麦草浆二氧化氯清洁漂白技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界非木浆的主要生产国,是世界非木材纤维造纸产量最多、经验最丰富的国家。非木浆中禾草浆所占的比例最大,约为60%~65%,禾草浆主要是指麦草浆。在新的环保要求下,AOX排放量已经成为造纸工业水污染物排放限制执行指标,元素氯漂白被禁止使用,以麦草浆为主的非木浆漂白正在加速向ECF和TCF漂白方式转变,以二氧化氯漂白为核心的无元素氯漂白技术,是近期纸浆清洁漂白领域研发和推广的重点技术之一。本论文对麦草浆二氧化氯清洁漂白技术及其机理进行了较为系统的研究,旨在为实现麦草浆ECF清洁漂白提供一定的技术支持和理论依据,促进我国麦草浆ECF漂白早日实现工业化。
     对麦草浆二氧化氯与氧气脱木素效率及相应的漂白流程进行了对比研究。结果表明,ClO2脱木素(D0)对木素的修饰和改性效果好于氧脱木素(O),在脱木素率不及氧脱木素及接近氧脱木素的条件下,D0段纸浆的可漂性高于O段纸浆的可漂性。在D0段和O段脱木素率相同的条件下,采用D0A/QP、D0EP漂白流程漂后纸浆白度分别比OA/QP漂白流程高11.2%ISO和10.3%ISO。D0段废液和相应D0A/QP漂白流程三段混合废水的CODCr负荷均比O段和OA/QP漂白流程混合废水的CODCr负荷轻。
     研究了碱抽提协同木聚糖酶处理对麦草浆二氧化氯漂白的强化作用。结果显示,木聚糖酶预处理对ClO2脱木素的改善效果不明显,无论是脱木素前预处理(XD)还是脱木素后处理(DX),ClO2脱木素效率提高不大。采用XDP和DXP漂序,与对照样相比,木聚糖酶对麦草浆ClO2漂白的助漂效果不明显,白度提高仅1.5%ISO左右。在达到略高于对照样终点白度的条件下,木聚糖酶处理可以节省H2O2用量25%~33.3%。采用XDEPP和DXEPP漂序,经H2O2强化的碱抽提EP后,木聚糖酶对麦草浆ClO2漂白的助漂效果显著增强,与对照样相比,可以提高白度4.5%ISO。同样漂序采用木聚糖酶处理可节省ClO2用量17%~20%。碱抽提协同木聚糖酶处理对麦草浆二氧化氯漂白具有较好的强化作用。
     采用四种不同的碱抽提方式对麦草浆二氧化氯漂白进行强化,考查了不同碱抽提方式的强化效果,并对不同ECF漂白流程进行了对比研究。结果表明:在D0ED1漂白流程中,不同碱抽提方式对D0段木素的修饰效果不同,就后续D1漂段而言,四种不同碱抽提模式下纸浆的可漂性顺序为:D0EOP>D0EP>D0EO>D0E。在D0ED1漂白流程中,D1段pH值对终点白度有显著影响,本实验条件下,麦草浆D1段漂白最佳终点pH值范围为6.0~6.5,NaOH最佳添加量为0.6%~0.8%。
     研究了添加醛类助剂对非木浆二氧化氯漂白的活化效果。在ClO2脱木素段添加1.0%~1.5%的甲醛助剂,可以有效的促进和改善ClO2脱木素的速率和效率。与对照样相比,ClO2脱木素(D)后和碱抽提后纸浆(DE或DEP)的卡伯值均有所降低,ClO2的实际消耗量增大,表明甲醛对ClO2脱木素有较好的活化作用。除了甲醛以外,乙醛、乙二醛、葡萄糖等醛类或醛糖也可以起到一定的活化效果。对原浆卡伯值为21.7的烧碱-蒽醌法麦草浆,在D段添加1.5%的甲醛助剂,采用DEPP漂序,可使漂白终点白度达到81.8%ISO,比对照样提高了2.5%ISO,部分强度指标有所下降。
     采用GC-MS气质联用仪对麦草浆ECF漂白各段废水进行定性分析,研究表明,D0段废液的污染负荷明显低于O段和EP段。漂白废液的GC-MS检测分析表明,D0段漂白废液中含有的主要污染物为对苯醌类化合物,其比例为41.9%,D0段废液中还含有少量的含氯化合物,主要以氯代丙酮和含氯芳香化合物形式存在。O段废液的主要污染物为脂肪烃类物质,比例高达51.2%,其次为芳香醛类物质,O段废液中不含苯醌类物质,这是O段废液区别于D0段废液的一个显著特征。EP段废液的主要污染物为脂肪烃和脂肪酸类物质。D1段废液的主要污染物为脂肪酸类物质,脂肪烃类物质相对较少。P段废液的主要污染物为脂肪烃和脂肪酸类物质,总含量比例为85.9%。
     采用酶解-弱酸解两段法对麦草浆在ECF漂白过程中各段的木素进行分离,并采用红外光谱、紫外光谱、GPC、TG、31P-NMR、1H-NMR等对木素结构及其变化进行了分析。木素的红外吸收光谱分析表明,纸浆经二氧化氯脱木素后木素中的羰基数量增多,随着漂白反应的进行,羰基数量逐渐减少,漂白终点段D1段木素中羰基吸收峰消失。通过对木素进行紫外吸收光谱分析可知,随着漂白反应的进行,280nm处苯环的特征吸收逐渐减弱,漂白终点段D1段和P段木素在280nm处的吸收峰已经消失。木素的热重分析表明,200℃之前木素的热失重现象不明显,200℃之后木素质量百分比开始迅速下降,一直保持到500℃,500℃之后失重率逐渐趋于平缓。木素的GPC分析表明,麦草浆经过ECF漂白流程D0EPD1和D0EPP漂白后,木素试样的数均分子量、重均分子量和多分散性Mw/Mn均有所下降。
     木素的1H-NMR谱图分析表明,木素中甲氧基质子的含量较高,仅次于脂肪族甲基和亚甲基的质子含量。麦草浆原浆木素中主要含有紫丁香基单元和愈创木基单元,也含有少量的对羟苯基单元,随着漂白反应的进行,木素中的G、S、H三种类型的结构单元比例逐渐下降,侧链上β-O-4和β-l结构中的Hα数量在漂白中逐渐减少,β-O-4的断裂和苯环脱甲基反应是漂白过程中木素大分子降解为小分子的重要反应,醚键的断裂不仅使木素大分子降解为小分子,更使木素中产生了新的游离酚羟基,增强了木素的反应性能。
     木素的31P-NMR定量分析表明,木素中脂肪族羟基的含量是最高的,其含量高于木素苯环上的酚羟基含量。经二氧化氯脱木素和氧脱木素后木素中的脂肪族羟基含量和总酚羟基含量均有所升高,总酚羟基含量的升高主要是由于缩合酚羟基和对羟苯基酚羟基含量的升高而引起的。经二氧化氯脱木素和氧脱木素后紫丁香基酚羟基和愈创木基酚羟基含量均有所下降,其中紫丁香基酚羟基下降的比例大于愈创木基酚羟基,表明麦草浆二氧化氯脱木素和氧脱木素过程中,主要以紫丁香基结构氧化降解为主。从羧基含量变化来看,麦草浆原浆木素中羧基含量很少,经过二氧化氯脱木素和氧脱木素后羧基含量显著增加,这是二氧化氯脱木素和氧脱木素的一个重要特征。从D0段木素和O段木素中各种羟基含量的对比来看,D0段木素和O段木素中各类羟基和羧基的含量均相差不大。
As one of the most experienced countries, China is the world’s major producer of non-wood pulps, whose paper production of non-wood fiber material is the largest all along. The proportion of grass weed pulp in non-wood pulps is the largest at about 60%~65%, which mainly refers to wheat straw pulp. Under the new environmental requirements, the discharge amount of absorbable organic halides (AOX), one vital crucial toxicant in paper industry, has become one forced implementation indicator. With the stern prohibition of elemental chlorine bleaching, the bleaching modes of non-wood pulp, mainly refers to wheat straw pulp currently, are being accelerated and transformed to elemental chlorine free (ECF) and totally chlorine free (TCF) bleaching methods. ECF bleaching technology based on chlorine dioxide is one of the most important technologies being studied and expanded presently. Clean chlorine dioxide bleaching technologies on wheat straw pulp and its mechanism are investigated detailedly in this paper, for the purpose of affording certain technical supports and theory bases for realizing the transform of bleaching modes from traditional CEH to ECF bleaching of wheat straw pulp, which will facilitate the industrial process of ECF clean bleaching of wheat straw pulp and even the whole non-wood pulp.
     The efficiency of chlorine dioxide delignification and oxygen delignification and corresponding bleaching sequences were investigated comparatively. The results indicated that effects of ClO2 delignification (D0) on the modification of residual lignin were better than that of O2 delignification (O). Under the conditions of lower than and near to the removal rate of O2 delignification, the bleachability of D0 stage pulp was superior to that of O stage pulp. With the same removal percentage of delignification, the final brightness of bleached pulp by D0A/QP sequence and D0EP sequence were 11.2 and 10.3 points higher than the ones bleached by OA/QP sequence respectively. The CODCr loads of the D0 stage filtrate and corresponding mixed effluents by three stages of D0A/QP sequence were lower than those of O stage filtrate and corresponding mixed effluents by three stages of OA/QP sequence.
     Enhanced chlorine dioxide bleaching of wheat straw pulp by synergetic effect of alkaline extract and xylanase treatment were investigated. Results demonstrated that the improvement of chlorine dioxide delignification with xylanase treatment was not significant. The effectiveness of chlorine dioxide delignification was not increased distinctly whether by xylanase pretreatment prior-delignification (XD) or by xylanase treatment post-delignificatiion (DX). Using XDP and DXP bleaching sequences, the aided bleaching effect of xylanase was not obvious. The final brightness was increased only as much as 1.5 points. Meanwhile, pulp treated with xylanase reduced the consumption of hydrogen peroxide by 25%-33.3%. With peroxide-reinforced extraction (EP) and using XDEPP and DXEPP bleaching sequences, the aided bleaching effectiveness of xylanase was increased significantly, with the final brightness enhanced by 4.5 points. With the same sequences, xylanase treated pulp saved the charge of chlorine dioxide up to 17%-20%, while still maintaining the final brightness at the control level.
     The modification effects of four kinds of alkaline extraction modes on lignin of chlorine dioxide delignified wheat straw pulps were explored, and various corresponding ECF bleaching sequences were investigated comparatively. Results indicated that in D0ED1 bleaching sequences the modification effects of alkali extraction modes on the residue lignin of D0 stage were different. As far as the subsequent D1 stage was concerned, the bleachability order of pulps, from easiest to hardest, was D0EOP>D0EP>D0EO>D0E. It was demonstrated that in D0ED1 bleaching sequences the influence of pH value on the brightness of D1 stage was significant, the optimal final pH range was 6.0~6.5% and the optimized charge of NaOH was 0.6%~0.8% under the conditions of present experimentation.
     The activation effectiveness of aldehydes on chlorine dioxide bleaching of non-wood pulps was investigated. The rate and efficiency of chlorine dioxide delignification were enhanced and facilitated effectively through adding 1.0%-1.5% formaldehyde to D stage. Compared to the control, the kappa numbers both in the D stage and in DE or DEP stage were decreased somewhat, simultaneously, the actual consumption of ClO2 was increased, which demonstrated that the improvement of formaldehyde on chlorine dioxide bleaching was certain. Except for formaldehyde, a certain extent of activation effect can be obtained by adding other aldehydes or aldoses, such as acetaldehyde, glyoxal, glucose, et al. The effectiveness of formaldehyde was relevant to the initial kappa number of unbleached pulps. The higher of the initial kappa numbers of unbleached pulps, the better of activating effect of formaldehyde on D stage. By adding 1.5% formaldehyde to D stage and with DEPP bleaching sequences, the unbleached Soda-AQ wheat straw pulps with a initial kappa number of 21.7 reached a final brightness of 81.7%, 2.5 points higher than the control. Correspondingly, some physical strength properties decreased to a certain extent.
     Various ECF bleaching effluents were qualitative analyzed and quantitative determined using GC-MS analyzer. Results showed that the pollutant load of D0 stage was remarkably lower than that of O stage and EP stage. The analysis of bleaching filtrates by GC-MS analyzer indicated that except for including the main pollutants such as the benzoquinones with the content of 41.9% in D0 filtrate, D0 stage filtrate also contained a small portion of organic chlorine compounds, mainly in the form of chloro-acetone and chlorinated aromatic compounds. Additionally, as for O stage comprising of the main aliphatic hydrocarbons with the content of 51.2%, followed by aromatic aldehydes, there is no any content of ketone in O stage filtrate, which is a significant characteristic different to the D0 stage filtrate. The main pollutant ingredients of EP filtrate were aliphatic hydrocarbons and fatty acids, while the main pollutant types of D1 stage were fatty acids, with lower content of aliphatic hydrocarbons relatively. As with the EP stage, the main pollutant compositions of P filtrate were referred to aliphatic hydrocarbons and fatty acids with the total content of 85.9%.
     Using two-step methods of enzyme hydrolysis and weak acid hydrolysis, various lignin were isolated from unbleached and bleached wheat straw pulp during the process of ECF bleaching, and then, lignin structure were analyzed through a serious of methods such as FT-IR, UV-VIS, GPC, TG, 31P-NMR, 1H-NMR and so on. FT-IR spectroscopy analysis showed that the carboxyl content of chlorine dioxide delignified pulp was increased, with the subsequent bleaching the carboxyl absorption gradually decreased and then disappeared in the end. UV spectrum analysis showed that with the proceeding beach the characteristic absorption peak of aromatic ring at 280nm gradually disappeared in both D1 pulp and P pulp. Thermal gravimetric (TG) analysis indicated that before 200℃the thermal weight loss of lignin was not obvious and after 200℃the loss percentage began to decline rapidly until 500℃, after 500℃the loss trends became changing flatly and mildly. GPC analysis showed that after ECF beaching sequences as D0EPD1 and D0EPP the number average molecular weight, the weight average molecular weight and polydispersity had declined to some extent.
     Lignin 1H-NMR analysis showed that the proton concentrations of methoxyl were relatively high, second only to that of aliphatic methyl and methylene. Lignin units of unbleached wheat straw pulp mainly included guaiacyl and syringyl units and a few amounts of p-hydroxylphenyl units. The content of three kinds of units as G, S and H types were all decreased gradually. Especially, the content ofα-proton in the structure ofβ–O-4 andβ-1 also reduced to some extent, which demonstrated that the rapture ofβ–O-4 and demethylation reaction were the main approaches by which large molecules were degraded into small ones. Moreover, the rapture of ether bonds not only degraded large lignin molecules into small ones, but also produced new phenolic hydroxyl groups, which can enhance the reactivity of lignin.
     31P-NMR analysis indicated that the content of aliphatic hydroxyl was higher than the ones of phenolic hydroxyl of benzene ring. After chlorine dioxide delignification and oxygen delignification the content of aliphatic hydroxyl and total phenolic hydroxyl increased somewhat, mainly due to the contribution of the rise of the content of condensed phenolic hydroxyl and p-hydroxylphenol phenolic hydroxyl. After chlorine dioxide delignification and oxygen delignification the phenolic hydroxyl content of both syringyl and guaiacyl declined to some extent, moreover, the drop percentage of the former was higher than the later, indicating that the degradation of syringyl was the principal degradation form during chlorine dioxide delignification and oxygen delignification. As for the change of carboxyl content, almost to the zero content in unbleached wheat straw pulp, the carboxyl content after ClO2 and O2 delignification were raised significantly, which was one prominent characteristic of ClO2 and O2 delignification. In terms of the comparison of hydroxyl content between D0 lignin and O lignin, the distinction of the contents of various hydroxyl and carboxyl were not significant.
引文
[1]中国造纸协会.中国造纸工业2008年度报告[J].中华纸业,2009, 30(9):6-17
    [2]国家发展和改革委员会.造纸产业发展政策[J].中华纸业,2007, 28(11):6-11
    [3]李忠正.我国近年草类原料制浆技术之我见[J].中华纸业,2009, 30(22):10-15
    [4]胡宗渊.科技自主创新的“草类原料清洁制浆新技术”-再论科学合理利用非木纤维原料[J].中华纸业,2009,30(17):23-29
    [5]胡宗渊.正确理解和认真贯彻合理利用非木材纤维的原料政策促进我国造纸工业持续健康发展[J].天津造纸,2008,2:2-8
    [6]李忠正.中国草类纤维制浆的理论与技术研究[J].中国造纸,2007, 20(12):71-74
    [7]王鸿文.中国造纸工业利用非木纤维制浆现状和前景展望[J].江苏造纸,2008,2:13-15
    [8]聂勋载.再谈合理利用非木材纤维任重而道远[J].中华纸业,2009,30(24):13-15
    [9]陈克复.我国制浆造纸科学发展中需要解决的问题[J].中华纸业,2009,30(23):3
    [10]陈克复.纸浆清洁漂白技术[J].中华纸业,2009, 30(14):6-10
    [11]李军,陈克复,宣征南,等.中浓氧脱木素塔的设计与研究[J].中国造纸,2004,23 (12): 1-6
    [12]李军,陈克复,黄放辉,等.中浓纸浆双塔氧脱木素及其管线布置[J].中国造纸,2005,24(1):32-35
    [13]李军.中浓纸浆的流动与混合机理及其在清洁漂白工程中的应用[D].广州:华南理工大学博士学位论文,2005
    [14]李军,陈克复,莫立焕,等.中浓纸浆漂白过程混合技术的研究[J].中国造纸,2005, 24(12):1-5
    [15]聂勋载,范思齐.常用非木材纤维碱法制浆使用手册[M].北京:中国轻工业出版社,1993
    [16]天津轻工业学院制浆造纸研究室.国内外非木材纤维制浆造纸的经验和发展趋势[M].天津:1990
    [17]陈嘉川,庞志强.中国非木材制浆现状与发展趋势[J].中华纸业,2008,29(22):8-12
    [18] Anderson J. R. H2O2在化学制浆漂白中的应用[J].造纸化学品, 2001(3):21-27
    [19]于冬梅.硫酸盐法红麻浆过氧化氢漂白中的“白度封顶”及动力学研究[D].广州:华南理工大学博士学位论文,2006
    [20]徐峻.工业大麻纤维少污染清洁制浆漂白技术及其机理的研究[D].广州:华南理工大学博士学位论文,2008
    [21] Craig E. Murphy. Alkaline hydrogen peroxide bleaching a study of the evolved gases, Doctor of philosophy dissertation of B.Sc. [D]. Acadia University, 2001
    [22] P.J. Wright, Y.A. Ginting and Abbot, Kinetic Models for Peroxide Bleaching Under Alkaline Conditions, Part 1. One and Two Chromophore Models [J]. Journal of Wood and Technology,1991, 11(3):349-371
    [23] J. Abbot et al., The influence of metal ions on two-stage peroxide bleaching of radiate pine TMP [J]. Journal of Pulp and Paper Science, 1992, 18(2):67-70
    [24] Smith Philip Kent., Transition metal ion catalyzed oxidation of a residual lignin- related compound by alkaline hydrogen peroxide [D]. Wisconsin: Lawrence University, The Institute of Paper Chemistry, 1984
    [25] L. Lapierre et al. Chelation prior to hydrogen peroxide bleaching of kraft pulps: an overview [J]. Journal of Pulp and Paper Science, 1995, 21(8):268-273
    [26] M.G. Fairbank et al. The role of silicate in peroxide brightening of mechanical pulp: 4. the role of silicate as a buffer during peroxide brightening [J]. Journal of Pulp and Paper Science, 1989, 15(4):132-135
    [27]陈克复,李军.中浓纸浆清洁漂白技术的理论与实践[J].华南理工大学学报(自然科学版), 2007,35(10):1-6
    [28]陈克复.中高浓制浆造纸技术的理论与实践[M].北京:中国轻工业出版社,2007
    [29]李军.麦草浆OQPO清洁漂白生产实践[J].中国造纸,2009, 28(6):38-41
    [30]钱学仁,安显慧.纸浆绿色漂白技术[M].北京:化学工业出版社,2008
    [31]赵德清,李军,莫立焕,等.蔗渣Soda-AQ浆过碳酸钠与过氧化尿素短序少氯漂白[J].中国造纸,2008, 27(10):1-4
    [32]赵德清,陈克复,莫立焕,等.二氧化氯脱木素和漂白化学中的无机中间反应[J].中国造纸学报, 2009,24(4):102-108
    [33] Lindgren B O. Chlorine dioxide and chlorine oxidations of phenols related to lignin[J]. Svensk Papperstidn, 1971,74(2):57.
    [34] Gierer J. Chemistry of deliginification, Part 2: Reaction of lignins during bleaching[J]. Journal of Wood Science and Technology, 1986,20(1):1.
    [35] Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequence(sⅠ): Chlorine dioxide delignification[J]. Journal of Wood Chemistry and Technology, 2004,24(3):201.
    [36] Gierer J. Basic principles of bleaching-Part 1: Cationic and radical processes[J]. Holzforschuang, 1990, 44(5):387.
    [37] Gierer J. Basic principles of bleaching-Part 2: Anionic processes[J]. Holzforschuang, 1990, 44(6):395.
    [38] Gunnarsson N P I, Ljunggren S. The kinetics of lignin reactions during chlorine dioxide bleaching-Part 1: Influence of pH and temperature on the reaction of 1-(3,4-dimethoxyphenyl)ethanol with chlorine dioxide in aqueous solution[J]. Acta Chemica Scandinavica, 1996,50(5):422.
    [39] Ljunggren S, Gunnarsson N P I. Some kinetics aspects of lignin reactions in chlorine dioxide bleaching[C]//8th International Symposium on Wood and Pulping Chemistry.Helsinki,1995.
    [40] HoignéJ, Bader H. Kinetics of reactions of chlorine dioxide in water-rate constants for inorganic and organic compounds[J]. Water Res., 1994, 28(1):45.
    [41] Ni Y, Shen X, Van Heiningen A R P. Studies on the reactions of phenolic and non-phenolic lignin model compounds with chlorine dioxide[J]. Journal of Wood Chemistry and Technology, 1994,14(2):243.
    [42] Dence C W. Chemistry of chemical pulp bleaching[M]// Dence C W, Reeve D W. Pulp Bleaching: Principles and Practice. Atlanta: Tappi Press, 1996.
    [43] Reeve D W. Chlorine dioxide in delignification[M]// Dence C W, Reeve D W. Pulp Bleaching: Principles and Practice. Atlanta: Tappi Press, 1996.
    [44] Kolar J J, Lindgren B O, Pettersson B. Chemical reactions in chlorine dioxide stages of pulp bleaching: intermediately formed hypochlorous acid[J]. Wood Science and Technology, 1983,17(2):117.
    [45] Ni Y. A fundamental study of chlorine dioxide bleaching of kraft pulps[D]. Montreal QC: McGill university, 1992
    [46] Emmenegger F, Gordon G. The rapid interaction between sodium chlorite and dissolved chlorine[J]. Inorganic Chemistry,1967,6(3): 663.
    [47] Germgard U, Teder A. Kinetics of chlorine dioxide prebleaching[J]. Trans. Tech.. Sect, CPPA, 1980,6(2):TR31-36
    [48] Lindgren B O, Nilsson T. Lignin reactions during chorine dioxide bleaching of pulp oxidation by chlorite[J]. Svensk Papperstidn, 1972,75(5):161.
    [49] Lindgren B O, Nilsson T. Chlorate formation during the reaction of chlorine dioxide with lignin model compounds[J]. Svensk Papperstidn, 1975,78(2):66.
    [50] Teder A, Tormund D. Carbohydrate degradation in chlorine dioxide bleaching[J]. Tappi Journal, 1978,61(12):59.
    [51] Svenson D R, Kadla J F, Chang Hou-min, et al. Effect of pH on the inorganic species involved in a chlorine dioxide reaction system[J]. Ind. Eng. Chem. Res.,2002,41(24):5927.
    [52] Gordon G, Kieffer R G, Rosenblatt D H. Progress of inorganic chemistry[M]// The Chemistry of Chlorine Dioxide. New York: John Wiley & Sons Inc,1972
    [53] Germgard U, Teder A, Tormund D. Chlorate formation during chlorine dioxide stages of pulp bleaching[J]. Paperi ja Puu, 1981,61(3):127.
    [54] Kieffer R G, Gordon G. Disproportionation of chlorous acid, Part 1, Stoichiometry[J]. Inorganic Chemistry, 1968,7(3):235.
    [55] Ni Y, Kubes G J, Van Heiningen A R P. Rate processes of AOX formation and chlorine species distribution during ClO2 prebleaching of kraft pulp[C]//International Bleaching Conference, Stockholm, 1991.
    [56] Ni Y, Kubes G L, Van Heiningen A R P. Mechanism of chlorate formation during bleaching of kraft pulp with chlorine dioxide[J]. Journal of Pulp and Paper Science, 1993,19(1):1.
    [57] Reeve D W, Weishar K M. Chlorine dioxide delignification-process variables[J]. Tappi J., 1991,74(6):164.
    [58] Svenson D R, Jameel H, Chang Hou-min, et al. Inorganic reactions in chlorine dioxide bleaching of softwood kraft pulp[J]. Journal of Wood Chemistry and Technology, 2006,26(2):201.
    [59] Svenson D R, Chang Hou-min, Jameel H, et al. The role of non-phenolic lignin in chlorate-forming reactions during chlorine dioxide bleaching of softwood kraft pulp[J].Holzforschung, 2005,59(17):110
    [60] Germgard U. Stoichiometry of chlorine dioxide prebleaching of softwood kraft pulp[J]. Svensk Papperstidn, 1982, 85(6):43
    [61] Germgard U, Teder A, Tormund D. Mathematical models for simulation and control of bleaching stages[J]. Nord. Pulp Pap. Res. J, 1987, 2(1):16
    [62] Savoie M, Tessier P. A mathematical model for chlorine dioxide delignification[J]. Tappi J, 1997, 80(6):145-153
    [63] Tessier P, Savoie M. Chlorine dioxide bleaching kinetics of hardwood kraft pulp[J]. Tappi J, 2000, 83(6):50
    [64] Barroca M J M C, Simoes R M S, Castro J A. Kinetics of chlorine dioxide delignification of a hardwood kraft pulp[J]. Appita J, 2001,54(2):190-195
    [65] Barroca M J M C, Simoes R M S, Castro J A. Effect of carry-over on the kinetics of chlorine dioxide delignification of an unbleached hardwood kraft pulp[J]. Appiat J, 2002, 55(1):60-64
    [66] Barroca M J M C, Simoes R M S, Castro J A. Effect of unbleached pulp kappa number on the kinetics of chlorine dioxide delignification[J]. Appita J, 2001, 54(6):532-535
    [67] Barroca M J M C, Castro J A. Kinetics of the first chlorine dioxide bleaching stage (D1) of a hardwood kraft pulp[J]. Ind. Eng. Chem. Res., 2003, 42:4156-4161
    [68] Chandranupap P, Nguyen K L. Kinetics of chlorine dioxide delignification[J]. Appita J, 1998, 51(3):205-208
    [69] McKague A B, Reeve D W, Xi F. Reaction of lignin model compounds sequentially with chlorine dioxide and sodium hydroxide[J]. Nordic Pulp and Paper Research Journal, 1994,9(2):114.
    [70] Seger G E, Chang H M, Jameel H. Chlorine dioxide reactions with non-phenolic lignin model compounds[J]. Tappi J., 1991,74(12):195.
    [71] Hamzeh Y, Benattar N, Mortha G, et al. Modified ECF bleaching sequences optimizing the use of chlorine dioxide[J]. Appita Journal, 2007,60(2):151.
    [72] Al-Dajani W W, Gellerstedt G. On the isolation and structure of softwood residual lignins[J]. Nordic Pulp and Paper Research Journal, 2002, 17(2):193.
    [73] Leroy N, Chirat C, Lachenal D, et al. Extended oxygen delignification. PartⅠ: effects ofmulti-stage oxygen bleaching on softwood kraft pulp and residual lignin. Comparison with chlorine dioxide delignification[J]. Appita Journal, 2004,57(2):137.
    [74] Lachenal D, Hamzeh Y, Chirat C, et al. Getting the best from chlorine dioxide bleaching[J]. JPPS, 2008,34(1):9.
    [75] Hart P, Connell D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets[J]. Tappi J., 2008,24(7):3.
    [76] Rapson W H, Strumila G B. The bleaching of pulp 3rd edition [M]. Atlanta: TAPPI Press, 1979.
    [77] Seger G E, Jameel H, Chang H M. Two-step high-pH/low-pH method for improved efficiency of D-stage bleaching[J]. Tappi J., 1992,75(7):174.
    [78] Joncourt M J, Mortha G, Lachenal D. Investigations of effects of additives during ClO2 prebleaching[C]// Preprints International Symposium of Wood Pulping Chemistry. PAPTAC, 1997
    [79] Rapson W H, Anderson C B. Improving the efficiency of chlorine dioxide bleaching[J]Trans. Tech. Sect., 1977,3(2):52.
    [80] Ni Y, Kubes G J, Van Heiningen A R P. Reduction of the formation of organically bound chlorine during chlorine dioxide bleaching[J]. JPPS, 1994,20(4):103.
    [81] Lachenal D, Joncourt M J, Froment P, et al. Reduction of the formation of AOX during chlorine dioxide bleaching[J]. JPPS, 1998,24(1):14.
    [82] Yoon B H, Wang L J. Ionization of ClO2 in chlorine dioxide delignification[C]// Proceedings of International Pulp Bleaching Conference. SPCI,1998.
    [83] Barnett B. The reactions of chlorous acid with iodine ion and with iodine: the ionization constant of chlorous acid[D]. Berkeley: University of California, 1935.
    [84] White J F, Taylor M C, Vincent G P. Chemistry of chlorites[J]. Ind. Engineering Chemistry, 1942,34(7):782.
    [85] Bebeish A, Wl-Sisi F, Wl-Sisi M K, et al. Bleaching of loomstate cotton fabric using a sodium chlorite/formaldehyde system[J]. Am. Dyest. Reptr, 1993,82(7):31.
    [86] Launer H F, Tomimatsu Y. Stoichiometry of chlorite-aldehyde reactions, analytical procedures[J]. Analytical Chemistry, 1959,31(8):1385.
    [87] Jiang Z H, Lierop B Van, Berry R. Improving chlorine dioxide bleaching withaldehydes[J]. JPPS, 2007,33(2):89.
    [88] Joncourt M J, Froment P, Lachenal D, et al. Reduction of AOX formation during chlorine dioxide bleaching[J]. Tappi J, 2000,83(1):144.
    [89] McDonough T J. Rapid low-impact ECF delignification[C]//Annual Review Chemical Pulping and Bleaching. Atlanta: Institute of Paper Science and Technology, 1995.
    [90] Schwanted T A, McDonough T J. The effect of D stage reaction time on the characteristics of whole effluents and effluents fractions from D(EO) bleaching of oxygen delignified softwood kraft pulp[C]//1994 International Pulp Bleaching Conference. Vancouver, 1994.
    [91] McDonough T J. Advances in the science and technology of chlorine dioxide delignification[C]//International Symposium Celebrating the 10th Anniversary of Department of Paper Science and Engineering. Chunchon: Kangwon National University,1998.
    [92] Dyer T, Ragauskas A J. Developments in bleaching technology focus on reduction capital, operating costs. Pulp and Paper, 2002,76(3):49-51
    [93] Hamzeh Y, Benattar N, Mortha G, et al. Modified ECF bleaching sequences optimizing the use of chlorine dioxide. Appita Journal, 2007,60(2):150-154
    [94] Brage C, Eriksson T, Gierer J. Reactions of chlorine dioxide with lignins in unbleached pulps, PartⅠ:Reactions of chlorine dioxide with monomeric model compounds representing aromatic structures in residual lignins.Holzforschung, 1991,45(1):23-30
    [95] Hart P, Connell D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets. Tappi Journal, 2008,7(7):3-10
    [96] Rodriguez A , Jimenez L, Ferrer J L. Use of oxygen in the delignification and bleaching of pulps[J]. Appita Journal, 2007,60(1):17-22
    [97]华南理工大学科技处.我国首条麦草浆中浓全无氯漂白生产线建成投产[J].中华纸业, 2008,29(18):11
    [98] Barroca M J M C, Marques P J T S, Seco I M, Castro J A A M. Selectivity studies of oxygen and chlorine dioxide in the pre-delignification stages of a hardwood pulp bleaching plant[J]. Industrial and Engineering Chemistry Research, 2001,40(24):5680-5685
    [99] Ni Y, Shen X, Van Heiningen A R P. Studies on the reactions of phenolic and non-phenolic lignin model compounds with chlorine dioxide[J]. Journal of Wood Chemistry and Technology, 1994,14(2):243
    [100] Gierer J, Reitberger T, Yang E, et al. The reactions of lignins with hydrogen peroxide at high temperature PartⅠ: The oxidation of lignin model compounds[J]. Holzforschung, 1997,51(5):428-434
    [101] Gierer J. Formation and involvement of radical in oxygen delignification studied by the autoxidation of lignin and carbohydrate model compounds[J]. Journal of Wood Chemistry and Technology, 2001, 21(4):313-341
    [102]赵德清,陈克复,徐峻,等.麦草浆二氧化氯脱木素效率及纸浆FT-IR分析[J].纸和造纸, 2009,28(7):21-26
    [103]赵德清,陈克复,李军,等.蔗渣Soda-AQ浆二氧化氯脱木素效率研究及纸浆FT-IR分析[J].中华纸业,2009,30(18):47-51
    [104] Jiang Z H, Lierop B V, Berry R. Hexenuronic acid groups in pulping and bleaching chemistry[J]. Tappi Journal, 2000,83(1):67
    [105] Jiang Z H, Lierop B V, Nolin A, et al. A new insight into the bleachability of kraft pulps[J]. Journal of Pulp and Paper Science, 2003,29(2):54
    [106] Fatehi P, Malinen O R, Ni Y-H. Removal of hexenuronic acid from eucalyptus kraft pulps during chlorine dioxide- and ozone-based ECF bleaching sequences[J]. Appita Journal, 2009, 62(3):212-218
    [107] Halttunen M, Vyorykka J, Hortling B, et al. Study of residual lignin in pulp by UV resonance raman spectroscopy[J]. Holzforschung, 2001, 55(6):631-638
    [108] Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅰ): Chlorine dioxide delignification[J]. Journal of Wood Chemistry and Technology, 2004,24(3):201-219
    [109] Tremblay L, Archibald F. Production of a cloned xylanase in Bacillus cereus and its performance in kraft pulp prebleaching[J]. Can J Microbiol, 1993, 39:853–860
    [110] Bim M A, Franco T T. Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching[J]. J Chromatogr B, 2000,743:349–356
    [111] Oakley A J, Heinrich T, Thompson C A, et al. Characterization of family 11 xylanase from Bacillus subtilis B230 used for bleaching[J]. Acta Crystallogr D Biol Crystallogr, 2003,59:627–636
    [112] Duarte M C, Silva E C D, Gomes I M D B, et al. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis pulp for pulp bleaching improvement[J]. Bioresour Technol., 2003,88:9–15
    [113] Madlala M A, Bissoon S, Singh S, Christov L. Xylanase-induced reduction of chlorine dioxide consumption during elemental chlorine-free bleaching of different pulp types[J]. Biotechnology Letters, 2001, 23:345-351
    [114] Viikari L, Kantelinen A, Sundquist J, et al. Xylanases in bleaching: from an idea to the industry[J]. FEMS Microbiol Rev.,1994,13:335–350
    [115] Kenealy W R, Jeffries TW. Enzyme process for pulp and paper: a review of recent developments. In Wood deterioration and preservation: advances in our challenging world[M]. American Chemical Society, Washington DC, 2003: 210–239
    [116] Singh S, Madlala AM, Prior BA. Thermomyces lanuginosus: Properties of strains and their hemicellulases[J]. FEMS Microbiol Rev., 2003, 27:3–16
    [117] Bajpai P. Biological bleaching of chemical pulps[J]. Crit Rev Biotechnol, 2004, 24:1–58
    [118] Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases[J]. FEMS Microbiol Rev., 2005,29:3–23
    [119] Roncero M B, Torres A L, Colom J F, et al. TCF bleaching of wheat straw pulp using ozone and xylanase[J]. Part A: paper quality assessment. Bioresour Technol., 2003,87:305–314
    [120] Li X T, Jiang Z Q, Li L T, et al. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp[J]. Biores Technol., 2005,96:1370–1379
    [121] Ayyachamy M, Vatsala T M. Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of non-woody plant pulp[J]. Lett Appl Microbiol, 2007,45:467–472
    [122] Jiang Z Q, Li X T, Yang S Q, et al. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp[J]. ApplMicrobiol Biotechnol, 2006,70:65–71
    [123] Manimaran A, Kumar K S, Permaul K, et al. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching[J]. Appl. Microbiol. Biotechnol., 2009, 81:887-893
    [124] Ninawe S, Kuhad R C. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32[J]. Bioresource Technology, 2006, 97:2291-2295
    [125]王少光,陈嘉川,武书彬,等.两种木聚糖酶对麦草浆助漂效果的对比[J].纸和造纸,2006, 25(6):65-67
    [126]尤纪雪,廖金华,陈星星,等. 3种不同酶(体系)降解木质素机制初探[J].中国造纸学报, 2008, 23(3):32-36
    [127]张勇,蒲俊文,吴玉英,等.两种木聚糖酶辅助漂白三倍体毛白杨KP浆对比研究[J].造纸科学与技术, 2007, 26(3):1-5
    [128]李海龙,陈嘉川,杨桂花,等.木聚糖酶处理对NaOH-AQ麦草浆HD漂白的影响[J].中国造纸学报,2005, 20(1):48-51
    [129]李海龙,陈嘉川,詹怀宇,等.木聚糖酶处理对麦草浆纤维长度和粗度的影响[J].中华纸业, 2007, 28(10):49-51
    [130]李海龙,陈嘉川,詹怀宇,等.木聚糖酶处理对麦草浆氧脱木素的影响[J].中国造纸,2006, 25(12):1-3
    [131]李海龙,陈嘉川,詹怀宇,等.木聚糖酶处理对纸浆中己烯糖醛酸含量的影响[J].华南理工大学学报(自然科学版),2008, 36(7):42-46
    [132]李海龙,陈嘉川,詹怀宇,等.木聚糖酶处理麦草浆纤维形态变化的研究[J].中华纸业,2007, 28(6):45-47
    [133]周学飞.木聚糖酶处理中碳水化合物的降解及对木素溶出吸能的影响[J].中国造纸学报,2006, 21(3):16-19
    [134]孙庆贺,赵建,张召,等.木聚糖酶预处理对麦草化学浆漂白废水污染负荷的影响[J].中国造纸学报,2008, 23(1):26-28
    [135]于冬梅,陈克复,赵传山,等.木聚糖酶预处理对纸浆特定光吸收系数的影响[J].纸和造纸,2006,25(5):50-53
    [136]王之晖,宋乾武.木聚糖酶在硫酸盐木浆辅助漂白中的应用研究[J].环境工程学报,2007,1(3):58-61
    [137]刘丽娟,冯文英.木聚糖酶在麦草制浆造纸中的应用[J].中国造纸,2008,27(10):58-61
    [138]赵永建,徐林,徐重斌.木聚糖酶在烧碱法苇浆ECF漂白中的应用[J].造纸化学品,2006,18(6):28-30
    [139]毛连山,余世袁.木聚糖酶在纸浆漂白中应用的研究现状[J].中国造纸学报,2006, 21(3):93-98
    [140]姜松.竹浆木聚糖酶辅助漂白[J].中国造纸,2008,27(10):72-73
    [141]李雍,蒲俊文,漆小华,等.竹浆粕漂前与漂后木聚糖酶处理的对比[J].纸和造纸,2008,27(6):70-72
    [142]陈嘉川,杨桂花,李昭成,等.木聚糖酶在麦草浆漂白中的应用[J].中国造纸学报, 1997,12(增刊):47
    [143]洪枫,刘明山,房桂干,等.木聚糖酶预处理对麦草化学机械浆可漂性及白度的改善[J].林产化学与工业, 2001,21 (3):21
    [144]葛培锦,赵建,陈建宏,等.麦草生物化机浆木聚糖酶预处理H2O2漂白研究[J].中国造纸学报, 2005, 20(1):66
    [145]于红,秦梦华,卢雪梅,等.麦草生物化机浆的木聚糖酶漂白[J].纤维素科学与技术, 2004, 12(1):14
    [146]毛连山,尤纪雪,姚春才.木聚糖酶处理工艺对麦草浆漂白性能的影响[J].中国造纸, 2005,24(7):6
    [147]毛连山,余世袁.木聚糖酶在漂白中应用的经济分析[J].中华纸业,2006,27(3):43-45
    [148] Bailey M, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity[J]. J. Biotechnol, 1992, 23:257–270
    [149] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal. Chem., 1959, 31:426–428
    [150] Patel A J, Grabski A C, Jeffries T W. Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanases[J]. Appl Microbiol Biotechnol, 1993, 39:405–412
    [151] Gupta S, Bhushan B, Hoondal GS. Isolation, purification and characterization ofxylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp[J]. J. Appl. Microbiol, 2000, 88:325–334
    [152] Wong K Y, Jong E D, Saddler J N, et al. Mechanism of xylanase aided bleaching of kraft pulp[J]. part 2: Target substances. Appita Journal, 1997, 50(6):509-518
    [153] Daneault C, Leduc C, Valade J L. The use of xylanase in kraft pulp bleaching: a review[J]. Tappi J, 1994, 77(6):125-131
    [154] Manji A H. Extended usage of xylanase enzyme to enhance the bleaching of softwood kraft pulp[J]. Tappi Journal, 2006,5(1):23-26
    [155] Brogdon B N, Lucia L A. New insight into lignin modification during chlorine dioxide bleaching sequence (Ⅳ): The impact of modifications in the (EP) and (EOP) stages on the D1 stage[J]. Journal of Wood Chemistry and Technology, 2005,25:149-170
    [156] Garg A P, Roberts,J C, McCarthy A J. Bleach boosting effect of cellulose-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp[J]. Enzyme Microb Technol, 1998, 22:594-598
    [157] Bissoon S, Christov L, Singh S. Bleach boosting effects of purified xylanase from Thermomyces lanuginosus SSBP on bagasse pulp[J]. Process Biochem, 2002, 37:567-572
    [158] Ahlawat S, Battan B, Sudha DS, et al. Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp[J]. J Ind Microbiol Biotechnol, 2007, 34:763–770
    [159] Bega QK, Bhushanb B, Kapoora M, Hoondala G S. Enhanced production of a thermostable xylanase from Streptomyces sp.QG-11-3 and its application in biobleaching of eucalyptus kraft pulp[J]. Enzyme and Microbial Technology, 2000,27: 459–466
    [160] Nissen A M, Anker L, Munk N, et al. Xylanase for the pulp and paper industry[M]. In: Visser J, Beldman G, Kustersvan someren M A, et al. (Eds.), Prog. Biotechnol., 1992,7: 325–337.
    [161] Khandeparkar R, Bhosle N B. Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp[J]. Bioresource Technology, 2007,98:897–903
    [162] Hamzeh Y, Benattar N, Mortha G, et al. Modified ECF bleaching sequences optimizing the use of chlorine dioxide[J]. Appita Journal, 2007,60(2):151
    [163] Lachenal D, Hamzeh Y, Chirat C, et al. Getting the best from chlorine dioxide bleaching[J]. JPPS, 2008,34(1):9-12
    [164] Jiang Z-H, Lierop B Van, Berry R. Improving chlorine dioxide bleaching with aldehydes[J]. JPPS, 2007,33(2):89-94
    [165] Lachenal D, Chirat C. High temperature chlorine dioxide bleaching of hardwood kraft pulp[J]. Tappi Journal, 2000, 83(8):96
    [166] Ventorim G, Colodette J L, Eiras K M. The fate of chlorine species during high temperature chlorine dioxide bleaching[J]. Nordic Pulp and Paper Research Journal, 2005, 20(1):7-11
    [167] Eiras K M, Colodette J L. Eucalyptus kraft pulp bleaching with chlorine dioxide at high temperature[J]. JPPS, 2003, 29(2):64-69
    [168] Ragnar M, Backa S. Hot chlorine dioxide bleaching–a modified approach[J]. Nordic Pulp and Paper Research Journal, 2004, 19(4):417-419
    [169] Hart P, Connell D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets[J]. Tappi Journal, 2008,24(7):3-11
    [170] Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅰ): Chlorine dioxide delignification[J]. Journal of Wood Chemistry and Technology, 2004,24(3):201-219
    [171] Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅱ): Modifications in extraction (E) and chlorine dioxide bleaching (D1) [J]. Journal of Wood Chemistry and Technology, 2004,24(3):221-237
    [172] Brogdon B N, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅲ): The impact of modifications in the (EO) versus E stages on the D1 stage[J]. Journal of Wood Chemistry and Technology, 2005,25:133-147
    [173] Brogdon B N, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅳ): The impact of modifications in the (EP) and (EOP) stages on the D1 stage[J]. Journal of Wood Chemistry and Technology, 2005,25:149-170
    [174]王少光,陈嘉川,杨桂花,等. NaOH-AQ麦草浆二氧化氯漂白工艺的研究[J].中国造纸, 2004,23(5):5-7
    [175]王少光,陈嘉川,杨桂花. NaOH-AQ麦草浆二氧化氯漂白的工业化试验[J].中国造纸, 2005,24(5):34-37
    [176]李海龙,陈嘉川,杨桂花,等.麦草NaOH-AQ浆ECF漂白[J].中国造纸,2006, 25(6):35-37
    [177]曾健,陈克复,李伟伟,等.纸浆漂白前螯合预处理条件对金属离子去除的影响[J].中国造纸学报, 2009, 24(2):22-26
    [178]曾健,李伟伟,等.酸性亚硫酸盐桉木浆全无氯漂白[J].纸和造纸, 2009, 28(2):18-21
    [179] Li J, Gellerstedt G. On the structural significance of the kappa number measurement[J]. Nordic Pulp and Paper Research Journal, 1998, 13(2):153
    [180] Li J, Gellerstedt G. Kinetics and mechanism of kappa number determination[J]. Nordic Pulp and Paper Research Journal, 1998,13(2):147
    [181] McDonough T, Rawat N, Turner M. ECF bleachability of softwood kraft pulps made with different effective alkali charges[C]//51st APPITA Annual General Conference, 1997:255
    [182] Rapson W H, Strumila G B. The bleaching of pulp 3rd edition [M]. Atlanta: TAPPI Press, 1979
    [183] Rapson W H, Anderson C B. Improving the efficiency of chlorine dioxide bleaching[J]. Trans. Tech. Sect., 1977,3(2):52
    [184] Yoon B H, Wang L J. Ionization of ClO2 in chlorine dioxide delignification[C]// Proceedings of International Pulp Bleaching Conference, SPCI,1998:407-412
    [185] Lachenal D, Joncourt M J, Froment P, et al. Reduction of the formation of AOX during chlorine dioxide bleaching[J]. JPPS, 1998,24(1):14-17
    [186] Joncourt M J, Froment P, Lachenal D. Investigations on the effect of additives during ClO2 prebleaching[M]. Preprints International Symposia. Wood Pulping Chem., PAPTAC, 1997:J6-1-J6-5
    [187] Ni Y, Kubes G J, Van Heiningen A R P. Reduction of the formation of organically bound chlorine during chlorine dioxide bleaching[J]. JPPS, 1994,20(4):103-106
    [188] Seger G E, Jameel H, Chang H M. Two-step high-pH/low-pH method for improved efficiency of D-stage bleaching[J]. Tappi J., 1992,75(7):174-180
    [189] Rapson W H, Anderson C B. Improving the efficiency of chlorine dioxide bleaching[J].Trans. Tech. Sect., 1977,3(2):52-55
    [190] Reeve D W, Weishar K M. Chlorine dioxide delignification:process variables[J]. Tappi J., 1991,74(6):164-167
    [191] Solia R, Lehikoski O, Virkola N E. On the reactions taking place during the chlorine dioxide bleaching stage [J]. Svensk Papperstidn, 1962,65:632
    [192] Kolar J J, Lindgren B O, Pettersson B. Chemical reactions in chlorine dioxide stages of pulp bleaching: intermediately formed hypochlorous acid [J]. Wood Science and Technology, 1983,17:117-128
    [193] Ni Y. A fundamental study of chlorine dioxide bleaching of kraft pulps[D]. PhD Thesis, 1992, McGill University, Montreal QC, Canada
    [194] Lindgren B O. Chlorine dioxide and chlorine oxidations of phenols related to lignin[J]. Svensk Papperstidn, 1971,74(3):57-63
    [195] Strumila G B, Rapson W H. Chlorine dioxide oxidation of lignin model phenols[C]// Preprints Canada Wood Chemistry Symposium, Technical Sections. CPPA, 1976
    [196] Emmenegger F, Gordon G. The rapid interaction between sodium chlorite and dissolved chlorine[J]. Inorganic Chemistry,1967,6(3): 663-665
    [197] Gordon G, Kieffer R G, Rosenblatt D H. Progress of inorganic chemistry, The Chemistry of Chlorine Dioxide [M]. John Wiley & Sons Inc., 1972,115:201-286
    [198] Barnett B. The reactions of chlorous acid with iodine ion and with iodine: the ionization constant of chlorous acid [D]. PhD Thesis, University of California, Berkeley, CA, USA,1935
    [199] White J F, Taylor M C, Vincent G P. Chemistry of chlorites[J]. Ind. Engineering Chemistry, 1942,34(7):782-792
    [200] Skelly I K. The theory and practice of sodium chlorite bleaching [J]. J. Soc. Dyers Colourists, 1960,76:469
    [201] Lindgren B O, Nilsson T. Lignin reactions during chorine dioxide bleaching of pulp oxidation by chlorite [J]. Svensk Papperstidn, 1972,75:161-168
    [202] Hebeish A, WL-SISI F, WL-BISI M K, et al. Bleaching of loomstate cotton fabric using a sodium chlorite/formaldehyde system [J]. Am. Dyest. Rept, 1993,82(6):40-43
    [203] Launer H F, Tomimatsu Y. Stoichiometry of chlorite-aldehyde reactions, analyticalprocedures[J]. Analytical Chemistry, 1959,31(8):1385-1390
    [204] Brogdon B N, Lucia L A. New insight into lignin modification during chlorine dioxide bleaching sequences (Ⅳ): The impact of modifications in the (EP) and (EOP) stages on the D1 stage[J]. Journal of Wood Chemistry and Technology, 2005,25:149-170
    [205] Jiang Z-H, Lierop B Van, Berry R. Improving chlorine dioxide bleaching with aldehydes[J]. JPPS, 2007,33(2):89-94
    [206] Jiang Z-H, Van Lierop B, Berry R. et al. The first mill trial of aldehyde-enhanced bleaching[C]// International Pulp and Bleaching Conference Proceedings, SPCI, 2005:206-215
    [207] Gellerstedt G, Lindfors E-L. Structural changes in lignin during kraft pulping[J]. Holzforschuang, 1984,38:151
    [208] Gellerstedt G, Lindfors E-L. Structural changes in lignin during kraft pulping[J]. Svensk Papperstidn, 1984,15:R115-R118
    [209]李峰.甲醛及其衍生物[M].北京:化学工业出版社,2006
    [210]梁榕源.预冷冻浓缩系统与气相色谱-质谱联用测定空气中挥发性有机物[J].中国环境检测,2008,24(1):17-40
    [211]侯轶,李友明,郑振山.造纸法烟草薄片废水中污染物的分析[J].华南理工大学学报(自然科学版),2008,36(3):95-98
    [212]孙剑辉,冯精兰,孙瑞霞. GC-MS分析碱法草浆造纸废水中的有机污染物组成[J].中国环境检测,2005,21(1):53-55
    [213]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].第四版,北京:中国环境科学出版社,2002
    [214] Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences (Ⅰ): Chlorine dioxide delignification[J]. Journal of Wood Chemistry and Technology, 2004,24(3):201-219
    [215] Eriksson O, Lindgren B O. About the linkage between lignin and hemicelluloses in wood[J]. Svensk Papperstiding, 1997, 80:59-63
    [216] Minor J L, Chemical linkage of pine polysaccarides to lignin[J]. Journal of Wood Chemistry and Technology, 1982, 2(1):1-16
    [217] Iverson T. Lignin-carbohydrate bonds in a lignin-carbohydrate complex isolated fromspruce[J]. Journal of wood chemistry and technology, 1985, 19:243-251
    [218] Bj?rkman A. Studies on finely divided wood,Ⅴ: the effect of milling[J]. Svensk Papperstidn, 1956, 60:243-251
    [219] Yaku F, Tanaka R, Koshijima T. Lignin carbohydrate complex. Part 4. Lignin as side-chain of the carbohydrate in Bj?rkman LCC[J]. Holzforschung, 1981, 35(4):177-181
    [220] Iversen T, Westermark U, Samuelsson B. Some comments on the isolation of galactose-containing lignin carbohydrate complexes[J]. Holzforschung, 1987, 41(2):119-121
    [221] Koshijima T, Yaku F, Tanaka R. Fractionation of Bj?rkman LCC from pinus densiflora[J]. Proc. Appl. Polym. Symp., 1976, 28:1025-1039
    [222] Tamminen T L, Hortling B R. Isolation and characterization of residual lignin[M]. Tappi Press, Atlanta , 1999:1-42
    [223] Yamasaki T, Hosoya S, Chen C L, et al. Characterization of residual lignin in kraft pulp. In: Proceedings of the 1st international symposium on wood and pulping chemistry, Stockholm, Sweden, 1981,2:34-42
    [224] Gellerstedt G, Pranda J, Lindfors E L. Structural and molecular properties of residual birch kraft lignin[J]. J Wood Chem Technol, 1994, 14:467-482
    [225] Argyropoulos D S, Sun Y, Palus E. Isolation of residual kraft lignin in high yield and purigy[J]. J. Wood Chem. Technol., 2002, 28(2):50-53
    [226] Wu S, Argyropoulos D S. An improved method for isolating lignin in high yield and purity[J]. JPPS, 2003, 29(7):235-240
    [227] J??skel?inen A S, Sun Y, Argyropoulos D S,et al. The effect of isolation method on the chemical structure of residual lignin[J]. Wood Sci Technol, 2003, 37:91-102
    [228] Capanema E A, Balakkshin M Y, Chen CL. An improved procedure for isolation of residual lignins from hardwood kraft pulps[J]. Holzforschung, 2004, 58:464-472
    [229] Al-Dajani W W, Gellerstedt G. On the isolation and structure of softwood residual lignins[J]. Nordic pulp and paper research journal, 2002, 17(2):193-198
    [230] Halttunen M, Vy?rykk? J, Horting B, et al. Study of residual lignin in pulp by UV resonance raman spectroscopy[J]. Holzforschung, 2001,55:631-638
    [231] Ludwig C, Nist B, Mccarthy J L. The high resolution nuclear magnetic resonancespectroscopy of protons in acetylated lignin[J]. The Journal of the American Society, 1964, 86:1196-1202
    [232] Lundquist K. NMR studies of lignins, 4. Investigation of spruce lignin by 1H-NMR spectroscopy[J]. Acta Chemica Scandinavica, 1980, B34(1):21-26
    [233] Lundquist K. 1H-NMR spectral studies of lignins, quantitative estimates of some types structural elements[J]. Nordic pulp and paper research journal, 1991, 3:140-146
    [234] Lundquist K. NMR studies of lignins, 2. Interpretation of the 1H-NMR spectrum of acetylated birch lignin[J]. Acta Chemica Scandinavica, 1979, B33(1):27-30
    [235] Lundquist K, Stem K. Analysis of lignins by 1H-NMR spectroscopy[J]. Nordic pulp and paper research journal, 1989, 3:210-213
    [236] Lundquist K. Proton(1H) NMR spectroscopy, In: Lin S Y and Dence C W(Eds.) Methods in lignin chemistry[M]. Springer Verlag Berlin Heidelberg, 1992:242-249
    [237] Li S, Lundquist K. A new method for the analysis of phenolic groups in lignin by 1H-NMR spectroscopy[J]. Nordic pulp and paper research journal, 1994, 3:191-195
    [238] Gellerstedt G, Robert D. Quantitative 13C-NMR analysis of kraft lignin[J]. Acta Chemica Scancinativica, 1987, B41:541-546
    [239] Kringstad K, Morck R. 13C-NMR spectra of kraft lignin[J]. Holzforschung, 1983, 37(5):237-244
    [240] Robert D, Gellelrstedt G, Bardet M. Carbon-13 NMR analysis of lignins obtained after sulfonation of steam explored aspen wood[J]. Nordic pulp and paper research journal, 1986, 3:18-25
    [241] Xia Z-C, Akim L G, Argyropoulos D S. Quantitative 13C-NMR analysis of lignins with internal standard[J]. J. Agric. Food Chem., 2001, 49:3573-3578
    [242] Argyropoulos D S, Bolker H I, Heitner C. 31P-NMR spectroscopy in wood chemistry part 5. qualitative analysis of lignin functional groups[J]. Journal of chemistry and technology, 1993,13(2):187-212
    [243] Granata A, Argyropoulos D S. 2-chloro-4,4,5,5-tetramethyl-1,2,3-dioxaphosholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins[J]. Journal of agriculture and food chemistry, 1995, 43:1538-1544
    [244] Argyropoulos D S. 31P-NMR spectroscopy in wood chemistry. A review of recentprogress// International symposium on wood and pulping chemistry proceedings, Beijing, May 25-28, 1993, 2:776-786
    [245] Tohmura S, Argyropoulos D S. Determination of Arylglycerol-β-aryl Ethers and Other Linkages in Lignins Using DFRC 31P NMR[J]. J. Agric. Food Chem, 2001, 49, 536-542
    [246]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989
    [247]杨淑慧.植物纤维化学[M].北京:中国轻工业出版社,第三版,2001
    [248]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005
    [249]姚新生.有机化合物波谱分析[M].北京:中国医药科技出版社,2004
    [250]谭杨.两种工业木素的化学结构与热解规律研究[D].广州:华南理工大学博士学位论文,2009
    [251]刘玉.三倍体毛白杨EMCC蒸煮和TCF漂白及其木素结构变化的研究[D].广州:华南理工大学博士学位论文,2005
    [252]覃程荣.非木材纸浆对环境友好的漂白新技术及其机理的研究[D].广州:华南理工大学博士学位论文,2004
    [253]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003
    [254] Jiang Z H, Argyropoulos D S. Correlation analysis of 31P-NMR chemical shifts with substituent effects of phenols[J]. Magn Reson Chem, 1995, 33:375-382
    [255] Oskar F, Dimitris S A, Danielle R. Determination of hydroxyl groups in lignins evaluation of 1H-, 13C-, 31P-, FTIR and wet chemical methods[J]. Holzforschung, 1994, 48:387-394
    [256] Dimitris S, Hongyang L. Quantitative 31P-NMR detection of oxygen-centered and carbon-centered radical species[J]. Bioorganic & medical chemistry, 2006, 14:4017-4028
    [257] Poulomi S, Ragauskas A J. Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine[J]. Bioenerg Resource, 2008, 1:205-214
    [258] WU S B, GUO Y L. Chemical structures and thermochemical properties of bagasse lignin[J]. For Stud China, 2006, 8(3):34-37
    [259] HE Z Q, MAO J D. Characterization of plant-derived water extractable organic matter by multiple spectroscopy techniques[J]. Biol Fertil Soils, 2009, 5(5):127-131
    [260] Feng X, JIAN X J. Fractional isolation and structure characterization of mild ball-milled lignin in high yield and purity from Eucommia ulmoides Oliv[J]. Wood Sci Technol, 2008, 42:211-226
    [261]孔凡功.三倍体毛白杨硫酸盐浆电化学介体催化脱木素和漂白及其机理研究[D].广州:华南理工大学博士学位论文,2006
    [262]曹石林.竹子清洁制浆漂白及氧脱木素过程中含氧自由基的作用机理研究[D].广州:华南理工大学博士学位论文,2006
    [263]郭三川.速生桉木低污染制浆漂白及纸浆纤维性质研究[D].广州:华南理工大学博士学位论文,2009
    [264]天津轻工业学院制浆造纸研究室编.国内外非木材纤维制浆造纸的经验和发展趋势[M].北京:中国轻工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700