生物柴油燃料喷雾、燃烧及碳烟生成过程可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业化进程的日益提高,能源短缺和环境污染已成为我国乃至世界各国都亟待解决的重要问题。生物柴油作为清洁的可再生能源,由于其原料广泛、燃烧和排放性能优良,全球大多数国家均深刻认识到合理开发利用生物柴油的重要性。而现阶段,对于生物柴油燃料从缸内喷射蒸发、着火、燃烧到排放物生成的全过程处于热点研究阶段。因此,本文对生物柴油燃料缸内行为进行可视化实验研究,对从根本上提高燃油雾化效果、改进燃烧模式、降低污染物排放等具有重要的作用和意义。
     本文实验采用可视化定容燃烧器模拟传统柴油机活塞运行到上止点时的缸内高温、高压环境。应用现阶段先进的激光测试技术,使用高速图片采集设备,对不同负荷工况、不同掺混比例的生物柴油燃料的喷雾、燃烧及碳烟生成过程进行可视化分析研究。使用一种全新的碳烟测量方法--光源前置消光法对完整的碳烟生成过程进行二维瞬态分布及质量测量。不同于传统碳烟测量方法,光源前置消光法将采集设备和光源布置在监测对象同侧,仅需一个光学窗口即可,且激光两次穿过碳烟生成区域,因此更适用于生物柴油等低碳烟生成燃料测量。利用散光法测量燃料喷射过程中油束液态贯穿距随时间的变化规律,清晰的了解生物柴油燃料雾化、破碎和与缸内空气的混合过程。采用高速摄像机和700nm低波长滤光镜头直接拍摄生物柴油燃烧火焰发展情况,研究自然着火时刻和区域、火焰传播方向、自然火焰发光度等参数。实现燃料喷雾、燃烧和碳烟随时间、空间变化的联合测量及可视化研究分析。
     试验过程中设置定容燃烧器缸内密度14.8kg/m3,氧含量21%不变,缸内环境温度变化范围800K~1200K,模拟传统柴油机无增压、无EGR条件下各负荷工况。首先,以欧洲低硫柴油作为基础燃料,生物柴油掺混比例为别为100%,50%和20%,对生物柴油燃料的喷雾、燃烧及碳烟生成特性进行试验研究。然后,针对生物柴油燃料特性差异,选择正丁醇作为添加剂,小比例掺混到生物柴油燃料中,对高温、高压环境下燃料的雾化蒸发、着火特性、火焰强度及分布、碳烟质量及分布等规律进行研究。试验过程中发现,生物柴油添加正丁醇燃料喷雾过程中产生液态贯穿距突然下降的现象,可能与燃料的挥发性差异导致的微爆现象有关。因此本文在可变缸内高温、高压的条件下进行单纯的燃料喷射实验,通过降低缸内氧浓度抑制点火和燃烧的方式消除燃烧过程对微爆现象的影响,研究生物柴油和正丁醇掺混比例和环境温度对微爆发生时刻、持续期和微爆强度的影响规律。并利用KIVA-3V软件,建立微爆不稳定性模型,定义燃油液滴微爆发生及其剧烈程度的标准。模拟环境温度、燃料成分、微爆发生时的粒子直径对微爆的影响,优化混合燃料中轻、重质组分比例,数值模拟结果与试验结果吻合良好。
     研究结果表明:燃油油束从喷孔喷出后,迅速向下游贯穿,经历短暂时刻液态贯穿距达到最大,并保持稳定直至喷油过程结束。生物柴油燃料由于沸点、粘度和表面张力均高于传统柴油燃料,从喷孔喷出时燃油颗粒不宜破碎和扩散,因此环境温度较低时生物柴油液态贯穿距离高于同负荷工况下低硫柴油燃料10%-12%左右。
     生物柴油燃料燃烧压力和放热率变化规律与低硫柴油燃料相似,由于其热值略低于柴油,因此随生物柴油掺混比例增加,燃烧压力和放热率略有下降。环境温度较低时,生物柴油燃料着火时刻略晚于低硫柴油燃料,但由于燃料中含氧,预混合阶段燃烧速度较快。随环境温度升高,燃料特性导致的着火延迟期差异不再明显,燃烧后期表现出强于低硫柴油的扩散燃烧现象。
     由于生物柴油燃料中氧含量10%,因此燃烧初期自然火焰发光度较低,没有碳烟生成。环境温度较低时,生物柴油和低硫柴油着火点均位于缸壁附近的预混合良好区,燃烧后期产生的少量碳烟集中在油束下游富油低氧区域。随环境温度升高,生物柴油着火时刻提前,着火点逐渐向上游喷孔方向移动,预混合过程减弱导致生物柴油碳烟生成质量有所增加,相应的自然火焰发光度随之升高。各种负荷工况下,生物柴油燃料燃烧相对完全,火焰温度较低且分布较均匀,火焰中部没有发光度集中的现象。不同于低硫柴油两个碳烟生成集中区:油束下游火焰集中区和缸壁附件低氧含量区,生物柴油燃料扩散燃烧后期火焰不易到达缸壁形成高温低氧区,其碳烟生成区主要集中在油束下游火焰中央区。因此其碳烟生成质量约为低硫柴油燃料30%-40%左右。生物柴油掺混比例达到20%,中、高负荷工况即可显著降低自然火焰发光强度,平均瞬态碳烟生成量100ug左右,为同工况下柴油燃料碳烟排放的50%~60%左右,进一步提高生物柴油掺混比例,自然火焰发光度和碳烟排放不再明显降低。
     研究表明正丁醇作为生物柴油添加剂,不仅可以极大限度的补偿生物柴油相对于传统柴油的燃料特性差异,而且可以在较大温度变化范围内实现生物柴油与传统柴油任意比例互溶,提高生物柴油燃料稳定性。同时正丁醇作为清洁的含氧燃料,小比例添加到生物柴油燃料中可显著改善燃料喷雾特性、延长着火延迟期,提高预混合燃烧比例。添加5%~10%正丁醇燃料表现出明显的低碳烟生成率和高碳烟氧化率。瞬时碳烟生成质量相对于B20生物柴油燃料降低40%以上。
     此外,生物柴油燃料添加正丁醇可显著提高混合燃料中轻、重质组分的挥发性差异,在特定工况下发生微爆,促使燃料与周围空气良好混合。随燃料中生物柴油和正丁醇掺混比例提高,在相对较低的环境温度中即发生微爆现象。随环境温度升高,微爆现象起始时间提前。同时数值模拟结果显示:由于生物柴油相对于传统柴油更易使气泡膨胀,而正丁醇超热温度和沸点温度的温差较低,易于实现结晶成核,因此环境压力相对较低时,即表现出较高的微爆趋势。微爆发生的最佳掺混比例为生物柴油体积分数70%,正丁醇体积分数30%。
With the increase of industrialization of the whole world, energy shortage and environmental pollution become the most serious problems on the earth. As a clean and alternative energy, biodiesel can be produced from broad available feedstock, possess excellent combustion and emission characteristics, therefore more and more countries have deeply cognized that biodiesel using is important for reducing foreign dependence and saving domestic fuel market. At present, the study on biodiesel is considered prevalent and hot trend. Consequently, my works is mainly aimed at the optical spray, combustion and soot formation research by using biodiesel fuel. It will conduce to elevate fuel evaporation, improve combustion pattern and reduce exhaust emission preferably.
     In this thesis, high temperature and high pressure environment produced in an optical constant volume chamber simulates the real engine working conditions. Apply advanced laser testing and high speed imaging technology, biodiesel spray, combustion and soot formation process are investigated under various engine operation and different blend ratio conditions. As a new method measured soot mass, Forward Illumination Light Extinction (FILE) method records 2D soot distribution and instantaneous mass result during the whole soot formation process. Different from traditional soot measured method, FILE makes laser and high speed camera assembled on the same side, laser pass though soot could twice, and only one optical window required. So it is very fit for low soot emission fuels. Light scattering method is used to examine liquid jet penetration in order to investigate fuel evaporation, break up and mix with fresh air clearly. Auto ignition timing and location, flame propagation and natural flame luminosity are also observed by using high speed camera and 700 nm ND filter. The 2D time-resolved results of fuel spray, combustion and soot formation can be combined in temporal and spatial measurement simultaneously.
     A typical natural aspiration and no EGR operation condition for diesel engine is chosen: constant 21% oxygen content (by volume) and density of 14.8 kg/m3 in the chamber, ambient temperature varied from 800K to 1200K. Based on ultra sulfur diesel, the soybean biodiesel of 20%, 50% and 100% volume fraction are examined on spray, combustion and soot formation. Then, as compensate fuel properties difference from diesel, adds n-butanol to biodiesel fuel by low blend ratio, fuel combustion pressure and heat release rate, liquid jet penetration, natural flame luminosity and soot emission are researched. Measured results showed that sudden but repeatable drop of liquid jet penetration length by using B10D80N10 blend fuel, suppose micro- explosion exist. Therefore, utter fuel spray experiment by using biodiesel fuel with n-butanol additive implement in high temperature and pressure environment. In order to eliminate the effect of combustion on spray jet, amount of excess oxygen content is set to zero. This ensures that spray behavior is not distorted by the combustion process of the fuel. At last, a numerical model of micro-explosion in multi-component bio-fuel droplets is proposed by using KIVA-3V software. The onset of micro-explosion is determined by the homogeneous nucleation theory and characterized the effect of ambient temperature, fuel component and normalized onset radius. The numerical predictions match with experimental data very well.
     The experimental results show that the jet penetration is firstly detected when injection initiation, then reach the maximum penetration depth rapidly, and keep stable until injection end. It can be concluded that the fuel evaporation process mostly received the energy from hot ambient air and the influence from flame at the downstream is limited. Because biodiesel fuel has higher boiling point, kinematic viscosity and surface tension than diesel fuel, the liquid jet penetration length of biodiesel is 10%-12% longer than the ones of diesel at the same operation conditions.
     There is no obvious difference of fuel combustion pressure and heat release rate between biodiesel and diesel. With biodiesel blend ratio increasing, the combustion pressure and heat release rate decreases slightly resulting from lower heat value of biodiesel fuel. At relative lower ambient temperature condition, biodiesel fuel has longer ignition delay timing, but the premixed burn speed is higher than diesel fuel because of oxygen content in biodiesel fuel. With ambient temperature increasing, the ignition delay becomes unperceivable for all fuels, and biodiesel represents stronger diffusion combustion process.
     Due to 10% oxygen content in biodiesel, the weak natural flame luminosity and no soot formation shown at initial phase. At low ambient temperature condition, the auto ignition locate well premixed area near cylinder wall for both fuels, and a small quantity of soot generate at rich fuel region downstream of liquid spray when the combustion developed. With ambient temperature increasing, ignition delay of biodiesel advance and auto ignition move to jet upstream. Soot formation and natural flame luminosity enhance resulting from stronger diffusion combustion phase. At all engine operation conditions, biodiesel fuel burn completely, flame temperature uniformly distribute and no concentrated luminosity. Different from two soot high density area for diesel fuel: jet downstream of rich fuel and near wall region where low fresh air entrain, biodiesel flame is hard to reach cylinder wall and main soot distribution locate at jet downstream. So pure biodiesel fuel produces soot mass 30%-40% lower than diesel fuel. When biodiesel blend ratio is 20% by volume, natural flame luminosity distinctly reduce, and average soot mass is 100ug which is 50%-60% of diesel fuel probably. They don’t go on lessening even biodiesel proportion heightening.
     Biodiesel with n-butanol additive, which not rather has the similar fuel properties to diesel, but also enhance stability of mixture fuel and keep homogeneous miscible liquid with no particles or crystals when atmospheric temperature fluctuate widely. Adding n-butanol to biodiesel fuel at low blend ratio, improve liquid atomization and evaporation, extend ignition delay and enhance premixed combustion process. B10D80N10 and B15D80N5 blend fuels demonstrate evident low soot formation rate and high soot oxygenation rate, average soot mass decrease 40% than B20D80 fuel consequently.
     Otherwise, Biodiesel with n-butanol additive possess enlarged difference of volatility between light component and heavy component in mixed fuel that induces micro-explosion at specifical conditions which promotes fresh air and fuel mix well. High n-butanol and biodiesel content bring out micro-explosion occur at relative low ambient temperature environment. The micro-explosion time advances with ambient temperature increasing. Numerical simulation results show that stronger micro-explosion exists at relative low ambient pressure environment, since on the one hand the less volatile biodiesel surface contributes to bubble expansion, on the other hand n-butanol has adjacent boiling point and super heat limit which is prone to nucleation. The optimal composition for micro-explosion is 30% n-butanol and 70% biodiesel.
引文
[1]中国汽车工业协会.2009年世界各国(地区)汽车产量明细,2010.05.06.
    [2]中国汽车工业协会.2010年中国汽车行业产销量统计数据,2011.01.20.
    [3] R. Burrett, M. Eckhart. Renewable Energy Policy Network for the 21st Century, 2007.
    [4]刘飞翔,刘伟平.基于能源安全与环境思考的生物质能产业发展.科技与产业,2009,Vol.10: 25-28.
    [5]薛志忠,吴新海.国内外生物柴油研究进展.现代农业科技,2010,Vol.16:293-297.
    [6]赵宗保,华艳艳,刘波.中国如何突破生物柴油产业的原料瓶颈.中国生物工程,2005,25(11):1-6.
    [7] G?kalp B, Soyhan H S, Sara? H ? . BioSiesel aSSition to stanSarS Siesel fuels anS marine fuels useS in a Siesel engine: effects on emission characteristics anS first- anS seconS-law efficiencies. Energy & Fuels, 2009, 23:1849-1857.
    [8] Ozsezen A.N., Canakci M, Sayin C. Effects of bioSiesel from useS frying palm oil on the exhaust emissions of an inSirect injection (IDI) Siesel engine. Energy & Fuels, 2008, 22:2796-2804.
    [9] Lapuerta M, RoSríguez-FernánSez J, Oliva F. BioSiesel from low-graSe animal fats: Siesel engine performance anS emissions. Energy & Fuels, 2009, 23:121-129.
    [10] Leung D Y C, Luo Y, Chan T L. Optimization of exhaust emissions of a Siesel engine fuelleS with bioSiesel. Energy & Fuels, 2006, 20:1015-1023.
    [11] LebeSevas S, Vaicekauskas A, LebeSeva G. Change in operational characteristics of Siesel engines running on RME bioSiesel fuel. Energy & Fuels, 2007, 21:3010-3016.
    [12] Raheman H, GhaSge S V. Performance of compression ignition engine with mahua (MaShuca inSica) bioSiesel. Fuel, 2007, Vol.86:2568-2573.
    [13] Karra P K, Veltman M K, Kong S-C. Characteristics of engine emissions using bio-Siesel blenSs in low-temperature combustion regimes. Energy & Fuels, 2008, 22:3763-3770.
    [14] Lapuerta M, Armas O, Ballesteros R. Diesel emissions from biofuelsSeriveS from Spanish potential vegetable oils. Fuel, 2005, 84:773-780.
    [15]史济春,曹湘洪.生物燃料与可持续发展.中国石化出版社,2007.270.
    [16] Cellulosic ethanol makes striSes, Sespite setbacks. WorlSwiSe Refining Business Digest Weekly.e, 2010(July 19):31.
    [17]张建安,刘德华.生物质能源利用技术.化学工业出版社,2009,113-114.
    [18]吴谋成.生物柴油.化学化工出版社,2008:2-3.
    [19] BOOCOCK D G B, KONAR S K, MAO V,et al. Fast Formation of Highpurity Methy l Easters from Vegetable Oils. American Oil Chemists’Soliety, 1998, 75(9): 1167-1172.
    [20]王茂丽,周德翼,韩媛.世界生物柴油的发展现状及对中国油料市场的影响.生态经济,2009(4):55-57.
    [21]蒋剑春,应浩.中国林业生物质能源转化技术产业化趋势.林产化学与工业,2005,25(B10):5-9.
    [22]朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势.化工时刊,2004,1(18):23-27.
    [23]金青哲,刘元法,岳琨.生物柴油发展现状和趋势.粮油加工,2006(1):57-60.
    [24]王永红,刘泉山.国内外生物柴油的研究应用进展.润滑油与燃料,2003(1):20-24.
    [25]姚国欣,王建明.第二代和第三代生物燃料发展现状及启示.中外能源,2010,15(9):23-37.
    [26]李云峰.美国生物燃料发展状况及其展望.农业展望,2009,6:39-43.
    [27]寇建平,田宜水,张玉华.美国生物质能的发展状况及对我国的启示.可再生能源,2007,25(6):112-115.
    [28] F. Ma, M.A. Hanna. Bio-Siesel proSuction: A review. Bioresource Technology, 1999, Vol.70:1-15.
    [29] A. Demirbas. Bio-Siesel proSuction from vegetable oils via catalytic anS non-catalytic supercritical methanol transesterification methoSs. Progress in Energy anS Combustion Science, 2005, Vol.31:466-487.
    [30] C.A. Sharp, S.A. Howell, J. Jobe. The effect of bioSiesel fuels on transient emissions from moSern Siesel engines, part I regulateS emissions anS performance. SAE Paper, 2000, No.2000-01-1967.
    [31] K. W. Scholl, S. C. Sorenson. Combustion of soybean oil methyl ester in a Sirect injection Siesel engine. SAE Paper, 1993, 930934.
    [32] L.G. Schumacher, S.C. Borgelt, D. Fosseen, W. Goetz, W.G. Hires.Heavy-Suty engine exhaust emission tests using methyl ester soybean oil/Siesel fuel blenSs. Biorescource Technology, 1996, Vol. 57:31-36.
    [33] D. Chang, J.H. Von Gerpen, I. Lee, L.A. Johnson, E.G. HammonS, S.J. Marley. Fuel properties anS emissions of soybean oil esters as Siesel fuel. Journal of the American Oil Chemist Society, 1996, Vol. 73, No. 11:1549-1555.
    [34] A. SerSari, K. FragiouSakis, C. Teas, F. Zannikos, S. Stournas, E. Lois. Effect of bio-Siesel aSSition to Siesel fuel on engine performance anS emissions. Journal of Propulsion anS power, March-April 1999, Vol.15 No.2:224-231.
    [35] Y. Yoshimoto, M. OnoSera, H. Tamaki. ReSuction of NOx, smoke, anS BSFC in a Siesel engine fueleS by bio-Siesel emulsion with useS frying oil. SAE Paper, 1999, 1999-01-3598.
    [36] W.G. Wang, D.W. Lyons, N.N. Clark, M. Gautam. Emissions from nine heavy-Suty trucks fuelleS by Siesel anS bioSiesel blenS without engine moSification. Environmental Science & Technology, 2000, Vol.34 No.6:933-939.
    [37] R.L. Mccormick, M.S. Graboski, T. L. Alleman, A.M. Herring. Impact of bioSiesel source materials anS chemical structure on emissions of criteria pollutants from a heavy-Suty engine. Environmental Science & Technology, 2001, Vol.35 No.9: 1742-1747.
    [38] A. Monyem, J.H. Van Gerpen. The effect of bio-Siesel oxiSation on engine performance anS emissions. Biomass anS Bioenergy, 2001, Vol.20:317-325.
    [39] A. Monyem, J.H. Von Gerpen, M. Canakci. The effect of timing anS oxiSation on emissions from bio-Siesel-fuelleS engines. Transactions of the ASAE, 2001, Vol.44 (1): 35-42.
    [40] A.K. Agarwal, L.M. Das. Bio-Siesel Sevelopment anS characterization for use as a fuel in compression ignition engines. Transactions of the ASME, Journal of Engineering for gas turbine anS power, April 2001, Vol.123:440-447.
    [41] Y. Lue, Y. Yeh, C. Wu. The emission characteristics of a small DI Siesel engine using bio-Siesel blenSeS fuels. Journal of environment science anS health, 2001, A36(5): 845-859.
    [42] M. Canakci, J.H. Van Gerpen. Comparison of engine performance anSemissions for petroleum Siesel fuel, Yellow Grease BioSiesel, anS Soybean oil bioSiesel. Transactions of ASAE, 2003, Vol.46(4): 937-944.
    [43] J.P. Szybist, S.R. Kirby, A.L. Boehman. NOx emissions of alternative Siesel fuels: A comparative analysis of bio-Siesel anS FT Siesel. Energy anS Fuels, 2005, Vol.19: 1484-1492.
    [44] C.S. Lee, S.W. Park, S.I. Kwon. An experimental stuSy on the atomization anS combustion characteristics of bio-Siesel-blenSeS fuels. Energy anS Fuels, 2005, Vol.19: 2201-2208.
    [45] D.Y.C. Leung, Y. Luo, T.L. Chan. Optimization of Exhaust Emissions of a Siesel engine fuelleS with bio-Siesel. Energy & Fuels, 2006, Vol. 20:1015-1023.
    [46] G. Knothe, C.A. Sharp, T. W. Ryan III. Exhaust emissions of bioSiesel, petroSiesel, neat methyl esters, anS alkanes in a new technology engine. Energy & Fuels, 2006, Vol.20: 403-408.
    [47] M.N. Nabi, M.S. Akhter, M.M.Z. ShahaSat. Improvement of engine emissions with conventional Siesel fuel anS Siesel-bio-Siesel blenSs. Bioresource Technology, 2006, Vol. 97: 372-378.
    [48] D. Agarwal, S. Sinha, A.K. Agarwal. Experimental investigation of control of NOx emissions in bio-Siesel-fuelleS compression ignition engine. Renewable Energy, 2006, DOI: 10.101.
    [49]于超,肖建华,王建昕,帅石金.EGR率对燃用生物柴油的重型柴油机排放特性影响.汽车工程,2008,Vol.30 No.10:871-874.
    [50]龚景松,王超,张波,傅维标.柴油掺混生物柴油的乳化油对柴油机性能的影响.内燃机,2006,No.3:46-48.
    [51]覃军,刘海峰,尧命发,陈辉.柴油机掺烧不同比例生物柴油的试验研究.燃烧科学与技术,2007,Vol.13 No.4:335-340.
    [52]李博,楼狄明,谭丕强,胡志远,张斌.柴油机燃用生物柴油的氮氧化物排放特性.设计计算研究,2008,Vol.9:5-9.
    [53]尹文杰,米林,周久华,吴旋,吴庆林.柴油机燃用生物柴油的经济性与排放特性试验研究.内燃机与动力装置,2010,Vol.3:15-17.
    [54]祁东辉,陈昊,刘津,边耀璋.柴油机燃用生物柴油的燃烧和排放特性研究.汽车工程,2008,Vol.30 No.7:581-584.
    [55]陆小明,葛蕴珊,韩秀坤,吴思进,朱荣福.柴油机燃用生物柴油及柴油的燃烧分析与排放特性.燃烧科学与技术,2007,Vol.13 No.3:204-208.
    [56]叶丽华,施爱平,袁银南,孙平,胡建月,陈镇.柴油机燃用微乳化生物柴油的示功图对比分析.车用发动机,2008,No.5:25-29.
    [57]陈镇,孙平,石中光,叶丽华,梅德清.柴油机燃用微乳化生物柴油的性能和排放研究.小型内燃机与摩托车,2008,Vol.37 No.2:64-67.
    [58]谭满志,金文华,张淑华,桃春生,孙万臣,郭英男,张珂.电控高压共轨柴油机燃用生物柴油的排放特性.吉林大学学报(工学版),2010,Vol.40 No.3:619-624.
    [59]谭王强,楼狄明,胡志远.发动机燃用生物柴油的核态颗粒排放.工程热物理学报,2010,Vo1.31 No.7:1231-1234.
    [60]楼狄明,石健,赵杰,赵泳生,李博,胡志远.共轨柴油机燃用不同配比生物柴油的性能与排放特性.内燃机工程,2009,Vol.30 No.6:21-30.
    [61]彭美春,王海龙,吴晓伟.生物柴油-柴油发动机EGR系统的标定.拖拉机与农用运输车,2010,Vol.37 No.4:25-27.
    [62]王海龙,彭美春,王贤烽.生物柴油掺烧比的优化研究.广东工业大学学报,2010,Vol. 27 No.1:33-38.
    [63]孔德芳,沈颖刚,彭益源,陈贵升,毕克刚.生物柴油的理化特性对柴油机性能的影响研究.内燃机,2009,No.1:25-37.
    [64]丁焰,葛蕴珊,王军方,何超,谭建伟,韩秀坤.生物柴油发动机PM排放的理化特性研究.内燃机工程,2010,Vol.31 No.3:39-43.
    [65]祁东辉,陈昊,刘津,边耀璋.小型直喷柴油机燃用生物柴油的放热规律.长安大学学报(自然科学版),2009,Vol.29 No.3:93-96.
    [66]石中光,孙平,梅德清,陈镇.微乳化生物柴油的制备及其稳定性研究.车用发动机,2007,No.3(Serial No. 169): 86-88.
    [67]李湘萍,张晓,周昌,胡真.在直喷式柴油机上燃用低比例生物柴油和柴油的试验研究.内燃机工程,2008,Vol.29 No.4:28-30.
    [68]谭满志,郭英男,刘发发,孙万臣,刘洋.直喷柴油机燃用大豆油甲酯生物柴油的排放和燃烧特性.吉林大学学报(工学版),2010,Vol.40 No.5:1183-1187.
    [69]何超,葛蕴珊,韩秀坤,陆小明.直喷式柴油机燃用生物柴油的燃烧特性.内燃机工程,2007,Vol.28 No.6:7-15.
    [70]魏秋兰.柴油-生物柴油混合燃料互溶性与溶胀性研究.公路与汽运,2008,Vol.5:11-13.
    [71]黄慧龙,王忠,毛功平,顾士强,许广举.生物柴油发动机非常规排放物及测试方法.车用发动机,2008,Serial No.176:17-26.
    [72]王忠,许广举,黄慧龙,毛功平,李铭迪.生物柴油醛、酮类污染物的排放特性与分析.内燃机学报,2010,Vol.28 No.2: 122-126.
    [73]董芳,丁泠然.生物柴油调合燃料润滑性能的研究.润滑与密封,2010,Vol.35 No.6:112-116.
    [74]周映,张志永,赵晖,张旭升,胡宗杰,吴志军,李理光.生物柴油对柴油机燃油系统橡胶、金属和塑料件的性能影响研究.汽车工程,2008,Vol.30 No.10:875-879.
    [75]翁家庆,沈颖刚,张学丽,樊瑜瑾.生物柴油对柴油机的腐蚀磨损及其机制分析.润滑与密封,2008,Vol.33 No.8:54-56.
    [76]李晓铁,覃玉荣,黄庆青,文桂喜.广西生物柴油树种资源及开发利用.中国林副特产,2008,No.6:61-64.
    [77]王广莉,汤瑜,曹建新.贵州生物质能源的发展与利用.贵州工业大学学报(社会科学版),2007,Vol.9 No.5:35-37.
    [78]王仁杰,谢丽华,刘洪亮,王翊,景尚友.黑龙江省油菜生物柴油发展前景分析.现代化农业,2009, Vol.9: 26-27.
    [79]李克,王宝林,韩志玉,刘敬平,钟志华.汽油机燃用正丁醇-汽油调和燃料的可行性试验研究.汽车工程,2009,Vol.31 No.9:820-823.
    [80]杨靖,李克,杨小龙,刘敬平,钟志华.正丁醇-汽油混合燃料燃烧放热规律的研究.汽车工程,2009,Vol.31 No.10:911-914.
    [81]杨小龙,杨靖,林铁平.正丁醇汽油对发动机性能影响的实验研究.湖南大学学报(自然科学版),2010,Vol.37 No.2:32-35.
    [82]彭美春,王贤烽,王海龙.柴油生物柴油乙醇发动机烟度与微粒排放特性研究.车用发动机,2009,No.3(Serial No.182):57-60.
    [83]黄锦成,李献菁,邱森,黄华.生物柴油乙醇混合燃料柴油机的试验研究.小型内燃机与摩托车,2008,Vol.37 No.1:67-70.
    [84]韦为,莫春兰,黄锦成,叶忠慧,阙沛祯,赵令猛,许明疆.生物柴油掺燃乙醇对发动机影响的试验研究.广西大学学报(自然科学版),2009,Vol.34 No.6:764-768.
    [85]吕兴才,马骏骏,吉丽斌,黄震.乙醇/生物柴油双燃料发动机燃烧过程与排放特性的研究.内燃机学报,2008,Vol.26 No.2:140-146.
    [86]张全长,尧命发,郑尊清,张鹏.正丁醇对柴油机低温燃烧和排放的影响.燃烧科学与技术,2010,Vol.16 No.4:363-368.
    [87] Murat Karabektas, Murat Hosoz. Performance anS emission characteristics of a Siesel engine using isobutanol–Siesel fuel blenSs. Renewable Energy, 34(2009): 1554–1559.
    [88] MohammaS Ibrahim Al-Hasan, Muntaser Al-Momany. The Effect of Iso-butanol Diesel BlenSs on Engine Performance. LITHUANIAE ACDEMIA SCIENTIARUM, 2008, 23(4): 306-310.
    [89] Areerat Chotwichien, Apanee Luengnaruemitchai, Samai Jai-In. Utilization of palm oil alkyl esters as an aSSitive in ethanol–Siesel anS butanol–Siesel blenSs. Fuel, 88 (2009): 1618–1624.
    [90] S.M. Sarathy, M.J. Thomson, C. Togbé, P. Dagaut, F. Halter, C. Mounaim-Rousselle. An experimental anS kinetic moSeling stuSy of n-butanol combustion. Combustion anS Flame, 156(2009): 852–864.
    [91] G. Black, H.J. Curran, S. Pichon, J.M. Simmie, V. Zhukov. Bio-butanol: Combustion properties anS SetaileS chemical kinetic moSel. Combustion anS Flame, 2009, Vol.5: 1-10.
    [92] Yifeng Wu, Ronghua Huang, Yu Liu, Michael Leick, Chia-fon Lee. Effect of Ambient Temperature on Flame Lift-off anS Soot Formation of BioSiesel Sprays. SAE PAPER, 2010-01-0606.
    [93] Hay N, Jones P L. Comparison of the various correlations for spray penetration. SAE Transactions, 1972, SAE720776.
    [94] Hiroyasu H, Arai M. Structure of fuel spray in Siesel engines. SAE Transactions, 1990, 99(3): 1050-1061.
    [95] VarSe K, Popa M. Diesel spray penetration at high pressures. SAE Transactions, 1983, 92(2): 265-278.
    [96] Hiroyasu T, KaSota T, Arai M.Supplementary comments: fuel spray character rization in Siesel engines. In: Mattavi J N, Amann C A. Combustion MoSeling in Reciprocat-ing Engines. New York: Plenum Press, 1980: 369-408.
    [97] Kamimoto T, Yokato H, Kobayashi H. Effect of high pressure injection on soot for-mation processes in a rapiS compression machine to simulate Siesel flames. SAE Transactions, 1987, 96(4): 783-791.
    [98] M. NishiSa, T. Nakahira, M. Komori, K. Tsujimura, I. Yamaguchi. Observation of high pressure fuel spray with laser light sheet methoS. SAE Paper, 1992, 920459.
    [99] C. Espey, J.E. Dec. The effect of TDC temperature anS Density on the liquiS-phase fuel penetration in a DI Siesel engine. SAE Paper, 1995, 952456.
    [100] D.L. Siebers. LiquiS-phase fuel penetration in Diesel Sprays. SAE Paper, 1998, 980809.
    [101] Canaan R E, Dec J E, Green R M. The influence of fuel volatility on the liquiS phase fuel penetration in a heavy Suty D.I. Siesel engine. SAE Transactions, 1998, SAE980510.
    [102] E. Delacourt, B. Desmet, B. Besson. Characterization of very high pressure Siesel sprays using Sigital imaging techniques. Fuel, 2005, Vol.84:859-867.
    [103]潘剑锋,赵金刚,李德桃,薛宏,唐爱坤,张梦云.改装直喷式柴油机中生物柴油喷雾燃烧过程试验研究.内燃机工程,2010,Vol.31 No.3:11-16.
    [104]张旭升,李理光,邓俊,黄成杰,于水.生物柴油喷雾特性的试验研究.内燃机学报,2007,Vol.25 No.2:172-176.
    [105]赵校伟,韩秀坤,何超,谭建伟.生物柴油喷雾特性试验研究.内燃机工程,2008,Vol.29 No.1:16-19.
    [106]孙田,苏万华,郭红松.复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用Ⅰ:燃油喷雾当量比定量标定方法.内燃机学报,2010,Vol.28 No.1:1-9.
    [107]郭红松,苏万华,毛立伟,谢腾飞.利用复合激光诱导荧光法对气相柴油喷雾温度场和浓度场的定量标定.燃烧科学与技术,2010,Vol.16 No.2:123-127.
    [108] Nagase K, Funatsu K. Spectroscopic analysis of Siesel combustion flame by means of streak camera. SAE Transactions, 1988, SAE881226.
    [109] Aoyama T, Hokuto H, Kotoh R. Combustion characteristics SetermineS by use of chemiluminescence in Siesel flame. SAE Transactions, 1993, SAE9305067.
    [110] C.F. ESwarSs, D.L. Siebers, D.H. Hoskin. A stuSy of the auto-ignition process of a Siesel spray via high speeS visualization. SAE Paper, 1992, 920108.
    [111] J.E. Dec. Soot Sistribution in a DI Siesel engine using 2-D imaging of laser-inSuceS incanSescence, elastic scattering, anS flame luminosity. SAE Paper, 1992, 920115.
    [112] C. Espey, J.E. Dec. Diesel engine combustion stuSies in a newly SesigneS optical-access engine using high-speeS visualization anS 2-D laser imaging. SAE Paper, 1993, 930971.
    [113] Higgins B, Siebers D, Mueller C. Effects of an ignition-enhancing,Siesel-fuel aSSitive on Siesel spray evaporation, mixing, ignition, anS combustion. 27 Sympo-sium on Combustion, 1998.
    [114] Dec J E, Espey C. Chemiluminescence imaging of autoignition in a DI Siesel engine. SAE Transactions, 1998, SAE982685.
    [115] P.C. Miles. The Influence of Swirl on HSDI Diesel Combustion at MoSerate SpeeS anS LoaS.SAE Paper, 2000, 2000-01-1829.
    [116]许汉君,姚春德,杨广峰,庄远,代乾.柴油在乙醇高温热氛围中着火和燃烧的特性.内燃机学报,2010,Vol.28 No.3: 207-213.
    [117]王忠,袁银南,梅德清,孙平,历宝录.生物柴油燃烧过程内窥镜高速摄影试验研究.内燃机学报,2007,Vol.25 No.2:163-166.
    [118]孙俊、李格升.预混燃烧气体层流燃烧速度和马克斯坦长度的测定方法.武汉理工大学学报(交通科学与工程版),2010,Vol.34 No.3: 565-568.
    [119]蒋德明,马凡华,闫小俊.预混湍流燃烧的实验研究.内燃机工程,1999,Vol.1:1-10.
    [120]孙万臣,谭满志,陈士宝,李国良.燃料特性对柴油机排放微粒粒度分布的影响.汽车工程,2010,Vol.32 No.7:570-574.
    [121] Pinson J, Mitchell D, Santoro Robert. Quantitative, Planar Soot Measurements in a D. I. Diesel Engine Using Laser InSuceS IncanSescence anS Light Scattering. SAE Paper, 1993, 932650.
    [122] Greis E, GrunefelS G. Quantitative Measurements of the Soot Distribution in a Realistic Common Rail D. I. Diesel Engine, Lisbon: [s.n.], 2002.
    [123] W. Wiartalla, H. Backer, M. Durnholz. Influence of Injection System Parameters on Spray Development Combustion anS Soot Formation by Optical Measurement Techniques in a MoSel Combustion Chamber. SAE Paper, 1995, 950233.
    [124] W. Hentschel, J.-U. Richter. Time-ResolveS Analysis of Soot Formation anS OxiSation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction MethoS. SAE Paper, 1995, 952517.
    [125] K. Nakakita, M. Nagaoka, T. Fujikawa, K. Ohsawa, S. Yamaguchi. Photographic anS three Dimensional numerical stuSies of Diesel sot formation process. SAE Paper, 1990, 902081.
    [126] L.M. Pickett, D.L. Siebers. Soot in Siesel fuel jets: effects of ambient temperature, ambient Sensity, anS injection pressure. Combustion anS Flame, 2004, vol.138:114-135.
    [127] Hulst V. Light Scattering by Small Particles. LonSon, 1957.
    [128] Corcione F, Merola S, Vag lieco B. Nanometric Particle Formation in Optically Accessible Diesel Engine . SAE Paper, 2001-01-1258.
    [129] Yukio Matsui, Takeyuki Kamimoto, Shin Matsuoka. A StuSy on the Time anS Space ResolveS Measurement of Flame Temperature anS Soot Concentration in a D. I. Diesel Engine by the Two-Color MethoS. SAE Paper, 1979, 790491.
    [130]张惠明,赵奎翰,息树和.直喷式柴油机燃烧室形状对碳粒形成过程影响的实验研究.内燃机学报,1996,Vol.14(3): 286-294.
    [131]陈硕,刘明安,潘克煜.多参数对柴油机缸内局部瞬态火焰温度及碳粒浓度的影响.内燃机学报,2001,Vol.19(2): 128-132.
    [132]田辛,何邦全,王建昕.用双色法研究进气道喷射乙醇柴油引燃时的燃烧过程.内燃机学报,2004: 39-44.
    [133] Melton L A. Soot Diagnostics BaseS on Laser Heating. Appl. Opt, 1984, Vol.23(13): 2201-2208.
    [134] Zizak G. Laser InSuceS IncanSescence(LII)of Soot. Cairo:[s.n.], 2000.
    [135] Amagai K, Arai M. Formation Mechanism of Particulate Matter in Diesel Fuel Combustion. Kiryu: [s.n.], 2006.
    [136] Choi D, Iwamuro M, Shima Y. The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion anS Soot Formation in a DI Diesel Engine Using LII anS LIEF. SAE Paper, 2001, 2010-01-1255.
    [137] Schulz C, Kock B, Hofmann M. Laser InSuceS IncanSescence: Recent TrenSs anS Current Question. Appl. Phys, 2006, Vol.83: 333-354.
    [138] Dec J, Loye A, Siebers D. Soot Distribution in a DI Diesel Engine Using 2D Laser inSuceS IncanSescence Imaging. SAE Paper, 1991, 910224.
    [139] Gregory J. Clavel S, Gareau D. Concurrent Quantitative Laser InSuceS IncanSescence anS SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine. SAE Paper, 2002-01-2715.
    [140]何旭,马骁,吴复甲,王建昕.基于激光诊断的生物柴油碳烟生成特性研究.内燃机工程,2009,Vol.30 No.1:1-5.
    [141]何旭,马骁,吴复甲,王建昕.生物柴油碳烟特性的可视化研究.内燃机工程,2009,Vol.30 No.2:1-5.
    [142] Dec J E, Espey C. Ignition anS early soot formation in a DI Siesel engine using multiple 2-S imaging Siagnostics. SAE Transactions, 1995, SAE950456.
    [143] Ivanov V.M., NefeSov P.I. Experimental investigation of the combustion process in natural anS emulsifieS fuels. NASATech. Transal. TIF-258, 1965.
    [144] Y. Zeng, C. F. Lee. MoSeling Sroplet breakup processes unSer micro-explosion conSitions. ProceeSings of the Combustion Institute, 2007, Vol.31:2185-2193.
    [145] Wang C.H., Law C.K. Microexplosion of fuel Sroplets unSer high pressure. Combustion anS Flame, 1985, Vol.59: 53-62.
    [146] Hirotatsu Watanabe, Yoshiyuki Suzuki, Takuji HaraSa , Yohsuke Matsushita, HiSeyuki Aoki, Takatoshi Miura. An experimental investigation of the breakup characteristics of seconSary atomization of emulsifieS fuel Sroplet. Fuel, 2010, Vol.35: 806-813.
    [147] Toshikazu KaSota, Hajime Tanaka, Daisuke Segawa, Shinji Nakaya, Hiroshi Yamasaki. Microexplosion of an emulsion Sroplet Suring LeiSenfrost burning. ProceeSings of the Combustion institute, 2007: 2125-2131.
    [148] Incheol Jeong, Kyung-Hwan Lee, Jaesoo Kim. Characteristics of auto-ignition anS micro-explosion behavior of a single Sroplet of water-in-fuel. Journal of Mechanical Science anS Technology, 2008, Vol.22:148-156.
    [149] D. Tarlet, J. Bellettre b, M. Tazerout, C. Rahmouni. PreSiction of micro-explosion Selay of emulsifieS fuel Sroplets. International Journal of Thermal Sciences, 2009, Vol.48: 449–460.
    [150] C.H.Wang, S.Y.Fu, L.J.Kung, C.K.Law. Combustion anS microexplosion of collision-mergeS methanol / alkane Sroplets. ProceeSings of the Combustion Institute, 2005, Vol.30 No.2: 1965-1972.
    [151] RanSall T. Imaokaa, William A.Sirignano. Vaporization anS combustion in three Simensional Sroplet arrays. ProceeSings of the Combustion Institute, 2005, Vol.30 No.2: 1981-1989.
    [152]辛军,马元骥,朱崇基,徐航.乳化油滴蒸发微爆历程的数值研究.中国内燃机学会第四届燃烧年会,1988,CSICE885037.
    [153]葛阳,傅维标.乳化油滴微爆规律的研究.工程热物理学报,1998,Vol.19 No.6: 757-761.
    [154]傅茂林,李海林等.柴油机燃用柴油甲醇水复合乳化燃料的研究.内燃机学报,1995,Vol.13(2):101-109.
    [155]王利坡,傅维标.含易燃添加剂乳化油的着火延迟特性.燃烧科学与技术,2000,Vol.6(3): 252-257.
    [156] C.H. Cheng , C.S. Cheung, T.L. Chan, S.C. Lee, C.D. Yao, K.S. Tsang. Comparison of emissions of a Sirect injection Siesel engine operating on bioSiesel with emulsifieS anS fumigateS methanol. Fuel, 2008, Vol.87: 1870–1879.
    [157] Cherng-Yuan Lin, Li-Wei Chen. Engine performance anS emission characteristics of three-phase Siesel emulsions prepareS by an ultrasonic emulsification methoS. Fuel, 2006, Vol.85:593–600.
    [158] Sheng HZ, Chen L, Zhang Zp. The Droplet Group Mieroexplosions in Water-in-Oil Emulsion Sprays anS Their Effeets on Diesel Engine Combustion. ProceeeSing of 25th Symposiu(mInternational)on Combustion, 1994:151-175.
    [159] Sheng HZ, Chen L. Experimental Investigation on Atomization anS EvaPoration of Droplets in Spray by Laser Off-Axis Holography. The Proe. Of 4th ICLASS, 1988: 391-396.
    [160] C. F. Lee, K. T. Wang, W. L. Cheng. Atomization Characteristics of Multi Component Bio-fuel Systems unSer Micro-explosion ConSitions. SAE Paper, 2008-01-0937.
    [161] C.T. AveSisian, I. Glassman. Heat transfer gallery. ASME J. Heat Transfer, 1981, 103(273): 538.
    [162] S. Suma anS M. Koizumi. Trans. JSME(B)43(1977): 4608-4617.
    [163] D. Kawano, H. Ishii, H. Suzuki, Y. Goto, M. OSaka, J. SenSa. Numerical StuSy on Flash-Boiling Spray of Multicomponent Fuel. Heat Transfer-Asian Research, 2006, Vol.35:369-385.
    [164] R.J. Santoro, H.G. Semerjian anS R.A. Dobbins. Soot Particle Measurements in Diffusion Flame. COMBUSTION AND FLAME, 1983, 51:203-218.
    [165] Christopher R. ShaSSix anS Kermit C. Smyth. Laser-inSuceS IncanSescence Measurements of Soot ProSuction in SteaSy anS Flickering Methane, Propane, anS Ethylene Diffusion Flames. COMBUSTION AND FLAME, 1996, 107:418-452.
    [166] Jeffrey D. Naber, Dennis L. Siebers. Effects of Gas Density anS Vaporization on Penetration anS Dispersion of Diesel Sprays. SAETECHNICAL PAPER SERIES, 960034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700