骨质疏松条件下膨胀式椎弓根螺钉与骨水泥强化螺钉的稳定性和钉道界面的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎弓根螺钉技术已经成为脊柱外科最常用的内固定技术。随着我国人口老龄化的日益加剧,越来越多的骨质疏松(osteoporosis, OP)患者因脊柱疾病需要进行内固定手术。然而,OP严重影响钉骨界面的结合强度,使螺钉的把持力下降,常常导致螺钉松动、退出。因此,如何有效的提高OP条件下椎弓根螺钉的稳定性、防止螺钉松动已经成为脊柱外科亟待解决的难题。本课题组在前期设计出膨胀式椎弓根螺钉(expansive pedicle screw, EPS),研究表明EPS可以显著提高螺钉的稳定性,也可以有效的降低因增加螺钉的直径和长度带来的风险。有趣的是,通过文献回顾我们发现:尽管骨水泥(polymethylmethacrylate, PMMA)存在热损伤、渗漏和神经压迫等风险,但凭借其良好的机械强度和强化效果,PMMA仍然被广泛的用于OP条件下螺钉的强化处理。然而,在提高螺钉稳定性和优化钉道界面方面, EPS与传统的PMMA强化螺钉(polymethylmethacrylate-augmented pedicle screw, PMMA-PS)谁更具有优势呢?目前国内外还没有这方面的研究。
     目的:通过体外标本实验和动物体内实验比较EPS和PMMA-PS的稳定性和钉道界面情况,为EPS在临床上的广泛应用提供充分的理论依据。
     方法:
     1)体外实验部分:OP生物力学实验模块、OP尸体腰椎、离体绵羊腰椎均随机分为三组,对各组中的标本采用相同的方法制备钉道。普通椎弓根螺钉(conventional pedicle screw, CPS)组:直接拧入CPS;PMMA-PS组:向钉道内注入PMMA后再拧入CPS;EPS组:直接拧入EPS,插入内栓、压棒后拧紧螺帽。螺钉置入24小时后,对所有OP生物力学实验模块和OP尸体腰椎进行X线和CT检查,然后行轴向拔出实验;对离体绵羊腰椎进行轴向拔出实验、周期抗屈实验、micro-CT分析和组织学观察。
     2)体内实验部分:成功建立OP绵羊模型后,将绵羊腰椎(L1-L6)随机分为CPS组、PMMA-PS组和EPS组,置钉方法同离体绵羊腰椎实验部分。于术后3月和6月两个时间点各处死4只绵羊,行轴向拔出实验、micro-CT分析和组织学观察。
     结果:
     1)体外实验部分:X线检查和CT重建示,各组中螺钉位置均良好,未见PMMA渗漏现象,EPS均明显膨胀。
     ①OP生物力学实验模块中,PMMA-PS组和EPS组的最大轴向拔出力(the maximum pullout strength, Fmax)和能量吸收值(energy absorbed to failure, E)均显著高于CPS组;而EPS组的Fmax和E均显著低于PMMA-PS组。
     ②OP尸体腰椎中,PMMA-PS组和EPS组的Fmax和E均显著高于CPS组;而EPS组的Fmax和E与PMMA-PS组之间均无统计学差异。
     ③离体绵羊腰椎中,PMMA-PS组和EPS组中螺钉的轴向稳定性和横向稳定性均显著强于CPS组,而EPS组的轴向稳定性和横向稳定性与PMMA-PS组之间均无统计学差异。CPS组中,骨组织直接包裹螺钉,形成了“螺钉-骨质”界面;PMMA-PS组中,PMMA严密包裹螺钉,分布在钉骨之间及钉道周围的骨髓腔内,阻碍了螺钉与骨质的直接接触,形成了“螺钉-PMMA-骨质”界面;EPS组中,骨小梁直接包裹螺钉,形成了“螺钉-骨质”界面。EPS的前端在椎体内明显膨胀,形成了一个“爪状”结构;螺钉前端胀开的两翼挤压周围的骨质,显著提高了局部的骨质密度。
     2)体内实验部分:
     ①术后3月和6月,PMMA-PS组和EPS组的Fmax和E均显著高于同时间点的CPS组,而各时间点EPS组的Fmax和E与PMMA-PS组之间均无统计学差异。CPS组和PMMA-PS组的Fmax和E在术后3月和6月间的差异均无统计学意义,而EPS组术后6月的Fmax和E均显著高于3月。
     ②术后3月和6月,CPS组中形成了“螺钉-骨质”界面。PMMA-PS组中形成了“螺钉-PMMA-骨质”界面。EPS组中形成了“螺钉-骨质”界面。EPS前端的“爪状”结构挤压并刺激局部的骨质生长,使局部的骨质条件(骨小梁数量和密度)在术后3月和6月均显著优于CPS组。从术后3月到6月,CPS组和PMMA-PS组中螺钉周围的骨质条件无明显变化,PMMA未发生降解、吸收,仍然存在于螺钉与周围骨质之间,形成了二次界面—“螺钉-PMMA-骨质”界面;而EPS膨胀部分周围的新生骨不断包裹螺钉并长入缝隙,显著改善了局部的骨质条件,螺钉与周围骨质形成良好的“螺钉-骨质”界面。
     结论:
     1) EPS可以显著提高骨质疏松条件下椎弓根螺钉的稳定性,并且达到了与传统的PMMA强化螺钉近似的固定强度。
     2) EPS可以形成良好的“螺钉-骨质”界面和钉道周围骨质条件,明显优于传统的PMMA强化螺钉,显著提高了螺钉在体内的远期稳定性。
     3) EPS可以有效的避免因使用PMMA可能带来的热损伤、渗漏和神经压迫等并发症。作为一种有效、安全和操作简便的方法,EPS具有在临床上广泛应用的巨大潜力。
The pedicle screw instrumentation has become the most commonly used internal fixation techniques in spinal surgery. With growing aging of population in our country, more and more OP patients with spine disorders undergo spinal surgery with internal fixation. However, osteoporosis (OP) severely influenced binding strength of interface between screw and bone and decrasesed the holding force of screw, which usually resulted in loosening of screw, migration or back-out. Therefor, how to effectively increase stability of pedice screw in OP and prevent lossening of screw has become a pressing tough problem in spine surgery.
     In previous research, we designed an expansive pedicle screw (EPS) and it was proved that EPS can significantly improve screw stability and effectively reduce the risks caused by increasing diameter and length of screw. Intriguingly, we found from the related literatures that, in spite of risks of thermal injury, leakage and neurologic compression, PMMA is widely used for augmentation of screw in OP. However, there are no biomechanical and interfacial comparisons of the novel-designed EPS and traditional polymethylmethacrylate-augmented pedicle screw (PMMA-PS).
     Objective: To compare stability and interface of EPS and PMMA-PS through experiments in samples in vitro and in animal in vivo, and to provide sufficient theretical basis for wide application of EPS in clinic.
     Methods:
     1) Experiments in vitro. OP biomechanical tests blocks, OP cadaveric lumbar vertebrae, sheep lumbar vertebrae in vitro were all randomly divided into three groups. A pilot hole was prepared using the same method in samples in each group. The conventional pedicle screw (CPS) was inserted directly into the pilot hole in CPS group. In PMMA-PS group, the pilot hole was filled with PMMA followed by insertion of CPS. In EPS group, EPS was inserted directly into the pilot hole and the component elements were assembled to EPS. Twenty four hours after insertion of pedicle screw, X-ray and CT examination and axial pullout tests were performed to all OP biomechanical tests blocks and OP cadaveric lumbar vertebrae, and axial pullout tests, cyclic bending resistance tests, micro-CT analysis and histological observation were performed to all sheep lumbar vertebrae in vitro.
     2) Experiments in vivo. After successful establishment of OP sheep, sheep lumbar vertebrae (L1-L6) were randomly divided into CPS, PMMA-PS and EPS groups and treated with the same methods in experiment in sheep lumbar vertebrae in vitro. Four sheep were selected randomly and killed at two study periods of 3 months and 6 months after operation respectively and axial pullout tests, micro-CT analysis and histological observation were performed.
     Results:
     1) Experiments in vitro. No malpositioned screw and cement leakage were detected and all EPSs were obviously expanding in X-ray and CT examination.
     ①In OP biomechanical tests block, the maximum pullout strength (Fmax) and energy absorbed to failure (E) in PMMA-PS and EPS groups were all significantly higher than those in CPS group, but Fmax and E in EPS group were all significantly lower than those in PMMA-PS group.
     ②In OP cadaveric lumbar vertebrae, Fmax and EAV in PMMA-PS and EPS groups were all significantly higher than those in CPS group, but there were no significant differences in both Fmax and EAV between EPS and PMMA-PS groups.
     ③In sheep lumbar vertebrae in vitro, both axial stability and vertical stability of screws in PMMA-PS and EPS groups were significantly enhanced compared with those in CPS group, but there were no significances on both axial stability and vertical screw stability between EPS and PMMA-PS groups. Bone trabeculae wrapped up the screw directly forming a“screw-bone”interface in CPS group. PMMA was found surrounding the screw totally and existing between screw and bone and in cavitas medullaris surrounded screw, which hampered the direct contact between bone and screw and formed a“screw-PMMA-bone”interface in PMMA-PS group. In EPS group, bone trabeculae wrapped up the screw directly forming a“screw-bone”interface. Anterior part of EPS presented an obvious expansion in vertebral body and formed a clawlike structure. The two fins pressed the surrounding bone tissue, which made local bone tissue more compacted and denser than that around anterior part of screw in CPS group.
     2) Experiments in vivo.
     ①At 3-month and 6-month, Fmax and E in PMMA-PS and EPS groups were significantly higher than those in CPS group; however, there was no significant difference in both Fmax and E between EPS and PMMA-PS groups at two study periods. No significant differences were found in both Fmax and E in CPS and PMMA-PS groups between 3-month and 6-month, but Fmax and E in EPS group at 6-month were significantly higher than those at 3-month.
     ②At 3-month and 6-month, bone trabeculae wrapped up the screw directly forming a“screw-bone”interface in CPS group. In PMMA-PS group, PMMA was found surrounding the screw totally and existing between screw and bone and in cavitas medullaris surrounded screw, which hampered the direct contact between bone and screw and formed a“screw-PMMA-bone”interface. In EPS group, bone trabeculae wrapped up the screw directly forming a“screw-bone”interface. Anterior part of EPS presented an obvious expansion and formed a clawlike structure. The two fins pressed and stimulated the growth of surrounding bone trabeculae, which made local bone condition (amount and density of bone trabeculae) significantly better than that in CPS group at 3-month and 6-month. From 3-month to 6-month, there were no obvious changes in the bone condition aound screw in CPS and PMMA-PS groups. PMMA was also found existing between bone and screw without any degradation and absorption, which formed a second interface-“screw-PMMA-bone”. Newly formed bone wrapped up the expanding part of EPS and grew into the interspace between two fins from 3 months to 6 months, which significantly improved the bone condition and formed a better“screw-bone”interface.
     Conclusions:
     1) EPS can significantly increase screw stability and obtain the similar fixation strength of traditional PMMA-augmented pedicle screw.
     2) EPS can form a significant better interface and bone condition around screw compared with traditional PMMA-augmented pedicle screw, which significantly improve long term stability of screw in vivo.
     3) EPS can effectively avoid complications caused by using of PMMA such as thermal injury, leakage and neurologic compression and so on. As an effective, safe and easy method, EPS has great potentiality on wide application in clinic.
引文
[1]胥少汀。实用骨科学(第三版)。人民军医出版社,2005, 1198-1199.
    [2]戴如春,张丽,廖二元。骨质疏松的诊治进展。中国医刊,2008, 43(4): 4-6.
    [3] Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 2007, 22(3): 465-475.
    [4]中国老年学学会骨质疏松委员会骨质疏松诊断标准学科组。中国人原发性骨质疏松症诊断标准(试行)。中国骨质疏松杂志,1999, 5(7): l-3.
    [5] World Health Organization. Prevention and management of osteoporosis. World Health Organ Tech Rep Ser, 2003, 921: 1-164.
    [6] Gebbie A. NIH Consensus Development Panel on Osteoporosis Prevention, diagnosis and therapy. JAMA, 2001, 285(6): 785-795.
    [7] Bonura F. Prevention, screening, and management of osteoporosis: an overview of the current strategies. Postgrad Med. 2009, 121(4): 5-17.
    [8] He Y. The investigation present condition and progresion of bone density determination technique. Foreign Medical Seiences-Section of Radimion Medicine and Nuclear Medicine, 2001, 25(4): 161-162 (inChinese).
    [9]丁柱,朱兆洪,李国岩。骨密度测量诊断骨质疏松研究概况。中国中医骨伤科杂志,2004, 6(12): 46-49.
    [10] Mazess R, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual-energy x-ray bone densitometer. Calcif Tissue Int 1989; 44(3): 228-232.
    [11] Cullum ID, Ell PJ, Ryder JP. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Br J Radio, 1989; 62(739): 587-592.
    [12] Guglielmi G, Lang TF. Quantitative computed tomography. Semin musculoskelet Radio, 2002, 6(3): 219-227.
    [13] Maddalozzo GF, Cardinal BJ, Snow CA. Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing bogbody compnsitionin young women. J Am Diet Assoc, 2002, 102(11): 1677-1679.
    [14]李宁华,区品中,朱汉民。应用不同骨密度诊断标准计算骨质疏松症患病率比较研究。中国临床康复,2001, 5(12): 114-1l7.
    [15] Hajimc Orimo. Diagnostic criteria for primary osteoporosis. ICBMR, Sept. Bejing, China, 2001, 15-19.
    [16]赵亮,李来,黄敬,代丽红,张平平。探讨应用QCT诊断骨质疏松症,中国骨质疏松杂志, 2004; 10(3): 293-295.
    [17] Boucher HH. A method of spinal fusion. J Bone Joint Surg Br, 1959, 41-B(2): 248-259.
    [18] Tokuhashi Y, Ajiro Y, Umezawa N. Outcomes of posterior fusion using pedicle screw fixation in patients > or = 70 years with lumbar spinal canal stenosis. Orthopedics, 2008, 31(11): 1096.
    [19] Fisher C, Singh S, Boyd M, Kingwell S, Kwon B, Li MJ, Dvorak M. Clinical and radiographic outcomes of pedicle screw fixation for upper thoracic spine (T1-5) fractures: a retrospective cohort study of 27 cases. J Neurosurg Spine, 2009, 10(3): 207-213.
    [20] Hee HT, Yu ZR, Wong HK. Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine (Phila Pa 1976), 2007, 32(14): 1533-1542.
    [21] Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate- augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery, 2007, 61(3): 531-537; discussion 537-538.
    [22] Anderson GF, Hussey PS. Population aging: a comparison among industrialized countries. Health Aff (Millwood), 2000, 19(3): 191-203.
    [23] Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech, 2004, 17(4): 306-311.
    [24] Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop, 1993, (296): 278-287.
    [25] Pfeifer BA, Krag MH, Johnson C. Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction. Spine, 1994, 19(3): 350- 353.
    [26] Fan S, Liu S, Deng Y. An in vitro biomechanical evaluation of effect of augmentation pedicle screw fixation with polymethylmethacrylate on osteoporotic spine stability. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2004, 18(3): 168-170.
    [27]邑晓东,卢海霖,陈明。医用骨水泥在骨质疏松患者行椎弓根螺钉固定中的作用。中国脊柱脊髓杂志,2005, 15(2): 95-97.
    [28] Kiner DW, Wybo CD, Sterba W, Yeni YN, Bartol SW, Vaidya R. Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine, 2008, 33(24): 2618-2622.
    [29] Bostan B, Esenkaya I, Gunes T, Erdem M, Asci M, Kelestemur MH, Sen C. A biomechanical comparison of polymethylmethacrylate-reinforced and expansive pedicle screws in pedicle-screw revisions. Acta Orthop Traumatol Turc, 2009, 43(3): 272-276.
    [30] Hamblen DL, Carter RL. Sarcoma and total hip replacement. J Bone Joint Surg(Br), 1986, 66(5): 625-627.
    [31] Konno S, Olmaker K, Byrod G. The European Spine Society Aero Med Prize 1994: acute thermal nerve root injury. Eur Spine J, 1994, 3(1): 299-302.
    [32] Wilkes RA, Mackinnon J, Thomas W. Neurologic deterioration after cement injection into a vertebral body. J Bone Joint Surg, 1994, 76 (1): 155 -160.
    [33] Fujikawa K, Sugawara A, Murai S, Nishiyama M, Takagi S, Chow LC. Histopathological reaction of calcium phosphate cement in periodontal bone defect. Dent Mater J, 1995, 14(1): 45-57.
    [34] Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res, 1998, 43(4): 399-409.
    [35] Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine, 2004, 29(11): E212-216.
    [36] Taniwaki Y, Takemasa R, Tani T, Mizobuchi H, Yamamoto H. Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae: in vivo biomechanical study. J Orthop Sci, 2003, 8(3): 408-414.
    [37] Leung KS, Siu WS, Li SF, Qin L, Cheung WH, Tam KF, Lui PP. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Master Res B Appl Biomaster, 2006, 78(1): 153-160.
    [38] Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J, 2009, 9(5): 404-410.
    [39] Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures. Orthop, 2004, 27(1): 103-107.
    [40] Rohmiller MT, Schwalm D, Glattes RC, Elalayli TG, Spengler DM. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J, 2002, 2(4): 255-260.
    [41]卢海霖,邑晓东,王宇,郑辉。可注射硫酸钙在椎弓根螺钉固定中的生物力学研究。中国脊柱脊髓杂志,2006, 2(16): 152-154.
    [42]卢海霖,郑辉,邑晓东,王宇。可注射硫酸钙MIIGX3与医用骨水泥对椎弓根螺钉固定作用的比较研究。中国矫形外科杂志,2006, 10(14): 760-761.
    [43] Derincek A, Wu C, Mehbod A, Transfeldt EE. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J Spinal Disord Tech, 2006, 19(4): 286-291.
    [44] Yi X, Wang Y, Lu H, Li C, Zhu T. Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine, 2008, 33(23): 2503-2509.
    [45] Da Liu, Wei Lei, Zi-xiang Wu, Ming-xuan Gao, Shi-yong Wan, Suo-chao Fu, Lei Shi. Augmentation of pedicle screw stability with calcium sulfate cement in osteoporotic sheep: biomechanical and screw-bone interfacial evaluation. J Spinal Disord Tech, 2010 Sep 14. [Epub ahead of print].
    [46]刘达,雷伟,吴子祥,高明暄,万世勇,李丹,吕荣,付索超。硫酸钙骨水泥强化去势绵羊体内椎弓根螺钉稳定性的动态生物力学研究。中国骨质疏松杂志,2010, 16(3): 166-169.
    [47] Evans SL, Hunt CM, Ahuja S. Bone cement or bone substitute augmentation of pedicle screws improves pullout strength in posterior spinal fixation. J Mater Sci Mater Med, 2002, 13(5): 1143-1145.
    [48] Noorda RJ, Wuisman PI, Fidler MW, Lips PT, Winters HA. Severe progressive osteoporotic spine deformity with cardiopulmonary impairment in a young patient. A case report. Spine, 1999, 24(5): 489-492.
    [49] Wuisman PI, Van Dijk M, Staal H, Van Royen BJ. Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique. Eur Spine J, 2000, 9(6): 528-533.
    [50]邵景范,Sarkar MR,Claes LE,Kinzl L,罗永湘。可吸收陶瓷改善椎弓根螺钉稳定性的体外生物力学实验。中国骨科杂志,2001, 10(21): 619-621.
    [51]庄全魁,孟晓林,时合同,艾继超,芮清伟,吴刚强,陈勇。颗粒骨植骨在椎弓根螺钉翻修术中的应用。中国脊柱脊髓志,2006, 5(16): 375-376.
    [52]万世勇,雷伟,吴子祥,付索超,李波。复合bBMP的纤维蛋白胶对去势绵羊体内椎弓根螺钉固定的强化作用。第四军医大学学报,2007, 28(7): 627-630.
    [53]殷浩,孙俊英,赖震,李喜功,宋兵华,王志岩。生物活性玻璃结合椎弓根钉翻修术治疗腰椎内固定失败。中国骨与关节损伤杂志, 2008, 23(1): 4-6.
    [54]刘达,雷伟,王军,吴子祥,杨彬奎,张伟。钉道局部固化与整体固化增强椎弓根螺钉稳定性的体内比较研究。中国骨与关节损伤杂志,2009, 24(6): 490-493.
    [55]刘达,雷伟,王军,吴子祥,杨彬奎,张伟,战策。新型钉道固化方法增强椎弓根螺钉固定强度的体外实验研究。中国骨与关节损伤杂志,2008, 23(12): 995-998.
    [56]杨彬奎,雷伟,王军,吴子祥,刘达,李运明。钉道强化提高椎弓根螺钉固定强度的生物力学研究。中华骨科杂志,2008, 28(10): 850-853.
    [57] Da Liu, Zi-xiang Wu, Ming-xuan Gao, Shi-yong Wan, Lei Shi, Suo-chao Fu, Jun Wang, Wei Lei. A New Method of Partial Screw Augmentation in Sheep Vertebrae in vitro: the Biomechanical and Interfacial Evaluation. J Spinal Disord Tech, 2010 Dec 8. [Epub ahead of print].
    [58]刘达,雷伟,吴子祥,高明暄,万世勇,石磊,李丹,吕荣。新型丝攻结合骨水泥强化椎弓根螺钉固定的体外生物力学研究。中国现代医学杂志,2010, 20(12): 1785-1788.
    [59] Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg, 2002, 96(3 Supp1): 309-312.
    [60] Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007, 32(10): 1077-1083.
    [61] Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, Redl H. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J, 2008, 17(11): 1462-1469.
    [62] Afzal S, Akbar S, Dhar SA. Short segment pedicle screw instrumentation and augmentation vertebroplasty in lumbar burst fractures: an experience. Eur Spine J, 2008, 17(3): 336-341.
    [63] Korovessis P, Hadjipavlou A, Repantis T. Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine, 2008, 33(6): 658-667.
    [64] Korovessis P, Repantis T, Petsinis G, Iliopoulos P, Hadjipavlou A. Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine, 2008, 33(4): E100-E108.
    [65] Marco RA, Kushwaha VP. Thoracolumbar burst fractures treated with posterior decompression and pedicle screw instrumentation supplemented with balloon-assisted vertebroplasty and calcium phosphate reconstruction. J Bone Joint Surg Am, 2009, 91(1): 20-28.
    [66] Frankel BM, D'Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine (Phila Pa 1976), 2007, 7(1): 47-53.
    [67] Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine, 2008; 33(10): E317-E324.
    [68] Waits C, Burton D, McIff T. Cement augmentation of pedicle screw fixation using novel cannulated cement insertion device. Spine (Phila Pa 1976), 2009, 34(14): E478-483.
    [69] Hriano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997, 22(21): 2504-2510.
    [70] Brantley AG, Mayfield JK, Koeneman JB, Clark KR. The effects of pedicle screw fit. An in vitro study. Spine, 1994, 19(15): 1752-1758.
    [71] Polly DW Jr, Orchowski JR, Ellenbogen RG. Revision pedicle screws. Bigger, longer shims-what is best? Spine, 1998; 23: 1374-1379.
    [72] Talu U, Kaya I, Dikici F, Sar C. Pedicle screw salvage: the effect of depth and diameter on pull-out strength: a biomechanical study. [Article in Turkish] Acta Orthop Traumatol Turc, 2000, 34: 300-307.
    [73] Hriano T, Hasegawa K, Washio T, Hara T, Takahashi H. Fracture risk during pedicle screw insertion in osteoporotic spine. J Spine Disord, 1998, 11(6): 493-497.
    [74] Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. The Journal of Bone and Joint Surgery, 1999, 81(11): 1519-1528.
    [75] Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J, 2001, 1(6): 408-414.
    [76]谭映军,潘显明,陈乾一,权毅,李延,胡修德,黄钢,马泽辉,张波。内锥及外锥形椎弓根螺钉的生物力学研究。骨与关节损伤杂志,2001, 16(6): 441-443.
    [77]潘显明,谭映军,张波,权毅,胡修德,黄钢,李延,陈孟诗。椎弓根螺钉的螺纹形状与拔钉生物力学。第四军医大学学报,2002, 23(5): 447-450.
    [78]赵延旭,牛犇,杨晶,孙亚伟,丛杰。改良半螺纹椎弓根螺钉治疗爆裂型胸腰椎骨折。中华创伤杂志,2003, 19(2): 95.
    [79] Mummaneni PV, Haddock SM, Liebschner MA, Keaveny TM, Rosenberg WS. Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech, 2002, 15(1): 64-68.
    [80] Inceoglu S, Ferrara L, McLain R F. Pedicle screw fixation strength: pullout versus insertional torque. Spine J, 2004, 4(5): 513-518.
    [81] Cook SD, Salkeld SL, Whitecloud TS 3rd, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord, 2000, 13(3): 230-236.
    [82] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J, 2001, 1(2): 109-114.
    [83] Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J, 2006, 15(3): 321-326.
    [84]张伟,雷伟,吴子祥。膨胀式椎弓根螺钉的强度测试。科学技术与工程,2008, 8(16): 4635-4637.
    [85] Shiyong Wan, Wei Lei, Zixiang Wu, Da Liu, Mingxuan Gao, Suochao Fu, Xuli Liu. Biomechanical and histological evaluation of an expendable pedicle screw in osteoporotic spine in sheep. Eur Spine J, 2010, 19(12): 2122-2129.
    [86]万世勇,雷伟,吴子祥,吕荣,王军,李波,付索超,战策。膨胀式椎弓根螺钉在骨螺钉界面的显微CT评价及组织学分析。中华外科杂志,2007, 45(18): 1271-1273.
    [87]桑宏勋,吴子祥,雷伟,马真胜,樊勇,王海强,刘绪立。新型可膨胀椎弓根螺钉在骨质疏松性腰椎融合手术中初步临床应用研究。中华骨科杂志,2009, 29(9): 822-826.
    [88] Wu ZX, Cui G, Lei W, Fan Y, Wan SY, Ma ZS, Sang HX. Application of an expandable pedicle screw in the severe osteoporotic spine: a preliminary study. Clin Invest Med, 2010, 33(6): E368-374.
    [89]高明暄,刘兴炎,甄平,薛云,田琦。膨胀式椎弓根螺钉联合椎间融合器治疗腰椎滑脱症。中国修复与重建杂志,2009, 23(8): 904-907.
    [90]王祥善,鲍朝辉,赵卫东,孙保国,刘建民。膨胀式脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究。中国脊柱脊髓杂志,2005, 15(7): 436-439.
    [91]李宏伟,马远征,鲍达,孙继桐,陈兴,刘海容。膨胀与普通椎弓根钉治疗脊柱胸腰段骨折合并骨质疏松的对比研究。中国骨质疏松杂志,2006, 12(1): 13-16.
    [92] Pfeifer M, Gilbertson LG, Goel VK, Griss P, Keller JC, Ryken TC, Hoffman HE. Effect of specimen fixation method on pullout tests of pedicle screws. Spine, 1996, 21(9): 1037-1044.
    [93] Pienkowski D, Stephens GC, Doers TM, Hamilton DM. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine, 1998, 23(7): 782-788.
    [94] Goel VK, Gilbertson LG. Basic science of spinal instrumentation. Clin Orthop Relat Research, 1997, (335): 10-31.
    [95] Christensen FB, Dalstra M, Sejling F, Overgaard S, Bunger C. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J, 2000, 9(2): 97-103.
    [96] Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P.Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res, 2002, 20(6): 1217-1224.
    [97] Fini M, Giavaresi G, Greggi T, Martini L, Aldini NN, Parisini P, Giardino R. Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. J Biomed Mater Res A, 2003, 66(1):176-183.
    [98] Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J, 2005, 5(3):239-243.
    [99] Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, Mahar AT, Newton PO. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine (Phila Pa 1976), 2009, 34(4): 335-343.
    [100] Sanden B, Olerud C, Petren-Mallmin M, Larsson S. Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br, 2002, 84(3): 387-391.
    [101]俞杭平,唐天驷,杨同其,王以进。生物活性玻璃涂层改善椎弓根螺钉稳定性的生物力学研究。中华创伤杂志,2002, 18(12): 722-727.
    [102] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanieal study of pediele screw fixation in severely osteoporotic bone. Spine J, 2004, 4(4): 402-408.
    [103] Wu ZX, Gao MX, Sang HX, Ma ZS, Cui G, Zhang Y, Lei W. Surgical Treatment of Osteoporotic Thoracolumbar Compressive Fractures with Open Vertebral Cement Augmentation of Expandable Pedicle Screw Fixation: A Biomechanical Study and a 2-Year Follow-up of 20 Patients. J Surg Res, 2010 Oct 19. [Epub ahead of print]
    [104]杨述华,胡勇,陈中海,杜靖远,杨操,许伟华,肖宝均,邵增务,李进,胡天喜,汪岚。空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究。中华创伤杂志,2002, 18(1): 17-22.
    [105] Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci, 2005, 10(1): 56-61.
    [106] Fransen P. Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. Technical note and report of three cases. J Neurosurg Spine, 2007, 7(3): 366-369.
    [107] Takigawa T, Tanaka M, Konishi H, Ikuma H, Misawa H, Sugimoto Y, Nakanishi K, Kuramoto K, Nishida K, Ozaki T. Comparative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement. J Spinal Disord Tech, 2007, 20(6): 462-467.
    [108]张亘瑷,陈建庭,王灵秀,邓轩赓。定向灌注椎弓根螺钉的生物力学分析。中国组织工程研究与临床康复,2008, 12(22): 4225-4228.
    [109] Chen LH, Tai CL, Lai PL, Lee DM, Tsai TT, Fu TS, Niu CC, Chen WJ. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon), 2009, 24(8): 613-618.
    [110] Chen LH, Tai CL, Lee DM, Lai PL, Lee YC, Niu CC, Chen WJ. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord, 2011, 12: 33.
    [111]杨惠林,唐天驷,朱国良。钉杆角椎弓根内固定系统治疗胸腰椎骨折的研究。中华骨科杂志,1995, 15(7): 570-572.
    [112] Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord, 1998, 11(3): 215-220.
    [113] McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS. Effect of surgical technique on intravertebral and intrapediclar bending moments. Spine, 1999, 24(1): 18-24.
    [114]王正,沈国平,陈伟兵,王以进。椎弓根螺钉内固定稳定性的生物力学测试。医用生物力学,2002, 17(2): 80-84.
    [115]魏美钢,王坤正,侯德门,倪国骅。椎弓根螺钉器械应力分析。西安交通大学学报(医学版),2002, 23(6): 547-549.
    [116] Tsai WC, Chen PQ, Lu TW, Wu SS, Shih KS, Lin SC. Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone. BMC Musculoskelet Disord, 2009, 10: 44.
    [117] McLachlin SD, Beaton BJ, Sabo MT, Gurr KR, Bailey SI, Bailey CS, Dunning CE. Comparing the fixation of a novel hollow screw versus a conventional solid screw in human sacra under cyclic loading. Spine (Phila Pa 1976), 2008, 33(17): 1870-1875.
    [118] ASTM F543-02. Standard Specification and Test Methods for Metallic Medical bone screws. In: Annual book of ASTM standards, medical devices and services. West Conshohocken, The American Society for Testing and Materials; 2002.
    [119] Sanden B, Olerud C, Johansson C, Larsson S. Improved extraction torque of hydroxyapatite-coated pedicle screws. Eur Spine J, 2000, 9(6): 534-537.
    [120] Mutsuzaki H, Ito A, Sakane M, Sogo Y, Oyane A, Ebihara Y, Ichinose N, Ochiai N. Calcium phosphate coating formed in infusion fluid mixture to enhance fixation strength of titanium screws. J Mater Sci Mater Med, 2007, 18(9): 1799-1808.
    [121] Xue Q, Li H, Zou X, Dalstra M, Lind M, Christensen FB, Bünger C. Alendronate treatment improves bone-pedicle screw interface fixation in posterior lateral spine fusion: an experimental study in a porcine model. Int Orthop, 2010, 34(3): 447-451.
    [122] Martin-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F.Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro-CT. Radiology, 2003, 229(3): 921-928.
    [123] Holdsworth DW, T hornton MM. Micro-CT in small and specimen imaging. Trends Biotechnol, 2002, 20(8): 34-39.
    [124] David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexander C, Ruegsegger P, Vico L. Noninvasive in vivomonitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res, 2003, 18(9): 1622-1631.
    [125] Bullmann V, Liljenqvist UR, R?dl R, Schulte TL. Pedicle screw augmentation from a biomechanical perspective. Orthopade, 2010, 39(7): 673-678.
    [126] Wilke HJ, Kettler A, Wenger KH, Claes LE. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec, 1997, 247(4): 542-555.
    [127] Barlet JP, Coxam V, Davicco MJ, Gaumet N. Animal models of post-menopausal osteoporosis. Reprod Nutr Dev, 1994, 34(3): 221-236.
    [128] Reynolds LP, Kirsch JD, Kraft KC, Knutson DL, McClaflin WJ, Redmer DA. Time-course of the uterine response to estradiol-17beta in ovariectomized ewes: uterine growth and microvascular development. Biol Reprod, 1998, 59(3): 606-612.
    [129] Wronski TJ, Yen CF. Anabolic effects of parathyroid hormone on cortical boBe in ovarieetomized rats. Bone, l994, 15(1): 51-58.
    [130] Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H, Sumner DR, Hvid I. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif Tissue Int, 2003, 72(6): 737-744.
    [131] Stmup GB, Hoffman SJ, Vasko-Moser JA, Lechowska BA, Jenkins EL, Dare LC, Gowen M. Changes in bone turnover following gonadotropin- releasing hormone (GnRH) agonist administration and estrogen treatment in cynomolgus monkeys: a short-term mod el for evaluation of antiresorptive therapy. Bone, 2001, 28(5): 532-537.
    [132] Goodman RL. Neuroendocrine control of the ovine estrous cycle. In: Physiology of Reproduction (2nd ed.). Knobil E, Neill J (eds.). RavenPress, New York, NY. 659-709.
    [133] Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia:current status and comparison with other animal models. Bone, 1995, 16(Suppl4): s277-s284.
    [134] Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L. Glucocorticoid- treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A, 2003, 66(3): 457-462.
    [135] Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone, 2005, 37(4): 491-496.
    [136] Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int, 2002, 13(6): 480-486.
    [137] Zarrinkalam MR, Beard H, Schultz CG, Moore RJ. Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J, 2009, 18(2): 244-253.
    [138] Goldhahn J, Jenet A, Schneider E, Lill CA. Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma, 2005, 19(1): 23-28.
    [139] Turner AS. Animal models of osteoporosis necessity and limitations. Eur Cells Mater, 2001, 1: 66-81.
    [140] Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, Sang HX, Fu SC, Han YS. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys, 2008, 30(9): 1112-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700