孟晓林,时合同,艾继超,芮清伟,吴刚强,陈勇。颗粒骨植骨在椎弓根螺钉翻修术中的应用。中国脊柱脊髓志,2006, 5(16): 375-376.
    [38]殷浩,孙俊英,赖震,李喜功,宋兵华,王志岩。生物活性玻璃结合椎弓根钉翻修术治疗腰椎内固定失败。中国骨与关节损伤杂志, 2008, 23(1): 4-6.
    [39]刘达,雷伟,王军,吴子祥,杨彬奎,张伟。钉道局部固化与整体固化增强椎弓根螺钉稳定性的体内比较研究。中国骨与关节损伤杂志,2009, 24(6): 490-493.
    [40] Da Liu, Zi-xiang Wu, Ming-xuan Gao, et al. A New Method of Partial Screw Augmentation in Sheep Vertebrae in vitro: the Biomechanical and Interfacial Evaluation. J Spinal Disord Tech, 2010 Dec 8. [Epub ahead of print].
    [41] Burval DJ, McLain RF, Milks R, et al. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007, 32(10): 1077-1083.
    [42] Becker S, Chavanne A, Spitaler R,et al. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J, 2008, 17(11): 1462-1469.
    [43] Korovessis P, Hadjipavlou A, Repantis T. Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine, 2008, 33(6): 658-667.
    [44] Brantley AG, Mayfield JK, Koeneman JB, Clark KR. The effects of pedicle screw fit. An in vitro study. Spine, 1994, 19(15): 1752-1758.
    [45] Polly DW Jr, Orchowski JR, Ellenbogen RG. Revision pedicle screws. Bigger, longer shims-what is best? Spine, 1998; 23: 1374-1379.
    [46] Hriano T, Hasegawa K, Washio T, Hara T, Takahashi H. Fracture risk during pedicle screw insertion in osteoporotic spine. J Spine Disord, 1998, 11(6): 493-497.
    [47] Lonstein JE, Denis F, Perra JH, et al. Complications associated with pedicle screws. The Journal of Bone and Joint Surgery, 1999, 81(11): 1519-1528.
    [48]潘显明,谭映军,张波,等。椎弓根螺钉的螺纹形状与拔钉生物力学。第四军医大学学报,2002, 23(5): 447-450.
    [49] Mummaneni PV, Haddock SM, Liebschner MA, et al. Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech, 2002, 15(1): 64-68.
    [50]赵延旭,牛犇,杨晶,等。改良半螺纹椎弓根螺钉治疗爆裂型胸腰椎骨折。中华创伤杂志,2003, 19(2): 95.
    [51] Jiang L, Arlet V, Beckman L, Steffen T. Double pedicle screw instrumentation in the osteoporotic spine.J Spinal Disord Tech, 2007; 20:430-435.
    [52] Santoni BG, Hynes RA, McGilvray KC et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009; 9:366-73.
    [53] Cook SD, Salkeld SL, Whitecloud TS 3rd, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord, 2000, 13(3): 230-236.
    [54] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J, 2001, 1(2): 109-114.
    [55] McKoy BE, An YH. An expandable anchor for fixation in osteoporotic bone. J Orthop Res. 2001;19: 545–547
    [56]雷伟,吴子祥,李明全,崔庚.膨胀式脊柱椎弓根螺钉固定的生物力学研究,中国脊柱脊髓杂志,2004,14(11):669-671.
    [57] Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J, 2006, 15(3): 321-326.
    [58] Shiyong Wan, Wei Lei, Zixiang Wu, Da Liu, Mingxuan Gao, Suochao Fu, Xuli Liu. Biomechanical and histological evaluation of an expendable pedicle screw in osteoporotic spine in sheep. Eur Spine J, 2010, 19(12): 2122-2129.
    [59]万世勇,雷伟,吴子祥,吕荣,王军,李波,付索超,战策。膨胀式椎弓根螺钉在骨螺钉界面的显微CT评价及组织学分析。中华外科杂志,2007, 45(18): 1271-1273.
    [60]高明暄,刘兴炎,甄平,薛云,田琦。膨胀式椎弓根螺钉联合椎间融合器治疗腰椎滑脱症。中国修复与重建杂志,2009, 23(8): 904-907.
    [61] Wu ZX, Cui G, Lei W, et al. Application of an expandable pedicle screw in the severe osteoporotic spine: a preliminary study. Clin Invest Med. 2010; 33(6):E368-74.
    [62]桑宏勋,吴子祥,雷伟等。新型可膨胀椎弓根螺钉在骨质疏松性腰椎融合与固定手术中的初步应用。中华骨科杂志,2009;9:822-826.
    [63] Pfeifer M, Gilbertson LG, Goel VK, et al. Effect of specimen fixation method on pullout tests of pedicle screws. Spine, 1996, 21(9): 1037-1044.
    [64] Pienkowski D, Stephens GC, Doers TM, Hamilton DM. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine, 1998, 23(7): 782-788.
    [65] Goel VK, Gilbertson LG. Basic science of spinal instrumentation. Clin Orthop Relat Research, 1997, (335): 10-31.
    [66] 66Fini M, Giavaresi G, Greggi T, et al. Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. J Biomed Mater Res A, 2003, 66(1):176-183.
    [67] Hasegawa T, Inufusa A, Imai Y, et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005, 5(3):239-243.
    [68] Upasani VV, Farnsworth CL, Tomlinson T, et al. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine, 2009, 34(4): 335-343.
    [69] Sanden B, Olerud C, Petren-Mallmin M, Larsson S. Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br, 2002, 84(3): 387-391.
    [70] Moroni A, Faldini C, Marchetti S, et al. Improvement of the bone–pin interface strength in osteoporotic bone with use of hydroxyapatite-coated tapered external fixation pins: A prospective, randomized clinical study of wrist fractures. J Bone Joint Surg Am 2001;83-A(5):717–721.
    [71] Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res 2001; 58:570-592.
    [72] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 2009; 54:397-425.
    [73] RT Bothe, LE Beaton, HA Davenport. Reaction of Bone to Multiple Metallic Implants. Surg Gynecol Obstet.1940; 71:598-602.
    [74] Song Y, Xu DS, Yang R, et al. Theoretical study of the effects of alloying elements on the strength and modulus ofβ-type bio-titanium alloys Mater Sci Eng A 1999;260:269-74.
    [75] Li SJ, Yang R, Li S, et al. Wear characteristics of TiNbTaZr and TiAlV alloys for biomedical applications, Wear, 2004; 257: 869-876.
    [76] Hao YL, Li SJ, Sun SY, et al. Super-elastic titanium alloys with unstable plastic deformation. Appl Phys Lett 2005; 87(9):1-3.
    [77] Hao YL, Li SJ, Sun SY, et al. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater, 2007; 3:277-286.
    [78]王冉,高勃,高阳。新型钛铌锆锡合金表面成骨细胞附着研究.牙体牙髓牙周病学杂志,2007;17(5):255-257.
    [79]付军。医用钛合金植入材料生物相容性改进方法及对成骨影响的研究。《第四军医大学博士论文》2008,4
    [80]袁超凡,郭征,李靖,等。低弹性模量钛合金不同表面微形态对兔腱膜成纤维细胞生物学行为的影响。生物医学工程学杂志,2009,2:342-346.
    [81] Guo Z, Fu J, Zhang YQ, et al. Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone. Mat Sci Eng C-BIO S, 2009; 29:963-968.
    [82] Mo Sha, Zheng Guo, Jun Fu, et al. The effects of nail rigidity on bone healing of rats with osteoporosis. Acta Orthop. 2009 Feb; 80(1):135-138.
    [83] Hanawa T. Biofunctionalization of titanium for dental implant. Japanese Dental Science Review,2010,46:93-101
    [84] Ong L, Lucas LC. Post-deposition heat treatment for ion beam sputter deposited calcium phosphate coatings. Biomaterials 1994;15:337—41.
    [85] Yoshinari M, Watanabe Y, Ohtsuka Y, De′rand T. Solubility control of thin calcium-phosphate coatings with rapid heating. J Dent Res 1997;76:1485—94.
    [86] Ozeki K, Yuhta T, Fukui Y, Aoki H, Nishimura I. A functionally graded Ti/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 2002;13:253—8.
    [87] Ding SJ.Properties and Immersion Behavior of Magnetron-Sputtered Multi-layered Hydroxyapatite/Titanium Composite Coatings.Biomaterials. 2003,24:4233-4238.
    [88] Yang YZ, Park SW, Liu YX, Lee KM, Kim HS, Koh JT, et al. Development of sputtered nanoscale titanium oxide coating on osseointegrated implant devices and their biological evaluation. Vacuum,2008; 83:569—74.
    [89] Ohtsu N, Sato K, Yanaga A, Saito K, Kohgo T, Yokoyama A, et al. CaTiO3 coating on Ti for biomaterial application- optimum thickness and tissue response. J Biomed Mater Res 2007; 82A:304—15.
    [90] Ban S, Iwaya Y, Kono H, Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dent Mater 2006;22: 115—1120.
    [91] Iwaya Y, Machigashira M, Kanbara K, Miyamoto M, Noguchi K, Izumi Y, et al. Surface properties and biocompatibility of acidetched titanium. Dent Mater J 2008;27:415—21.
    [92] Kono H, Miyamoto M, Ban S. Bioactive apatite coating on titanium using an alternate soaking process. Dent Mater J 2007;26:186—93.
    [93] Ohtsu N, Abe C, Ashino T, Semboshi S, Wagatsuma K. Calciumhydroxide slurry processing for bioactive calcium-titanate coating on titanium. Surf Coat Technol 2008;202:5110-115.
    [94] Kuroda K, Moriyama M, Ichino R, Okido M, Seki A. Formation and in vivo evaluation of carbonate apatite and carbonate apatite/ CaCO3 composite films using the thermal substrate method in aqueous solution. Mater Trans 2008;49:1434—40.
    [95] Tanaka Y, Kobayashi E, Hiromoto S, Asami K, Imai H, Hanawa T.Calcium phosphate formation on Ti by low-voltage electrolytic treatments. J Mater Sci Mater Med 2007;18:797—806.
    [96] Narayanan R, Seshadri SK, Kwon TY, Kim KH. Electrochemical nano-grained calcium phosphate coatings on Ti—6Al—4V for biomedical applications. Scr Mater 2007;56:229—32.
    [97] Jang JM, Park SJ, Choi GS, Kwon TY, Kim KH. Chemical state and ultra-fine structure analysis of biocompatible TiO2 nanotubetype oxide film formed on titanium substrate. Metal Mater Int 2008;14:457—63
    [98]赵领洲。Ti-5Zr-3Sn-5Mo-15Nb表面微弧氧化处理对成骨细胞早期行为的影响。《第四军医大学硕士论文》2008,4
    [99]魏大庆。Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学.《哈尔滨工业大学博士论文》2008,10
    [100] Li HL, Kong YM, Kim HW et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterial, 2004,25:2867-2875
    [101] Ran W, Tian ZH, Guo B et al. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in canine mandible. Biomed Mater, 2009, 4(5):055003. Epub 2009 Sep 23.
    [102] Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterial, 2008,29:2025-2032
    [103] Sul YT, Johansson CB, Kang YM, Jeon DG, Albrektsson T.Bone reactions to oxidized titanium implants with electrochemically anion S and P incorporation. Clin Implant Dent Relat Res 2002;4:478–487.
    [104] Sul YT, Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002;17:625–634.
    [105] Sul YT. The significance of the surface properties of oxidized titanium implant to the bone response: Special emphasis on potential biochemical bonding of oxidized titanium implants.Biomaterials 2003;24:3893–3907.
    [106] Sul YT, Byon E, Jeong Y. Biomechanical measurements of calcium-incorporated, oxidized implants in rabbit bone: Effect of calcium surface chemistry of a novel implant. Clin Implant Dent Relat Res 2004;6:101–110.
    [107] Sul YT, Johansson P, Byon E, Chang GS, Jeong Y. Bone response to Mg-incorporated, oxidized implants in rabbit femur: Mechanical interlocking vs biochemical bonding. J Appl Biomater Biomech 2005;3:18–28.
    [108] Sul YT, Johansson CB, Wennerberg A, Cho LR, Chang BS, Albrektsson T. Optimizing surface oxide properties of oxidized implants for reinforcement of osseointegration: Surface chemistry, oxide thickness, porosity, roughness, crystal structure.Int J Oral Maxillofac Implants 2005; 20:349–359.
    [109] Sul YT, Johansson CB, Byon E, Albrektsson T. The bone response to oxidized bioactive and non-bioactive implants. Biomaterials 2005;26:6720–6730.
    [110] Sul YT, Jeong Y, Johansson CB, Albrektsson T. Oxidized, bioactive implants are rapidly and strongly integrated in bone. I. - Experimental implants. Clin Oral Impl Res 2006;17:521–526.
    [111] Chen LH, Tai CL, Lai PL, Lee DM, Tsai TT, Fu TS, Niu CC, Chen WJ. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon), 2009, 24(8): 613-618.
    [112] Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, Sang HX, Fu SC, Han YS. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys, 2008, 30(9): 1112-1118.
    [113] Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L. Glucocorticoid- treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A, 2003, 66(3): 457-462.
    [114] Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone, 2005, 37(4): 491-496.
    [115] Goldhahn J, Jenet A, Schneider E, Lill CA. Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma, 2005, 19(1): 23-28.
    [116] Head WC, Bauk DJ, Emerson Jr RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res 1995;311:85-90
    [117] Krishna BV, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 2007;3:997-1006
    [118] Lin DJ, Chuang CC, Chern Lin JH, Lee JW, Ju CP, Yin HS. Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur. Biomaterials 2007; 28(16):2582-2589
    [119] Sumitomo N, Noritake K, Hattori T et al. Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation of tibia fracture model in rabbit. J Mater Sci Mater Med 2008;19(4):1581-1586
    [120] Stoppie N, Van Oosterwyck H, Jansen J, Wolke J, Wevers M, Naert I. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee. J Biomed Mater Res A. 2009;90(3):792-803
    [121] Szmukler-Moncler S, Salama H, Reingewirtz Y, et al. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res, 1998, 43(2): 192–203.
    [122] Viceconti M, Muccini R, Bernakiewicz M, et al. Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J Biomech, 2000, 33: 1611–1618.
    [123] Simon U, Augat P, Ignatius A, et al. Influence of the stiffness of bone defect implants on the mechanical conditions at the interface—a finite element analysis with contact. J Biomech, 2003, 36(8):1079–86.
    [124] Puleo DA and Thomas MV. Implant surfaces.Dent Clin N Am,2006,50:323-338
    [125] W.H.Song,Y.K.Jun,Y.Han,S.H.Hong.Biomimetic Apatite Coatings on Microarc Oxidized Titania.Biomaterials.2004,25:3341~3349
    [126] Y.Han,S.H.Hong,K.W.Xu.Structure and in Vitro Bioactivity of Titania-Based Films by Microarc Oxidation.Surface and Coatings Technology.2003,168:249~258
    [127] L.H.Li, Y.M.Kong, H.W.Kim, Y.W.Kim, H.E.Kim, S.J.Heo, J.Y.Koak .Improved Biological Performance of Ti Implants due to Surface Modification by Microarc Oxidation.Biomaterials.2004,25:2867~2875
    [128] X.L.Zhu,K.H.Kim,Y.S.Jeong.Anodic Oxide Films Containing Ca and P of Titanium Biomaterial.Biomaterials.2001,22:2199~2206
    [129] X.L.Zhu,J.L.Ong,S.Y.Kim,K.H.Kim.Surface Characteristics and Structure of Anodic Oxide Films Containing Ca and P on a Titanium Implant Material.J.of Biomedical Materials Research.2002,60:333~338
    [130] W.H.Song,H.S.Ryu,S.H.Hong.Apatite Induction on Ca-Containing Titania Formed by Micro-arc Oxidation.J.of American Ceramic Society.2005,88(9)2642-2644
    [131] Martin J Y,Schwartz Z,Hummert T W.Effect of titanium surface roughness on proliferation,differentiation,and protein synthesis of human osteoblast-like cells(MG63). J Biomed Mater Res,1995,29(3):389-401
    [132] Hallab N J,Bundy K J,Al K O;.Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng,2001,7(1):55-71.
    [133] Nayab SB,Jones FH and Olsen I.Effects of calcium ion implantation on human bone cell interaction with titanium.Biomaterials.2005,26(23):4717–4727.
    [134] Kunzler TP, Drobek T, Schuler M,et al.Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients.Biomaterials. 2007,28(13):2175-2182
    [135] Kennedy SB, Washburn NR,Simon CG,et al.Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion,spreading and proliferation. Biomaterials.2006,27(20):3817-3824.
    [136] Liao H,Andersson A S,Sutherland D,et al.Response of rat osteoblast-like cells to microstructured model surfaces in vitro[J].Biomaterials,2003,24(4):649-654.
    [137] Zhu X,Chen J,Scheideler L,et al.,Effects of topography and composition of titanium surface oxides on osteoblast responses.Biomaterials.2004,25(18):4087-4103.
    [138] Schwartz Z, Raz P, Zhao G, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am. 2008, 90(11):2485-2498.
    [139] Lossdorfer S, Schwartz Z, Wang L, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast fromation and activity. J Biomed Mater Res A 2004; 70(3):361-369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700