溶胶—凝胶法制备低温共烧低介高频纳米陶瓷粉体及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的高速发展,电子元器件正向高频化、微型化、集成化、模块化、多功能化以及低成本化等方向发展,特别是高频化与微型化已经成为目前先进电子元器件的基本特征。为满足片式多层元器件向高频化、微型化发展的需要,研制出能与Ag、Cu等贱金属电极共烧,并满足微型片式多层元器件制备工艺要求的纳米级微波介质陶瓷粉体具有重要意义。
     目前,纳米级微波介质陶瓷粉体已经得到广泛研究,但其研究主要集中在提高材料组分纯度以及优化介电性能等方面,而在纳米微波介质陶瓷粉体的降温烧结与器件制备等方面的研究较为缺乏,特别是对低温共烧纳米微波介质陶瓷粉体的研制报道极少,究其原因主要是存在以下难点:(1)微波介质陶瓷组分复杂,低温共烧陶瓷还包含各种微量助剂,致使纳米粉体的物相及组分均匀性难以控制;(2)纳米粉体在烧结后难以获得优良的介电性能;(3)不能满足片式器件的制备工艺要求,如不能配制成稳定的陶瓷料浆,或材料与金属电极反应等;(4)烧结后不易获得细小晶粒,难以满足微型超薄介质器件的制备要求。
     本文利用溶胶-凝胶法,通过在溶胶中引入低温烧结助剂先驱体,克服低温共烧纳米微波介质陶瓷粉体的制备难点,获得组分均匀、物相可控、烧结温度低于900℃的(Ca,Mg)SiO_3-CaTiO_3系纳米微波介质陶瓷粉体;优化凝胶煅烧工艺条件,控制粉体物相与粒径来提高陶瓷的介电性能;通过凝胶包裹、稀土元素掺杂、物相调整,以及烧结工艺优化等手段来细化烧结后的陶瓷晶粒。在此基础上,对低温共烧纳米微波陶瓷粉体的应用技术展开研究,研制出厚度小于10μm、能与银电极共烧的超薄流延陶瓷膜片,为微型片式多层微波元器件的产业化奠定基础。本文主要研究成果如下:
     (一)首次研究了(Ca,Mg)SiO_3与CaTiO_3系的溶胶-凝胶工艺条件,揭示了溶胶系统的凝胶化机理,建立了干凝胶在煅烧过程中的晶相形成与晶粒长大模型。通过系统研究溶胶-凝胶工艺中各因素对煅烧后粉体形貌的影响,获得具有良好分散性纳米粉体的临界工艺条件,系统研究了纳米粉体的烧结特性及介电性能。(1)(Ca,Mg)SiO_3溶胶系统和CaTiO_3溶胶系统的凝胶化过程分别通过正硅酸乙酯与钛酸丁酯的水解聚合完成,钙、镁等离子未参与凝胶网络的形成,而是被均匀“冻结”在凝胶网络中。(2)(Ca,Mg)SiO_3成胶的最佳条件:先驱体浓度0.8mol/l,pH值4.5,[H_2O]/[Si]比4/1,反应温度60℃,2wt%油酸作为分散剂。CaTiO_3成胶的最佳条件:先驱体浓度0.8mol/1,pH值2,反应温度60℃,2wt%的PEG400作为分散剂。(3)(Ca,Mg)SiO_3凝胶在煅烧过程中的晶相形成与晶粒长大机制为:煅烧温度低于800℃时,主要发生硅氧硅键的断裂,晶相形成量少,粉体粒径随着温度的升高而减小;煅烧温度超过900℃后,晶相大量形成,粉体粒径随着温度的升高而逐渐增大。(4)Mg~(2+)在CaSiO_3中的固溶极限不超过0.2,随着Mg~(2+)取代量的增加,陶瓷主晶相由CaSiO_3相向CaMgSi_2O_6相转变;Mg~(2+)取代量为0.3时,烧结后形成CaSiO_3与CaMgSi_2O_6的混合相,混合相的存在克服了单相陶瓷易成片长大的缺点,明显改善了陶瓷的烧结特性与介电性能,在1320℃烧结后获得介电性能:ε_r=6.62,Q×f=36962GHz。(5)800℃煅烧凝胶可获得窄分布、粒径60~70nm的单相CaTiO_3粉体,在1250℃即可实现致密烧结,烧结温度比微米级粉体降低约100℃,且Q×f值有大幅度提高。1250℃烧结后陶瓷的介电性能为:ε_r=171,Q×f=4239GHz,τ_f=+768ppm/℃。
     (二)(Ca,Mg)SiO_3溶胶中引入锂钒烧结助剂先驱体,实现助剂先驱体与基体材料先驱体的分子级混合,制得具有良好烧结特性与介电性能的低温烧结纳米微波介质陶瓷粉体,探索出一条制备低温共烧纳米介质陶瓷粉体的技术路线。(1)(Ca_(0.7)Mg_(0.3))SiO_3溶胶中引入锂钒低温烧结助剂先驱体,凝胶在700℃煅烧后即可获得粒径60~80nm,相组成为CaSiO_3、CaMgSi_2O_6、Ca_2MgSi_2O_7的陶瓷粉体,晶相合成温度降低了300℃以上,解决了钙镁硅晶相需要经高温煅烧才能合成的难题。将上述合成的粉体简记为低温烧结(Ca_(0.7)Mg_(0.3))SiO_3粉体。(2)通过对不同温度煅烧后低温烧结(Ca_(0.7)Mg_(0.3))SiO_3陶瓷粉体烧结行为的研究发现,采用常规烧结法时,粒径过小或过大的粉体均不利于陶瓷的致密烧结,适宜的粒径为80~100nm,在890℃能实现致密烧结,其介电性能为:ε_r=6.96,Q×f=23645GHz,τ_f=-75.10ppm/℃。(3)溶胶中引入锂钒助剂先驱体的(Ca_(0.7)Mg_(0.3))SiO_3粉体在烧结过程中,助剂与基体材料发生反应生成了微量的Ca_3LiMgV_3O_(12)与Li_2SiO_3新相,致使烧结助剂对基体材料发挥了最佳的润湿效果,起到了良好的降温烧结作用。(4)CaTiO_3陶瓷能有效调节低温烧结(Ca_(0.7)Mg_(0.3))SiO_3纳米微波介质陶瓷的频率温度系数,添加12wt%的纳米CaTiO_3粉体,890℃烧结后获得优良的介电性能:ε_r=9.42,Q×f=15767GHz,τ_f=+2.3ppm/℃。
     (三)揭示了溶胶包裹、稀土元素掺杂、物相调整,以及烧结工艺优化等对低温烧结(Ca,Mg)SiO_3-CaTiO_3纳米粉体在烧结后晶粒大小的影响规律,解决了(Ca,Mg)SiO_3-CaTiO_3陶瓷晶粒难以细化的难题,为低温共烧微波介质陶瓷的晶粒细化提供了新的思路和途径。(1)利用CaTiO_3凝胶对低温烧结(Ca_(0.7)Mg_(0.3))SiO_3粉体进行包裹,阻隔粗大晶粒CaSiO_3相粉体颗粒间的接触,虽然能有效提高陶瓷的体积密度及介电性能,但对细化陶瓷晶粒效果不甚理想。(2)稀土元素的掺杂,恶化了陶瓷的介电性能,对细化(Ca,Mg)SiO_3-CaTiO_3陶瓷晶粒的作用有限。(3)通过调整物相组分,避免烧结后陶瓷中粗大晶粒CaSiO_3相的生成,达到有效细化陶瓷晶粒的目的。当调节基体材料组分为(Ca_(0.5)Mg_(0.5))SiO_3-12wt%CaTiO_3时,在890℃烧结后获得良好的介电性能:ε_r=9.74,Q×f=16433GHz,τ_f=-2.78ppm/℃;陶瓷主晶相为CaMgSi_2O_6与CaTiO_3相,平均粒径为0.6μm。(4)低温烧结纳米(Ca_(0.5)Mg_(0.5))SiO_3-CaTiO_3粉体在890℃烧结0.5h,再在850℃长时间保温,能在有效阻止陶瓷晶粒长大的基础上提高其介电性能。
     (四)通过对纳米粉体分散行为、陶瓷流延料浆配制、陶瓷膜片与银电极共烧等的研究,研制出厚度小于10μm的流延陶瓷膜片,适用于微型片式多层微波元器件的产业化生产,对促进片式多层微波元器件的微型化具有重要意义。(1)非离子型分散剂与有机酸阴离子型分散剂对低温共烧(Ca,Mg)SiO_3-CaTiO_3纳米粉体的分散作用有限,AB001离子型分散剂由于对纳米粉体有着良好的空间位阻与静电排斥作用,当添加量为0.5wt%时即能有效分散低温共烧(Ca,Mg)SiO_3-CaTiO_3纳米粉体。(2)利用正交实验,优化低温共烧(Ca,Mg)SiO_3-CaTiO_3陶瓷流延料浆配方。当分散剂、溶剂、粘合剂、增塑剂等含量分别按陶瓷粉体的1.5wt%、70wt%、65wt%、4wt%添加时,陶瓷料浆具有良好的成膜性能,经过流延后获得厚度为9.8μm的超薄陶瓷膜片。(3)低温共烧(Ca,Mg)SiO_3-CaTiO_3陶瓷膜片与内电极银浆在890℃共烧研究表明:陶瓷与银电极结合紧密,界面无分层现象,陶瓷膜片与内电极银浆具有良好的工艺匹配性,适用于微型片式多层微波元器件的制备。
With the rapid progress in information technology, it has been strongly required that the related electronic components become small-sized, light-weighted, integrated, multifunctional, low-cost, and usable at high frequency range. Especially, small-size and using at high frequency have become the basic character of advanced electronic components. In order to meet the requirement of small-size and high frequency, it is important to prepare nanopowder that should have the following characters: could be co-fired with low cost and high conductivity inner electrode such as Ag and Cu, have good microwave dielectric properties in high frequency after sintered, and should be sufficiently to meet the requirement for preparation technology of multilayer components.
    Nanopowder with good microwave dielectric properties after sintered has been investigated for a long time, and the study mainly focuses on improving the pure of materials and dielectric properties of ceramic. However, little investigation was carried on the preparation of nanopowder which could be sintered at low temperature, and so did the preparation of subminiature component with these nanopowders. So far, the preparation of nanopowder which could be co-fired with Ag or Cu used at microwave frequency range has not been investigated yet. There are many problems as follows: (1) It's difficult to control the component and phase of nanopowder because the composition is complex, especially when a small amount of sintering aids were added in. (2) Dielectric properties critically deteriorated though the sintering temperature of nanopowder was below the melting point of Ag electrode. (3) Many materials have bad adaptability to the fabrication process of components. For example, it's difficult to get dense green tape by tape casting process use nanopowder, and there may be reaction between ceramic and electrode. (4) It's difficult to control the grain size of ceramic. If the grain grows larger, there will be only two or three grains between the two electrode layers, which deteriorate the dielectric properties.
    In order to overcome the above problems and prepare dielectric nanopowder used at microwave frequency which could be co-fired with Ag, the low temperature co-fired (Ca, Mg)SiO_3-CaTiO_3 nanopowder was investigated in this work by sol-gel method. Dissolving the precursor of sintering aids into host materials sol, the nanopowder was prepared with uniform component, controllable phase and particle size, and the sintering temperature was below 900℃. The dielectric properties of ceramic were optimized through controlling the phase and particle size of nanopowder. The grain size of ceramic was minimized through enwrapping with gel, doping with rare earth elements, adjusting the phase composition and sintering process. Based on above researches, the applied technology of nanopowder was studied and green tape with a thickness of thinner than 10μm was prepared, which can be co-fired with Ag electrode and was adaptive to fabricate subminiature multilayer ceramic components.
    1. The sol-gel process of (Ca, Mg)SiO_3 and CaTiO_3 was studied, respectively. The mechanism of gelatin was discussed. Based on phase composition, micro-morphology and calcination temperature, the model of (Ca, Mg)SiO_3 phase formation and grain growth was founded. The nanopowder with excellent dispersion was prepared, and then the sintering process and dielectric properties of nanopowder were investigated. (1) In the sol of (Ca, Mg)SiO_3 and CaTiO_3, the network of gel was formed through the hydrolysis and aggregation of Si(OC_2H_5)_4 and Ti(OC_4H_9)_4, respectively, and the ions of Ca~(2+) and Mg~(2+) were embedded in the gel network. (2) Controlling the factors of (Ca, Mg)SiO_3 (CaTiO_3) sol under the condition of c(precursors) = 0.8mol/l, T(bath temperature) = 60℃, pH = 4.5 (2), [H_2O]/[Si] = 4/1 (none), and added with 2wt% oil acid (PEG400) as dispersant, the gel process was appropriate and the nanoparticles with excellent dispersion were obtained by calcining gel. (3) The model of (Ca, Mg)SiO_3 phase formation and grain growth was founded. When the calcination temperature of the gel was below 800℃, a small amount of crystal phases were formed, and the grain size reduced gradually with increasing the calcination temperature due to the break of Si-O-Si bond in the network. When the calcination temperature was over 900℃, a large amount of crystal phases were emerged and the grains grew with increasing the calcination temperature. (4) The soluble limitation of Mg~(2+) in CaSiO_3 was below 0.2 and CaSiO_3 phase was transformed into CaMgSi_2O_6 phase with the substitution of Ca~(2+) by Mg~(2+). When x is 0.3, the growth of grains was restrained and pores decreased due to the coexistence of CaSiO_3 and CaMgSi_2O_6, and then the density of ceramic was enhanced. The dielectric constant and quality factor of (Ca_(0.7)Mg_(0.3))SiO_3 ceramic sintered at 1320℃ is 6.62 and 36962 GHz, respectively. (5) CaTiO_3 nanoparticles with an average grain size of 60-70nm were obtained by calcining the CaTiO_3 gel at 800℃. CaTiO_3 ceramic sintered at 1250℃ prepared from nanopowders had good dielectric properties: ε_r= 171, Q×f = 4239 GHz, τ_f= +768 ppm/℃.
    2. Through mingling LiNO_3-NH_4VO_3 liquid phase sintering aids and precursors of (Ca, Mg)SiO_3 in sol, the (Ca, Mg)SiO_3-LiV nanopowder with lower sintering temperature and good dielectric properties was prepared, which initiated a novel route to prepare nanopowder could be sintered at low temperature. (1) The crystallization temperature decreased enormously (>300℃) by mingling precursors of Li-V liquid phase sintering aids and precursors of (Ca, Mg)SiO_3 in sol. Calcining the (Ca, Mg)SiO_3-LiV gel at 700℃, the nanopowder with grain size of 60~80nm and phases of CaSiO_3 CaMgSi_2O_6 Ca_2MgSi_2O_7 was obtained. (2) The sintering properties of (Ca, Mg)SiO_3-LiV powder deteriorated if the grain size was smaller or larger than one dimension. Using the powder with grain size of 80-100nm as raw material, the ceramic sintered at 890℃ possessed excellent dielectric properties: ε_r = 6.96, Q×f= 23645GHz, τ_f=-75.10ppm/¤. (3) Ca_3LiMgV_3O_(12) and Li_2SiO_3 were obtained due to the reaction between sintering additions and host materials, which increased the substance activity and resulted in the acceleration of the sintering process. (4) The τ_f value was adjusted by the addition of CaTiO_3 nanopowder into (Ca, Mg)SiO_3-LiV nanopowder. Doping 12wt% CaTiO_3 nanopowder into (Ca,
    Mg)SiO_3-LiV nanopowder, the ceramic sintered at 890℃ had good dielectric properties: ε_r = 9.42, Q×f= 15767GHz, T_f=+2.3ppm/℃.
    3. The factors influenced the grain size were investigated, which including the means of (Ca, Mg)SiO_3-LiV nanopowders enwrapped with CaTiO_3 gel, the addition of rare earth elements, and the adjustment of component and sintering process. The average grain size of low temperature co-fired (Ca, Mg)SiO_3-CaTiO_3 ceramic was refined to 0.6μm, which offered new approaches to refine the grain size of ceramic. (1) It's hard to play a role in refining the grain size of (Ca, Mg)SiO_3 through enwrapping with CaTiO_3 gel, though the dielectric properties were improved. (2) The dielectric properties deteriorated enormously with doping rare earth elements, which had a little effects on refining the grain size of (Ca, Mg)SiO_3-CaTiO_3 ceramic. (3) The grain size of low temperature co-fired (Ca, Mg)SiO_3-CaTiO_3 ceramic was refined by adjusting component. Adjusting the component of (Ca_(0.7)Mg_(0.3)SiO_3 to (Ca_(0.5)Mg_(0.5))SiO_3, the average grain size of (Ca_(0.5)Mg_(0.5))SiO_3-LiV-12wt%CaTiO_3 ceramic sintered at 890℃ was refined to 0.6μm with the main phases of CaMgSi_2O_6 and CaTiO_3, which had good dielectric properties: ε_r = 9.74, Q×f= 16433GHz, τ_f = -2.78ppm/℃. (4) It was effective to refine the grain size and improve the dielectric properties of (Ca, Mg)SiO_3-CaTiO_3 ceramic with appropriate sintering process (first sintered for 0.5h at 890℃, and then sintered at 850℃ for a long time).
    4. Based on the study about dispersion of nanopowders, preparation of slurry, co-firing of ceramic and Ag electrode, the green tape with the thickness of 9.8μm was gained by the tape casting process, which was appropriate to prepare subminiature multilayer component. (1) It was limited to disperse low temperature co-fired (Ca, Mg)SiO_3-CaTiO_3 nanopowders by adding non-ionic surfactant or anionic organic acid. Owing to steric hindrance and electrostatic rejection, the agglomeration of nanopowders could be reduced effectively and a homogeneous mixture suspension could be obtained with the ionic surfactant AB001 added in. (2) Green tape with glabrous surface was gained by the tape casting process with the content ratio of M_(nanopowder) : M_(dispersant):M_(solvent):M_(bond):M_(plasticizer) = 100:1.5: 70: 65: 4. (3) When co-firing the green tape and Ag slurry, there was a good conjoint status and chemical compatibility between ceramic and Ag electrode, which indicated that the nanopowder is appropriate to prepare subminiature multilayer component.
引文
[1] 王闯,钱蓉,孙晓玮.高增益K波段MMIC低噪声放大器[J].半导体学报,2006,27(7):1285-1289.
    [2] David T, Kalle L. The 3G transition: Changes in the US wireless industry [J]. Telecommunications Policy, 2006, 30(10-11): 569-586.
    [3] Yuan Y F, Zheng W P, Wang Y W, et al. Xiaolingtong versus 3G in China: Which will be the winner [J]. Telecommunications Policy, 2006, 30(5-6): 297-313.
    [4] Wolfram S, Lorenz M, Olivier J. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks [J]. Environment International, 2006, 32(5): 656-675.
    [5] 老狗.未来通信:3G抑或4G[J].上海商业,2006,(7):19.
    [6] Christine G, Paul C. Joint source-channel coding as an element of a QoS framework for '4G' wireless multimedia [J]. Computer Communications, 2004, 27(8): 762-779.
    [7] Woo S C, Dai G L. Development of the composite RAS (radar absorbing structure) for the X-band frequency range [J]. Composite Structures, 2007, 77(4): 457-465.
    [8] Angela K, Ivo K, Francisco W, et al. K-band ESR spectra of calcite stalagmites from southeast and south Brazil [J]. Applied Radiation and Isotopes, 2005, 62(2): 247-250.
    [9] 胡皓全,童雪辉.Ka波段宽带低噪声放大器研究[J].电子信息对抗技术,2006,21(4):45-48.
    [10] Felipe C, Carlos F O G, Oswaldo B. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter [J]. Applied Radiation and Isotopes, 2005, 62(2): 267-271.
    [11] 杨辉,张启龙,王家邦,尤源,黄伟.微波介质陶瓷及器件研究进展[J].硅酸盐学报,2003,31(10):965-973,980.
    [12] Dernovsek O, Naeini A, Preu G, et al. LTCC glass-ceramic composites for microwave application [J]. Journal of the European Ceramic Society, 2001, 21: 1693-1697.
    [13] 钟慧,张怀武.低温共烧陶瓷(LTCC):特点、应用及问题[J].磁性材料及器件,2003,34(4):33-35.
    [14] 崔学民,周济,沈建红,缪春林.低温共烧陶瓷(LTCC)材料的应用及研究现状[J].材料导报,2005,19(4):1-4.
    [15] 刘晓林,张靖强,陈建峰,等.超重力反应沉淀法制备的纳米钛酸钡粉体的烧结与介电性能研究[J].北京化工大学学报:自然科学版,2004,31(5):6-9.
    [16] 胡祥发.微波技术的发展与应用[J].现代物理知识,2006,18(1):32-34.
    [17] Wu C H, Sun C M. Parallel synthesis of amino bis-benzimidazoles by multistep microwave irradiation [J]. Tetrahedron Letters, 2006, 47(15): 2601-2604.
    [18] Ali S, Mohammad M M, Mohammad R S. Microwave irradiation techniques for the Cannizzaro reaction [J]. Tetrahedron Letters, 1999, 40(6): 1179-1180.
    [19] Zhou G T, Pol V G, Palchik O, et al. A fast synthesis for Zintl phase compounds of Na_3SbTe_3, NaSbTe_2 and K_3SbTe_3 by microwave irradiation [J]. Journal of Solid State Chemistry, 2004, 177(1): 361-365.
    [20] 刘兴利,谭炯.微波技术在药物研究领域中的应用[J].西南民族大学学报:自然科学版,2006,32(1):88-92.
    [21] 姜景山.微波遥感信息科技发展若干问题的讨论[J].遥感技术与应用,2005,20(1):1-5.
    [22] 黄江,微波通信的应用[J].活力,2005,(10):180.
    [23] 王小林.微波滤波技术在通信系统中的应用[J].空间电子技术,2001,(4):52-54,60.
    [24] 丁士华,姚熹,张良莹,等.片式多层陶瓷微波谐振器[J].压电与声光,2004,26(4):280-282.
    [25] Kataria N D, Jawahar I N, Sebastian M T. Tuning the properties of microwave dielectric resonators in a stack configuration [J]. Materials Letters, 2006, 60(21-22): 2642-2644.
    [26] Jacob M V, Hartnett J G, Mazierska J, et al. Dielectric characterisation of Barium Fluoride at cryogenic temperatures using TE_(011) and quasi TE_(0mn) mode dielectric resonators [J]. Cryogenics, 2006, 46(10): 730-735.
    [27] 丁士华,姚熹,张良莹,等.低温共烧陶瓷片式微波谐振器的研究[J].同济大学学报:自然科学版,2004,32(8):1024-1026.
    [28] 邓重一.滤波器的过去、现在和未来[J].今日电子,2003,(7):48~52.
    [29] 向勇,谢道华.移动通信滤波器技术新进展[J].移动通信,2001,(2):41~43.
    [30] 张启龙,杨辉,邹佳丽,等.低烧ZnO-TiO_2微波陶瓷介电特性及片式多层带通滤波器研究[J].微波学报,2006,22(1):65-70.
    [31] 张启龙.低温烧结微波介质陶瓷及多层片式带通滤波器研究[D].博士学位论文,浙江大学,2004.
    [32] 向勇,谢道华.新型片式元器件在移动通信领域的应用[J].移动通信,2001,25(10):26-28.
    [33] Carmo J P, Mendes P M, Couto C, et al. 5.7GHz on-chip antenna/RF CMOS transceiver for wireless sensor networks [J]. Sensors and Actuators A: Physical, 2006, 132(1): 47-51.
    [34] Mendes P M, Polyakov A, Bartek M, et al. Integrated chip-size antennas for wireless microsystems: Fabrication and design considerations [J]. Sensors and Actuators A: Physical, 2006, 125(2): 217-222.
    [35] 邹佳丽,张启龙,唐雄心,等.新型低温共烧微波陶瓷片式多层balun研究[G].第十四届电子元件学术年会论文集,2006,243-247.
    [36] 包兴,胡明.电子器件导论[M].北京理工大学出版社,2003.
    [37] 胡南山,胡畏.高Q微波陶瓷片式电容器研究[J].上海半导体,1994,(2):15-17.
    [38] Krishnaveni T, Kanth B R, Raju V S R, et al. Fabrication of multilayer chip inductors using Ni-Cu-Zn ferrites [J]. Journal of Alloys and Compounds, 2006, 414(1-2): 282-286.
    [39] Tsay C Y, Liu K S, Lin T F, et al. Microwave sintering ofNiCuZn ferrites and multilayer chip inductors [J]. Journal of Magnetism and Magnetic Materials, 2000, 209(1-3): 189-192.
    [40] 王少洪,周和平,陈克新.高频片式电感用堇青石陶瓷材料的低温烧结和性能[J].稀有金属材料与工程,2005,34(2):325-328.
    [41] 罗凌虹,周和平,黄河激,等.多层片式电感器介质材料及其工艺的发展现状[J].无机材料学报,2001,16(6):1032-1040.
    [42] 崔学民,周济,沈建红,等.低温共烧陶瓷(LTCC)材料的应用及研究现状[J].材料导报,2005,19(4):1-4.
    [43] 孙慧萍.LTCC低介高频微波介质材料[D].硕士学位论文,浙江大学,2004.
    [44] http://www.j ohansontechnology.com/products/csc/
    [45] Wu S P. Preparation of ultra fine nickel-copper bimetallic powder for BME-MLCC [J]. Microelectronics Journal, 2007, 38(1): 41-46.
    [46] Wu S P, Qin H L, Li P. Preparation of fine copper powders and their application in BME-MLCC [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006, 13(3): 250-255.
    [47] Wang S, Zhang S R, Zhou X H, et al. Investigation on dielectric properties of BaTiO_3 co-doped with Ni and Nb [J]. Materials Letters, 2006, 60(7): 909-911.
    [48] Ji Z, Zhang Y, Gu Y S, et al. Non-reducible BaTiO_3-based dielectric ceramics for Ni-MLCC synthesized by soft chemical method [J]. Ceramics International, 2006, 32(4): 447-450.
    [49] Park D H, Jung Y G, Paik U. Crack suppression behavior with post-process parameters in BaTiO3-based Ni-MLCC [J]. Ceramics International, 2005, 31(5): 655-661.
    [50] 谭富彬,谭浩巍.电子元器件的发展及其对电子浆料的需求[J].贵金属,2006,27(1):64-68,74.
    [51] 陈瑞英,周康根,胡敏艺,郭朝晖.多层陶瓷电容器内电极镍粉的研究进展[J].材料导报,2005,19(11):311-313.
    [52] 张俊兵,樊自拴,孙冬柏,等.镍内电极多层陶瓷电容器的进展[J].电子元器件应用,2003,5(12):1-3,21.
    [53] 朱海奎,刘敏,周洪庆.LTCC介质材料的研究进展[J].材料导报,2006,20(5):328-330.
    [54] Shin Y I, Kang K M, Jung Y G, et al. Internal stresses in BaTiO_3/Ni MLCC [J]. Journal of the European Ceramic Society, 2003, 23(9): 1427-1434.
    [55] Paik U, Kang K M, Jung Y G, Kim J. Binder removal and microstructure with bumout conditions in BaTiO_3 based Ni-MLCC [J]. Ceramics International, 2003, 29(8): 939-946.
    [56] Miao C L, Wang M, Yue Z X, et al. Co-firing behavior of ZnTiO_3 dielectric ceramics/Ag composites for MLCC IJ]. Ceramics International, 2006, 32(4): 471-474.
    [57] 王家邦,杨辉,张启龙,等.叠层共烧微波介质陶瓷器件的银扩散机理[J].硅酸盐学报,2004,32(12):1549-1554.
    [58] 王少洪,周和平,陈克新.高频片式电感用堇青石陶瓷材料的低温烧结和性能[J].稀有金属材料与工程,2005,34(2):325-328.
    [59] Yokoi A, Ogawa H, Kan A, et al. Microwave dielectric properties of Mg4Nb2Og-3.0wt% LiF ceramics prepared with CaTiO_3 additions [J]. Journal of the European Ceramic Society, 2005, 25(12): 2871-2875.
    [60] 张美蓉.片式元器件走向高频化、小型化[J].世界电子元器件,2001,(12):29.
    [61] 黄刚.小型化片式磁性元器件发展现状[J].电子信息:印制电路与贴装,2000,(1):46-47.
    [62] 黄刚.片式磁性元件的市场和技术发展状况[J].中国电子商情:元器件市场,2003,(1):30-32.
    [63] 李龙土.功能陶瓷材料及其应用研究进展[J].硅酸盐通报,2005,24(5):107-110.
    [64] 李龙土.功能陶瓷材料研究的若干进展[J].功能材料信息,2005,2(1):10-14.
    [65] Richtmyer R D. Dielectric resonators [J]. Journal of Applied Physics, 1939, 10: 391-398.
    [66] Masse D J, Pucel R A, Readey D W. A new low-loss, high-k, temperature-compensating dielectric for microwave applications [J]. Proc IEEE, 1971, 59(11): 1628-1629.
    [67] O'Bryan H M. A new BaO-TiO2 compound with temperature stable high permittivity and low microwave loss [J]. Journal of the America Ceramic Soceity, 1974, 57(12): 450-453.
    [68] Andou M, Tsunooka T, Higashida Y, et al. Development of high Q forsterite ceramics for high-frequency applications [J]. MMA2002 Conference, 2002, York, UK.
    [69] Alford N M, Penn S J. Sintered alumina with low dielectric loss [J]. Journal of Applied Physics, 1996, 80(10): 5895-5898.
    [70] Wakino K. Recent development of dielectric resonator materials and filters in Japan [J]. Ferroelectrics, 1989, 99: 69-86.
    [71] Nomura S, Toyama K, Kaneta K. Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics with temperature stable high dielectric constant and low microwave loss [J]. Japanese Journal of Applied Physics, 1982, 21: 624-626.
    [72] Kawishima S, Nishada N, Ueda I, et al. Ba(Zn_(1/3)Ta_(2/3))O_3 ceramics with low dielectric loss at microwave frequencies [J]. Journal of the America Ceramic Soceity, 1983, 66(6): 421-423.
    [73] O'Bryan H M, Thomson J. Phase equilibria in the TiO_2-rich region of the BaO-TiO_2 system [J]. Journal of the America Ceramic Soceity, 1974, 57(12): 522-526.
    [74] Wakino K, Minai T, Tamura H, Microwave characteristics of (Zr, Sn)TiO_4 and BaO-PbO -Nd_2O_3-TiO_2 dielectric resonators [J]. Journal of the America Ceramic Soceity, 1984, 67(4): 278-281.
    [75] Ding S H, Yao X, Yang Y. Dielectric properties of B_2O_3-doped BiNbO_4 ceramics [J]. Ceramics International, 2004, 30(7): 1195-1198.
    [76] Borisevich A, Davies P K. Microwave dielectric properties of Li_(1+x-y)M_(1-x-3y)Ti_(x+4y)O3 (M=Nb~(5+), Ta~(5+)) solid solutions [J]. Journal of the European Ceramic Society, 2001, 21: 1719-1722.
    [77] Okawa T, Imaeda M, Ohsato H. Site occupancy of Bi ions and microwave dielectric properties in Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54) solid solutions [J]. Materials Science and Engineering B, 2002, 88(1): 58-61.
    [78] Ichinose N, Amada H. Preparation and microwave dielectric properties of the BaO-(Sm_(1-x)La_x)_2O_3-5TiO_2 ceramic system [J]. Journal of the European Ceramic Society, 2001, 21: 2751-2753.
    [79] Kucheiko S, Choi J W, Kim H J, et al. Microwave characteristics of (Pb,Ca)(Fe,Nb,Sn)O_3 dielectric materials [J]. Journal of the America Ceramic Soceity, 1997, 80: 2937-2940.
    [80] Lee H J, Kim I T, Hong K S. Dielectric properties of AB_2O_6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta) [J]. Japanese Journal of Applied Physics, Part 2, 1997, 36(10A): 1318-1320.
    [81] Ratheesh R, Sebastian M T, Mohanan P, et al. Microwave characterisation of BaCe_2Ti_5O_(15) and BasNb_4O_(15) ceramic dielectric resonators using whispering gallery mode method [J]. Materials Letters, 2000, 45: 279-285.
    [82] Kim W S, Yoon K H, Kim E S. Far-infrared reflectivity spectra of CaTiO_3-Li_(1/2)Sm_(1/2)TiO_3 microwave dielectrics [J]. Material Research Bulletin, 1999, 34, (14/15): 2309-2317.
    [83] 方亮,杨卫明,鄢俊兵,等.微波介质陶瓷的研究现状与发展趋势[J].武汉理工大学学报,2002,24(2):12-15.
    [84] Kell R C, Greenham A C, Olds G C E. High-permittivity temperature-stable ceramic dielectrics with low microwave loss [J] Journal of the American Ceramic Society, 1973, 56(7): 352-354.
    [85] Takahashi H, Baba Y, Ezaki K, et al. Microwave Dielectric properties and crystal structure of CaO-Li_2O-(1-x)Sm_2O_3-xLn_2O-3-TiO_2 [J]. Japanese Journal of Applied Physics, Part 1, 1996, 35(9B): 5069-5073.
    [86] Sergey K, Choi J W, Kim H J, et al. Microwave characteristics of (Pb,Ca)(Fe,Nb,Sn)O_3 dielectric materials [J]. Journal of the America Ceramic Soceity, 1997, 80(11): 2937-2940.
    [87] Kolar D, Stadler Z, Gaberscck S. Ceramic and dielectric properties of selected composition in the BaO-TiO_2-Nd_2O_3 system [J]. Ber Nt Keram Ges, 1978, 55(7): 346-348.
    [88] Valant M, Suvorov D, Rawn C J. Intrinsic reasons for viriation in dielectric properties of Ba_(6-3x)R_(8+2x)Ti_(18)O_(54) (R=La-Gd) solid solutions [J]. Japanese Journal of Applied Physics, 1999, 38: 2820-2826.
    [89] Ota Y, Kakimoto K I, Ohsato H, et al. Low-temperature sintering of Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54) microwave dielectric ceramics by B_2O_3 and GeO_2 addition [J]. Journal of the European Ceramic Society, 2004, 24: 1755-1760.
    [90] 陈尚坤,杨辉,王家邦,等.Ba4(Nd_(0.85)Bi_(0.15))_(28/3)Ti_(18)O_(54)陶瓷低温化研究[J].材料科学与工程学报,2005,23(1):84-87.
    [91] Dernovsek O, Naeini A, Preu G, et al. LTCC glass-ceramic composites for microwave application [J]. Journal of the European Ceramic Society, 2001, 21: 1693-1697.
    [92] 宋英,王富平,张明富.BaO-TiO_2系陶瓷微波介电性能的近期研究进展[J].硅酸盐通报,1998,(3):50-52.
    [93] Kim D W, Lee D G, Hong K S. Low-temperature firing and microwave dielectric properties of BaTi_4O_9 with Zn-B-O glass system [J]. Materials Research Bulletin, 2001, 36(4): 585-595.
    [94] Lee Y C, Leeb W H, Shieuc F S. Microwave dielectric properties and microstructures of Ba_2Ti_9O_(20)-based ceramics with 3ZnO-B_2O_3 addition [J]. Journal of the European Ceramic Society, 2005, 25(15): 3459-3468.
    [95] Huang C L, Weng M H. Liquid phase sintering of (Zr, Sn)TiO4 microwave dielectric ceramics [J]. Materials Research Bulletin, 2000, 35(11): 1881-1888.
    [96] Jean J H, Lin. Low firing processing of ZrO_2-SnO-TiO_2 ceramics [J]. Journal of the America Ceramic Soceity, 2000, 83(6): 1417-1422.
    [97] Ko S K, Kim K Y. Characteristics of tapped microstrip bandpass filter in BiNbO4 ceramics [J]. Journal of Materials Science: Mater Electron, 1998, 9: 351-356.
    [98] 张启龙,杨辉,魏文霖,等.烧结助剂对BiNbO_4陶瓷烧结特性及介电性能的影响[J].电子元件与材料,2004,(2):7-9.
    [99] 张启龙,杨辉,魏文霖,等.掺杂ZnO-B_2O_3低温烧结BiNbO_4介质陶瓷的研究[J].硅酸盐通报.2004,(4):79-81.
    [100] Tong J X, Zhang Q L, Yang H, et al. Low-temperature firing and microwave dielectric properties of Ca[(Li_(1/3)Nb_(2/3))_(0.84)Ti_(0.16)]O_(3-δ) ceramics for LTCC applications[J]. Journal of the American Ceramic Society, 2007, 90(3): 845-849.
    [101] Liu P, Ogawa H, Kim E S, et al. Microwave dielectric properties of low-temperature sintered Ca[(Li_(1/3)Nb_(2/3)), Ti]O_(3-δ) ceramics [J]. Journal of the European Ceramic Society, 2004, 24(6): 1761-1764.
    [102] Lee H J, Hong K S, Kim S J, et al. Dielectric properties of MNb_2O_6 compounds (where M=Ca, Mn, Co, Ni, or Zn) [J]. Materials Research Bulletin, 1997, 32(7): 847-855.
    [103] Zhang Q L, Yang H. Low-temperature firing and microwave dielectric properties of ZnO-Nb_2O_5-TiO_2-SnO_2 ceramics with CuO-V_2O_5 [J]. Materials Research Bulletin, 2005, 40: 1891-1898.
    [104] Kim B J, Kim M H, Nahm S, et al. Effect of B_2O_3 on the microstructure and microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics [J]. Journal of the European Ceramic Society, 2007, 27(2-3): 1065-1069.
    [105] 卞建江,赵梅瑜.添加V_2O_5对Ba(Mg_(1/3)Ta_(2/3))O_3烧结及微波介电性能的影响[J].无机材料学报,1998,13(4):496-500.
    [106] Kim M Han, Jeong Y H, Nahm S, et al. Effect of B_2O_3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn_(1/3)Nb_(2/3))O_3 ceramics [J]. Journal of the European Ceramic Society, 2006, 2(10-11): 2139-2142.
    [107] Huang C L, Hou J L, Pan C L, et al. Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95MgTiO_3-0.05CaTiO_3 ceramics [J]. Journal of Alloys and Compounds, In Press, Corrected Proof, Available online 1 December 2006.
    [108] Zhang Q L, Yang H, Tong J X. Low-temperature firing and microwave dielectric properties of MgTiO_3 ceramics with Bi_2O_3-V_2O_5 [J]. Materials Letters, 2006, 60(9-10): 1188-1191.
    [109] Zhang Q L, Yang H, Zou J L, et al. Sintering and microwave dielectric properties of LTCC-zinc titanate multilayers [J]. Materials Letters, 2005, 59: 880-884.
    [110] Kim H T, Kim S H, Nahm S, et al. Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron [J]. Journal of the American Ceramic Society, 1999, 82(11): 3043-3048.
    [111] Huang C L, Weng M H, Wu C C. The microwave dielectric properties and the microstructures of La_2O_3-modified BiNbO_4 ceramics [J]. Japanese Journal of Applied Physics, Part 1, 2000, 39(6A): 3506-3510.
    [112] Kagata H, Inone T, Kato J, et al. Low fired bismuth-based dielectric ceramics [J]. Japanese Journal of Applied Physics, Part Ⅰ, 1992, 31 (9B): 3152-3155.
    [113] 董兆文,王岩.低温共烧玻璃陶瓷基板材料的研究[J].电子元件与材料,1996,15(6):28-32.
    [114] 徐忠华,马莒生,韩振宇,等.LTCC铜布线N_2烧结研究[J].功能材料,2000,31(5):496-498.
    [115] 韩振宇,马莒生,徐忠华,等.低温共烧陶瓷基板制备技术研究进展[J].电子元件与材料,2000,19(6):31-33.
    [116] 王悦辉,周济,崔学民,等.低温共烧陶瓷(LTCC)技术在材料学上的进展[J].无机材料学报,2006,21(2):267-276.
    [117] 王文华,孙义传.MCM用低介电常数多层陶瓷基板的研究[J].混合微电子技术,1998,9(3):30-33,29.
    [118] Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates [J]. Journal of the European Ceramic Society, 2004, 24: 1715-1719.
    [119] Breze J, Penn S J, Poole M, et al. Layered Al_2O_3-TiO_2 Composite Dielectric Resonators [J]. Electronics Letters, 2000, 36: 883-886.
    [120] Zulal M, Osman T. Effect of B_2O_3 Addition on the Sintering of α-Al_2O_3 [J]. Ceramics International, 1996, 22: 33-37.
    [121] Ohashi M, Ogawa H, Kan A, et al. Microwave dielectric properties of low-temperature sintered Li_3AlB_2O_6 ceramic [J]. Journal of the European Ceramic Society, 2005, 25: 2877-2881.
    [122] Umemura R, Ogawa H, Ohsato H, et al. Microwave dielectric properties of low-temperature sintered Mg_3(VO_4)_2 ceramic [J]. Journal of the European Ceramic Society, 2005, 25: 2865-2870.
    [123] Umemura R, Ogawa H, Yokoi A, et al. Low-temperature sintering-microwave dielectric property relations in Ba_3(VO_4)_2 ceramic [J]. Journal of Alloys and Compounds, 2006, 424(1-2): 388-393.
    [124] Kan A, Ogawa H, Yokoi A. Sintering temperature dependence of microwave dielectric properties in Mg_4(TaNb_(1-x)V_x)O9 compounds [J]. Materials Research Bulletin, 2006, 41(6): 1178-1184.
    [125] Umemura R, Ogawa H, Kan A. Low temperature sintering and microwave dielectric properties of (Mg_(3-x)Zn_x)(VO_4)_2 ceramics [J]. Journal of the European Ceramic Society, 2006, 26(10-11): 2063-2068.
    [126] Bian J J, Kim D W, Hong K S. Glass-free LTCC microwave dielectric ceramics [J]. Materials Research Bulletin, 2005, 40: 2120-2129.
    [127] Kima J C, Kima M H, Nahma S, et al. Microwave dielectric properties of Re_3Ga_5O_(12) (Re: Nd, Sm, Eu, Dy and Yb) ceramics and effect of TiO_2 on the microwave dielectric properties of Sm_3Ga_5O_(12)ceramics [J] Journal of the European Ceramic Society, 2006, In Press, Corrected Proof, Available online 28 December.
    [128] 蔡伟,江涛等.低温烧结低介硅灰石瓷料的研制[J].电子元件与材料,2002,21(2):16-18.
    [129] Wang S H, Zhou H P. Densification and dielectric properties of CaO-B_2O_3-SiO_2 system glass ceramics [J]. Materials Science and Engineering B, 2003, 99: 597-600.
    [130] 孙慧萍,张启龙,杨辉,等.烧结助剂对CaO-B_2O_3-SiO_2介电陶瓷结构和性能的影响[J].硅酸盐通报,2004,5:116-118.
    [131] Sun H P, Zhang Q L, Yang H, et al. (Ca_(1-x)Mg_x)SiO_3: A low-permittivity microwave dielectric ceramic system [J]. Materials Science and Engineering B, 2007, 138: 46-50.
    [132] 张启龙,杨辉,孙慧萍,邹佳丽.低温烧结(Ca_(1-x)Mg_x)SiO_3系微波介质陶瓷及制备工艺[P].中华人民共和国专利,专利号:200410039848.1.
    [133] Maclaren I, Ponton C B. Low temperature hydrothermalsyn thesis of Ba(Mg_(1/3)Ta_(2/3))O_3 sol-derived powders [J]. Journal of Materials Science, 1998, 33(1): 17.
    [134] Bian J J, Zhao M Y, Yin Z W. Synthesis of pure Ba(Mg_(1/3)Ta_(2/3))O_3 microwave dielectric powder by citrate gel-processing route [J]. Materials Letters, 1998, 34(3-6): 275-279.
    [135] Katayama S, Yoshinaga I, Yamada N, et al. Low-temperature synthesis of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics from Ba-Mg-Ta alkoxideprecursor [J]. Journal of the American Ceramic Society, 1996, 79(8): 2059.
    [136] Katayama S, Yoshinage I, Nagai T, et al. Synthesis of perovskite Ba(Mg_(1/3)Ta_(2/3))O_3 powder from Ba-Mg-Ta alkoxide precursor [J]. Ceram Trans, Ceramic Processing Science and Technology, 1995, 51: 69.
    [137] Katayama S, Sekine M. Low-temperature synthesis of B a(Mgl/3Ta2/3)O3 perovskite by metal alkoxid method [J]. Journal of Materials Chemistry, 1992, 2(8): 889.
    [138] 连芳,徐利华.一种新型湿化学方法合成Ba(Mg_(1/3)Ta_(2/3))O_3纳米粉末的研究[J].无机材料学报,2002,17(2):247-252.
    [139] 顾峰,沈悦.共沉淀法制备Ba(Mg_(1/3)Ta_(2/3))O_3陶瓷的研究[J].电子元件与材料,1999,18(5):9-10.
    [140] Choy J H, Han Y S, Sohn J H, et al. Microwave characteristics of BaO-TiO2 ceramic prepared via a citrate route [J]. Journal of the American Ceramic Society, 1995, 78(5): 1169.
    [141] Choy J H, Han Y S, Hwang S H, et al. Citrate route to Sn-doped BaTi409 with microwave dielectric properties [J]. Journal of the American Ceramic Society, 1998, 81 (12): 319.
    [142] Cernea M, Chirtop E, Neacsu D, et al. Preparation of BaTi409 from oxalates [J]. Journal of the American Ceramic Society, 2002, 85(2): 499.
    [143] Huang J R, Xiong Z X, et al. Hydrothermal synthesis of B_2TigO_2 nanopowder for microwave ceramics [J]. Materials Science and Engineering, 2003, B99: 226.
    [144] Chu L W, Hsiue G H, Lin IN. Improvement on the characteristic of Ba_2Ti_9O_(20) microwave dielectric materials prepared by modified co-precipitation method [J]. Journal of the European Ceramic Society, 2006, 26(10-11): 2081-2085.
    [145] 吴毅强.Sol-gel法制备微波介质陶瓷材料[J].电子元件与材料,1999,18(1):5-7.
    [146] Ho Y S, Weng M H, Dai B T, et al. Nano powder and microwave dielectric properties of sol-gel derived Zr_(0.8)Sn_(0.2)TiO_4 ceramics [J]. Japanese Journal of Applied Physics, 2005, 44(8): 6152-6155.
    [147] Xiong Z X, Huang J R, Fang C, et al. Hydrothermal synthesis of (Zr, Zn)TiO_4 nano-powders for microwaves ceramics [J]. Journal of the European Ceramic Society, 2003, 23(14): 2515-2518.
    [148] Hirano S, Hayashi T, Hattori A. Chemical processing and microwave characteristics of(Zr, Sn)TiO_4 microwave dielectric ceramic [J]. Journal of the American Ceramic Society, 74(6): 1320-1324.
    [149] Hosono E, Fujihara S, Onuki M, et al. Low-temperatrue synthesis of nanocrystalline Zinc Titanate materials with high specific surface area [J]. Journal of the American ceramic society, 2004, 87(9): 1785-1788.
    [150] Chang Y S, Chang Y H, Chen I G, et al. Synthesis and characterization of Zinc titanate nano-crysral powders by sol-gel technique [J]. Journal of Crystal Growth, 2002, 243(2): 319-326.
    [151] Cheng H, Xu B, Ma J. Preparation of MgTiO_3 by an improved chemical coprecipitation method [J]. Journal of Materials Science Letters, 1997, 16(19): 1570.
    [152] Miao Y M, Zhang Q L, Yang H, et al. Low-temperature synthesis of nano-crystalline magnesium titanate materials by sol-gel method [J]. Material Science and Engineering B, 2006, 128: 103-106.
    [153] Kim H T, Nahm S, Byun J D, et al. Low-Fired (Zn, Mg)TiO_3 microwave dielectrics [J]. Journal of the American ceramic society, 1999, 82(12): 3476-3480.
    [154] Takahashi J, Ikegami T. Occurrence of dielectric 1 : 1 : 4 compound in the ternary system BaO-Ln_2O_3-TiO_2 (Ln = Nd, La and Sin): I an improved coprecipitation method for preparing a single-phase powder of ternary compound in the BaO-La_2O_3-TiO_2 systems [J]. Journal of the American ceramic society, 1991, 74(8): 1868.
    [155] 王伟,张启龙,王焕平,等.纳米MgNb_2O_6微波介质陶瓷粉体制备及表征[J].无机化学学报,2006,22(10):1887-1890.
    [156] Xu Y B. Preparation of Ba_(6-x)Nd_(8+x)Ti_(18)O_(54) via ethylenediaminetetraacetic acid precursor [J]. Journal of the American Ceramic Society, 2000, 83(11): 2893.
    [157] Cho S Y, Youn H J, Hong K S, et al. A new microwavedielectric ceramics based on the solid solution system between Ba(Ni_(1/3)Nb_(2/3))O_3 and Ba(Zn_(1/3)Nb_(2/3))O_3 [J]. Journal of Materials Reseach, 1997, 12(6): 1558.
    [158] Shim S H, Yoon J W, Shim K B, et al. Low temperature synthesis of the microwave dielectric Bi_2O_3-MgO-Nb_2O_5 nano powders by metal-citrate method [J]. Journal of Alloys and Compounds, 2006, 415(1-2): 234-238.
    [159] 赵梅瑜,王依林.低温烧结微波介质陶瓷[J].电子元件与材料,2002,21(2):30-39.
    [160] 李凤生.超细粉体技术[M].国防工业出版社,北京,2000.
    [161] 张立德,牟季美.纳米材料和纳米结构[M].科学出版社,北京,2001
    [162] 周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].国防工业出版社,北京,2003.
    [163] 高廉,李蔚.纳米陶瓷[M].化学工业出版社,北京,2002.
    [164] 朱静.纳米材料和器件[M].清华大学出版社,北京,2003.
    [165] 李凤生,崔平,等.微纳米粉体后处理技术及应用[M].国防工业出版社,北京,2005.
    [166] 毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].化学工业出版社,北京,2004.
    [167] 杨春光,乔爱平,赵永红.纳米粉体团聚的原因及解决办法[J].山西化工,2003,23(1):56-58.
    [168] 胡纪华,杨兆禧,郑忠编著.胶体与界面化学[M].华南理工大学出版社,1997.
    [169] Shih W H, Kisailus D, Shih W Y, et al. Rheology and consolidation of colloidal alumina-coated silicon nitridee suspensions [J]. Journal of the American Ceramic Society, 1996, 79(5): 1155-1162.
    [170] 孔德玉.硅溶胶分散氧化铝浆料的稳定机理及免脱气胶态原位凝固成型制备莫来石陶瓷研究[D].浙江大学博士学位论文,2005.
    [171] Burns J L, Yan Y D, Jameson G J, et al. The effect of molecular weight of nonadsorbing polymer on the structure of depletion-induced floes [J]. Journal of Colloid Interface Science, 2002, 247(1): 24-32.
    [172] Huang C L, Weng M H. Improved high Q value of MgTiO_3-CaTiO_3 microwave dielectric ceramics at low sintering temperature [J]. Materials Research Bulletin, 2001, 36: 2741-2750.
    [173] Su B, Button T W. Interactions between barium strontium titanate (BST) thick films and alumina substrates [J]. Journal of the European Ceramic Society, 2001, 21 (15): 2777-2781.
    [174] Cho C W, Cho Y S, Yeo J G, et al. Effect of PVB on the gelation behaviour of BaTiO3-based dielectric particles and glass suspension [J]. Journal of the European Ceramic Society, 2003, 23 (13): 2315-2322.
    [175] 张启龙,杨辉,刘兴元,等.低温烧结Li_(1-05)Nb_(0.55)TiO_3微波介质陶瓷及其器件[J].硅酸盐学报,2005,33(7):793-798.
    [176] Tamai H, Yagi T. High-pressure and high-temperature phase relations in CaSiO_3 and CaMgSi_2O_6 and elasticity of perovskite-type CaSiO_3 [J]. Physics of the Earth & Planetary Interiorsr, 1989, 54: 370-377.
    [177] Irifune T, Susaki J I, Yagi T. Sawamoto H. Phase transformations in diopside CaMgSi_2O_6 at pressures up to 25 GPa [J]. Geophysical Research Letters, 1989, 16(2): 187-190.
    [178] Reid J E, Suzuki A, Funakoshi K I, et al. The viscosity of CaMgSi_2O_6 liquid at pressures up to 13 GPa [J]. Physics of the Earth and Planetary Interiors, 2003, 139(1-2): 45-54.
    [179] Reid J E, Poe B T, Rubie D C, et al. The self-diffusion of silicon and oxygen in diopside (CaMgSi_2O_6) liquid up to 15 GPa [J]. Chemical Geology, 2001, 174(1-3): 77-86.
    [180] Oguri K, Funamori N, Sakai F, et al. High-pressure and high-temperature phase relations in diopside CaMgSi_2O_6 [J]. Physics of the Earth and Planetary Interiors, 1997, 104(4): 363-370.
    [181] 黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005.
    [182] 刘晓文,黄圣生,邱冠周.硅灰石粉末的制备和应用现状[J].矿产保护与利用,2001,2(1):20-23.
    [183] 余祖球,梁爱莲.低温陶瓷原料硅灰石的特性[J].佛山陶瓷,2002,67(10):17-20.
    [184] Sreekanth R P C, Nagabhushana B M, Chandrappa G T, et al. Solution combustion derived nanocrystalline macroporous wollastonite ceramics [J]. Materials Chemistry and Physics, 2006(95): 169-175.
    [185] Chang C R, Jean J H. Crystallization kinetics and mechanism of low dielectric, low temperature, co-firable CaO-B_2O_3-SiO_2 glass ceramics[J]. Journal of the American Ceramic Society, 1999, 82: 1725-1732.
    [186] 王少洪,周和平,乔梁.CaO-B_2O_3-SiO_2系微晶玻璃的低温烧结机理[J].硅酸盐通报,2002,(3):3-6.
    [187] 王少洪,周和平,乔梁.高频多层片式电感器用陶瓷材料的研究[J].机械工程材料,2003,27(2):17-20.
    [188] 孙慧萍,张启龙,杨辉,等.ZnO和Na_2O对CaO-B_2O_3-SiO_2介电陶瓷结构与性能的影响[J].陶瓷学报,2004,25(1):60-63.
    [189] 陈国华,刘心宇.机械力化学对硅灰石瓷料的显微组织、相组成和相变规律的影响[J].硅酸盐学报,2003,31(9):853-857.
    [190] 袁建君,方琪,徐晓晖,等.溶胶凝胶法制备硅灰石粉末的工艺过程研究[J].现代陶瓷技术,1997,73(3):19-23.
    [191] 袁建君,刘智恩,方琪,等.CaO-SiO_2系溶胶凝胶过程及其机理[J].华东理工大学学报,1996,22(3):316-321.
    [192] Suda S I, Toshiya T, Takao U. Synthesis of MgO-SiO_2 and CaO-SiO_2 amorphous powder by sol-gel process and ion exchange [J]. Journal of Non-Crystalline Solids, 1999(255): 178-184.
    [193] Witold M, Dorota N W, Krystyna P. Correlation between MgSiO3 phases and mechanical durability of steatite ceramics [J]. Journal of the European Ceramic Society, 2004, 24(15-16): 3817-3821.
    [194] 王芳,刘剑洪,罗仲宽,等.正硅酸乙酯水解-缩合过程的动态激光光散射研究[J].材料导报,2006,20(6):144-146.
    [195] Tong J X, Zhang Q L, Yang H, et al. Low temperature firing and microwave dielectric properties of Ca[(Li_(0.33)Nb_(0.67))_(0.9)Ti_(0.1)O_(3-δ) ceramics with LiF addition [J]. Material Letters, 2005, 59(26): 3252-3255.
    [196] Huang C L, Weng M H. Liquid phase sintering of (Zr, Sn)TiO_4 microwave dielectric ceramics [J]. Materials Research Bulletin, 2000, 35(11): 1881-1888.
    [197] Jean J H, Lin S C. Low firing processing of ZrO_2-SnO-TiO_2 ceramics [J]. Journal of the American Ceramic Society, 2000, 83(6): 1417-1422.
    [198] Renoult O, Boilot J P, Chaput F, et al. Sol-gel processing and microwave characteristics of Ba(Mg_(1/3)Nb_(2/3))O_3 dielectrics [J]. Journal of the American Ceramic Society, 1992, 75(12): 3337-3340.
    [199] Fukui T, Saurai C, Okuyama M. Preparation of Ba(Mg_(1/3)Nb_(2/3))O_3 ceramics as microwave dielectrics through alkoxide-hy-roxide route [J]. Journal of Materials Research, 1992, 7(7): 1883-1887.
    [200] Tolmer V, Desgardin G. Low-temperature sintering and influence of the process on the dielectric properties of Ba(Zn_(1/3)Ta_(2/3))O_3 [J]. Journal of the American Ceramic Society, 1997, 80(8): 1981-1991.
    [201] Kim H T, Nahm S, Byun J D, et al. Low-fired (Zn, Mg)TiO_3 microwave dielectrics [J]. Journal of the American Ceramic Society, 1999, 82(12): 3476-3480.
    [202] Tong J X, Zhang Q L, Yang H, et al. Low-temperature firing and microwave dielectric properties of Ca[(Li_(0.33)Nb_(0.67))_(0.9)Ti_(0.1)]O_(3-δ) ceramics with LiF addition [J]. Materials Letters, 2005, 59(26): 3252-3255.
    [203] Wu M C, Huang Y C, Su W F. Silver cofirable Bi_(1.5)Zn_(0.92)Nb_(1.5)O_(6.92) microwave ceramics containing CuO-based dopants [J]. Materials Chemistry and Physics, 2006, 100(2-3): 391-394.
    [204] Yim D K, Kim J R, Kim D W, et al. Microwave dielectric properties and low- temperature sintering of Ba_3Ti_4Nb_4O_(21) ceramics with B_2O_3 and CuO additions [J]. Journal of the European Ceramic Society, In Press, Corrected Proof, Available online 8 January 2007,
    [205] Yao Z H, Liu H X, Shen Z Y, et al. Effect of V_2O_5 additive to 0.4SrTiO_3-0.6La(Mg_(0.5)Ti_(0.5))O_3 ceramics on sintering behavior and microwave dielectric properties [J]. Materials Research Bulletin, 2006, 41(10): 1972-1978.
    [206] Hu M Z, Zhou D X, Gu H S, et al. Influence of Bi_2O_3 and MnO_2 doping on microwave properties of [(Pb,Ca) La](Fe,Nb)O_3 dielectric ceramics [J]. Materials Science and Engineering B, 2005, 117(2): 199-204.
    [207] Kim M H, Lira J B, Nahm S, Paik J H and Lee H J. Low temperature sintering of BaCu(B_2O_5)-added BaO-Re_2O_3-TiO_2 (Re = Sm, Nd) ceramics [J]. Journal of the European Ceramic Society, In Press, Corrected Proof, Available online 28 December 2006.
    [208] Zou J L, Zhang Q L, Yang H, et al. A new system of low temperature sintering ZnO-SiO_2 dielectric ceramics [J]. Japanese Journal of Applied Physics, Partl, 2006, 45(5A): 4143-4145.
    [209] Kang D H, Nam K C, Cha H J. Effect of Li_2O-V_2O_5 on the low temperature sintering and microwave dielectric properties of Li_(1.0)Nb_(0.6)Ti_(0.5)O_3 ceramics [J]. Journal of the European Ceramic Society, 2006, 26(10-11): 2117-2121.
    [210] Sebastian M T, Surendran K P. Tailoring the microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics [J]. Journal of the European Ceramic Society, 2006, 26(10-11): 1791-1799.
    [211] 童建喜,张启龙,杨辉,等.掺Li_2O-B_2O_3-SiO_2玻璃低温烧结MgTiO_3-CaTiO_3陶瓷及其微波介电性能[J].硅酸盐学报,2006,34(11):335-1340.
    [212] Wang Y R, Wang S F, Wen C K. Low-fire of (Zr_(0.8), Sn_(0.2))TiO_4 with glass additives [J]. Materials Science and Engineering: A, 2006, 426(1-2): 143-146.
    [213] Arnold R, Joan M. Compound repetition in oxide-oxide interactions: the system Li_2O-V_2O_5 [J]. Journal of Physics and Chemistry, 1962, 66(6): 1181-1185.
    [214] 祖庸,雷阎盈.钛白与钛系列新产品的开发与展望[J].化学世界,1992,33(2):49-54.
    [215] Kim I S, Jung W H, Inaguma Y, et al. Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system [(1-x)La_(2/3)TiO_3-xCaTiO_3 (0.14≤x4≤0.96)] [J]. Materials Research Bulletin, 1995, 30(3): 307-316.
    [216] Yoshida M, Hara N, Takada T, et al. Structure and dielectric properties of (Ca_(1-x)Nd_(2x/3))TiO_3 [J]. Japanese Journal of Applied Physics, 1997, 36(11): 6818-6823.
    [217] Jancar B, Suvorov D, Valant M, Drazic G. Characterization of CaTiO_3-NdAlO_3 dielectric ceramics[J]. Journal of the European Ceramic Society, 2003, (23): 1391-1400.
    [218] Kucheiko S, Choi J W, Kim H J, et al. Microwave dielectric properties of CaTiO3-Ca(Al_(1/2)Ta_(1/2))O_3 ceramics[J]. Journal of the American Ceramic Society, 1996, 79(10): 2739-2743.
    [219] Cho S Y, Youn H J, Lee H J, Hong K S. Contribution of structure to temperature dependence of resonant frequency in the (1-x)La(Zn_(1/2)Ti_(1/2))O_3-xATiO_3 (A=Ca, Sr) system [J]. Journal of the American Ceramic Society, 2001, 84(4): 753-758.
    [220] Chen X M, Li L, Liu X Q. Layered complex structures of MgTiO_3 and CaTiO_3 dielectric ceramics [J]. Materials Science and Engineering, 2003, 0399): 255-258.
    [221] Huang C L, Pan C L, hsu J F. Dielectric properties of (1-x)(Mg_(0.95)Co_(0.05))TiO_3-xCaTiO_3 ceramic system at microwave frequency [J]. Materials Research Bulletin, 2002, 37: 2483-2490.
    [222] Mi G, Murakami Y, Shindo D, et al. Microstructural investigation of CaTiO_3 formed mechanochemically by dry grinding of a CaO-TiO_2 mixture [J]. Powder Technology, 1999, 104: 75-79.
    [223] Manik S K, Pradhan S K. Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO_3 by Rietveld method [J]. Materials Chemistry and Physics, 2004, 86: 284-292.
    [224] 吴其胜,张少明,机械力化学合成CaTiO_3纳米晶的研究[J].硅酸盐学报,2001,29(5):479-483.
    [225] Lee S J, Kim Y C, Hwang J H. An organic-inorganic solution technique for fabrication of nano-sized CaTiO_3 powder [J]. Journal of Ceramic Process Research, 2004, 5(3): 223-226.
    [226] 胡嗣强,黎少华.水热合成技术的研究和应用(I.钛酸盐晶体粉末的制备)[J].化工冶金,1994,15(2):152-160.
    [227] 彭子飞,汪国忠,张伟,张立德.化学共沉淀法制备纳米级CaTiO_3粉体[J].功能材料,1996,27(5):429-430.
    [228] 王箴主编,化工词典(第四版)[M].化学工业出版社,2000:907.
    [229] Huang C L, Pan C L, Shium S J. Liquid phase sintering of MgTiO_3-CaTiO_3 microwave dielectric ceramics [J]. Materials Chemistry Physics, 2002, 78: 111-115.
    [230] 郭炜,李玲霞,吴霞宛,等.掺杂稀土元素对细晶BaTiO_3系统耐压及介电性能的影响[J].中国稀土学报,2003,21(2):209-213.
    [231] Okino Y, Shizuno H, Kisi H. Dielectric properties of rare-earth-oxide-doped BaTiO_3 ceramics fired in reducing atmosphere[J]. Japanese Journal of Applied Physics, 1995, 34: 5389.
    [232] 李玲霞.亚微米BaTiO_3 X7R MLC细晶陶瓷介质材料的介电性能研究[J].电子元件与材料.2003,22(8):52-53.
    [233] Ferreira V M. Effect of Cr and La on MgTiO_3 and MgTiO_3-CaTiO_3 microwave dielectric ceramics [J]. Journal of Materials Research, 1997, 12: 3293-3299.
    [234] Li R, Tang Q, Yin S, et al. Sintering and characterization of Ca_(0.9)Sr_)0.1)TiO_3 ceramics with sintering additive [J]. Materials Science and Engineering A, 2004, 373(1-2): 175-179.
    [235] 蒋渝,陈家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学报,2003,9(1):100-104.
    [236] 崔学民,欧阳世翕,黄勇,等.水基流延工艺制备陶瓷材料的研究[J].硅酸盐通报,2004,(2):40-43.
    [237] 黄勇,向军辉,谢志鹏,等.陶瓷材料流延成型研究现状[J].硅酸盐通报,2001,(5):22-27.
    [238] 雒晓军,张宝林,李文兰,等.水基流延法制备高热导率氮化铝陶瓷基片的方法[J].科技开发动态,2005,(4):41.
    [239] 刘冰.纳米陶瓷粉体的分散[J].江苏陶瓷,2004,37(4):3-5.
    [240] 肖品东.纳米沉淀碳酸钙工业化技术[M].化学工业出版社,北京,2004,第一版:236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700