不同株龄紫穗槐根系分布特征与空间异质性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用全株挖掘法对毛乌素沙地南缘不同年限种植的紫穗槐进行取样,研究60株龄、35株龄、28株龄、6株龄地上部形态特征、土壤含水量、根系生物量、比根长、根比例、根体积、根表面积及根长密度的垂直分布格局与土壤养分、水分空间异质性,以期揭示土壤养分、水分空间异质性对紫穗槐根系的可塑性及其相关性,揭示紫穗槐在沙地生境下生态适应性。获得结论如下:
     1、随着土壤深度的增加,各株龄紫穗槐根生物量、根体积,根表面积均呈指数Y=ae-bx形式递减。通过对消弱系数的分析根系集中分布于接近地表的土层中。土壤含水量(SM)与地上生物量(AGB)、根生物量(RB)、比根长(SRL)显著正相关性达水平。
     2、紫穗槐通过根系形态可塑性反应调整根系在不同土壤养分斑块上的分配,从而获得更多的土壤养分资源;土壤水分空间变异性与根表面积、根比例、根生物量、根体积呈极显著正相关,而与根系总长显著相关;有机碳与紫穗槐根系总长负相关,而与根系直径正相关;硝态氮与紫穗槐根系生物量极显著正相关;全磷与比根长正相关,与根系直径呈负相关,速效磷与根系直径正相关。
     3、随着株龄的增加紫穗槐并没有出现衰退的现象,紫穗槐通过改变根冠比、根系伸长、增大根系的吸收面积,根系具有自疏与更新的能力,从而满足地上部分生长所需水分和营养物质的需求,能够长期适应于气候波动、高温和干旱的沙漠环境。地上部分形态特征在一定程度上可以反映根系的分布特征。
     4、紫穗槐土壤水分空间变异性以中等变异性为主,60株龄、35株龄、28株龄紫穗槐根系较长时间作用于周围的土壤环境,已改变周围的土壤结构和营养含量,使其变的相对稳定,而6株龄生长时间较短,紫穗槐根系对周围土壤环境的改变相对来说较为缓慢。5、利用主成分分析法将根系分布参数确定为:水分控制因子和构架因子,运输控制因子,硝态氮和速效磷控制因子。
With the increase of soil depth, the plant age amorpha root biomass, root volume, root surface area showed Index Y=ae-bx form decremented. By weakening factor analysis concentrated on the roots close to the surface of the soil, root distribution among the parameters of the performance of different degrees of correlation:soil moisture (SM) and aboveground biomass (AGB), root biomass (RB), specific root length (SRL) was significant correlation between the level of the root surface area (RSA) were positively correlated.
     1. As soil depth increased, all aged amorpha fruticosa root biomass, root volume, root surface area declined following index Y=ae-bx form. Weakening factor analysis showed that root concentrated close to the surface soil. Soil moisture (SM) showed significant positive correlation with aboveground biomass (AGB), root biomass (RB) and specific root length (SRL).
     2. Amorpha adjusted root morphology to change root distribution in different soil nutrients plaques, and thus gain more resources; spatial variability of soil moisture was significantly positively correlated to root surface area, root ratio, root biomass, and root volume,and was significantly correlated with root length;organic carbon was negatively correlated with total length of roots,and positively correlated with root diameter; nitrate was significantly positively correlated with root biomass; total phosphorus positively correlated with specific root length, and was negatively correlated with root diameter, available phosphorus was positively correlated with root diameter.
     3. With the increasing planting years,Amorpha did not show phenomenon of recession. By changing the ratio of root, root elongation, increasing absorption area of root, Amorpha root has the ability to self-thinning and meet the need of water and nutrients for growth, long-term adaptation to climate fluctuations, high temperatures and arid desert environment. Aboveground morphology reflected the distribution of roots to some extent.
     4. Soil moisture spatial variability is moderate variability,60age35age28age amorpha roots affected surrounding soil environment for a long time, and changed the soil structure and nutrient content, made soil relatively stable. The effect of Amorpha roots on soil environment is relatively slow,6-planting-year showed little effect on soil structure and nutrient.
     5. Using principal component analysis, root distribution parameters were determined as follows: moisture control factors and framework factors,transportation control factors, nitrate and available phosphorus control factors.
引文
[1]余海燕,高红军,王海霞.紫穗槐繁殖技术及其应用[J].宁夏农林科技,2010,6:153-154.
    [2]段显德.粟园套种紫穗槐的生态经济效益分析[J].吉林师范大学学报.2007(1):94-96.
    [3]王秀英.紫穗槐在新疆园林绿化造林中的应用前景[J].新疆林业.2010(3):28-29.
    [4]陆尚龙.紫穗槐浑身是宝.31-33
    [5]张光存.淡紫穗槐蜜粉的利弊[J].中国蜂业.2009,(2):29.
    [6]万永霞.紫穗槐的价值及其繁殖[J].物种经济动植.2004,(1):31.
    [7]王印川.紫穗槐及其经济利用价值[J].山西水土保持科技.2003,(1):21-23.
    [8]杨明爽.紫穗槐的综合开发利用[J].饲料博览.1995,32(2):33-34.
    [9]崔大练,马玉心.王俊.干旱胁迫下紫穗槐叶片解剖特征的变化[J].广西植物.2011,31(3)332-337.
    [10]颜淑云,周志宇,邹丽娜,秦或.干旱胁迫对紫穗槐幼苗生理生化特性的影响[J].干旱区研究.2011,28(1):139-145.
    [11]王瑞,梁坤伦,周志宇.不同淹水梯度对紫穗槐的营养生长和生理响应[J].草业学报.2012,21(1):149-155.
    [12]牛东玲,王启基.盐碱地治理研究进展.土壤通报,2002,33(6):449-450.
    [13]王学礼,常青山,侯晓龙.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报,2010.19(1):108-112
    [14]邹丽娜.盐分胁迫下紫穗槐生理生长特性及营养成分特征.兰州大学
    [15]王楠,王进鑫,周芙蓉,等.铅胁迫对刺槐和紫穗槐抗氧化酶活性的影响[J].干旱区资源与环境.2012,26(3):168-171.
    [16]徐开未,张小平,陈远学.刺槐、紫穗槐、黄檀根瘤菌抗逆性的初步研究[J].湖北农业科学.2009,48(2):321-328.
    [17]冯建芳,方亮,王素英.紫穗槐根瘤菌抗逆性的初步研究[J].内蒙古农业大学学报,2011,32(4):156-159.
    [18]宋福强,孟剑侠,周宏等,丛枝菌根真菌对紫穗槐固氮能力的影响[J].林业科技,2009,34(4):25-28.
    [19]陈利云,周志宁.紫穗槐种子内生根瘤菌数量分布与种类特征[J].干旱地区农业研究.2012,30(4):231-235.
    [20]卢鑫,张丽静,王瑞等,玛曲高寒沙化草地3种灌木根际土壤磷素含量特征[J].草业科学,2012,29(2):167-173.
    [21]杜明新,张丽静,梁坤伦,等.高寒沙化草地不同灌木根际与非根际土壤氮素、有机碳含量特征[J].中国草地学报.2011,33(4):18-23.
    [22]刘风玲.河套地区不同树种根际土壤微生物数量的研究.内蒙古农业大学.
    [23]曹艳萍,卢翠英,白根举.紫穗槐叶杀虫化学成分的研究.中草药,2005,36(10):1468-1469.
    [24]中国药材公司.中国中药资源志要[M].北京:科学出版社,1994.
    [25]李坤,刁云鹏,姜泓,等.紫穗槐果实提取物的保肝作用研究[J].中医药学刊,2006,24(2):271-272.
    [26]姜泓,孟舒,陈再兴,等.紫穗槐中黄酮类化学成分的体外抗癌活性研究[J].中药材,2008,35(5):736-738.
    [27]王笳,赵联甲,韩基民,等.紫穗槐精油的提取及化学成份研究.中国野生植物资源,1996,(3):34-36.
    [28]燕雪花,孙芸,刘宏炳,等.新疆紫穗槐中总黄酮的提取与含量测定,光谱实验室,2012,29(2):878-881.
    [29]高桂枝,苑姗姗,虞梅.紫穗槐协同杀虫成分分离及其毒力研究.现代农药,2008,7(5):43-54.
    [30]刘雪云,周志宇,郭霞,等.紫穗槐植株的养分含量及分布特征[J].草业学报,2012,21(5):264-273.
    [31]郭霞,颜淑云,周志宇,等.对割次数对紫穗槐生长和氮磷钾含量的影响[J].草业科学.2011,28(3):431-435.
    [32]王晓芳,不同葡萄砧穗组合根系构型及其生物学效应.山东农业大学,2007.
    [33]孙曰波,玫瑰根系生物学特性及对水肥空间异质性响应的研究,山东农业大学.2011
    [34]钱永平,邓恩桉根系生态学研究,福建农林大学.2008.
    [35]牛海,毛乌素沙地不同水分梯度植物群落生物量的研究.内蒙古农业大学,2008.
    [36]牛兰兰,张天勇,丁国栋.毛乌素沙地生态修复现状、问题与对策.水土保持.2006.13(6):239-246.
    [37]吴薇.毛乌素沙地沙漠化过程及其整治对策.中国生态农业学报.2001,9(3):15-18.
    [38]周心澄.紫穗槐的固沙效益[J].中国沙漠,1985,5(1):46-51.
    [39]梁坤伦,姜文清,周志宇,等.青藏高原紫穗槐主要形态特征变异分析[J].生态学报,2012,32(1):311-318.
    [40]袁玉欣,王颖,裴保华,等.低温诱导对紫穗槐、刺槐抗寒性的影响[J].植物生态学报,1996,20(1):65-73.
    [41]刘畅,姜泓,张建逵,等GC-MS法测定紫穗槐果实挥发油中的化学成分[J].中华中医药学刊,2008,26(1):213-214.
    [42]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报,2006, 17(1):1-4.
    [43]樊剑波,沈其荣,谭炯壮,等.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    [44]王学臣,任海云,娄成后,等.干旱胁迫下植物根与地上部间的信号传递[J].植物生理学报,1992,(6):397-402.
    [45]任伟,周志宇,詹媛媛,等.阿拉善荒漠灌木根际中、微量元素含量特征.生态学报,2009,29(7):3759-3767.
    [46]黄建辉,韩兴国,陈灵芝,等.森林生态系统根系生物量研究进展[J].生态学报,1999,19(2):269-277.
    [47]胡建忠,郑佳丽,沈晶玉,等.退耕地人工植物群落根系生态位及其分布特征[J].生态学报,2005,25(3):481-489.
    [48]单立山,张希明,花永辉,等.塔克拉玛干沙漠腹地梭梭幼苗根系分布特征对不同灌溉量的响应[J].植物生态学报,2007,31(5):769-776.
    [49]黄刚.科尔沁沙地几种草本植物和灌木根系形态与分布规律[D].中国科学院寒区旱区环境与工程研究所,2006.
    [50]周梦华,程积民孙,万惠娥,等.云雾山本氏针茅群落根系分布特征[J].草地学报,2008,16(3):267-271.
    [51]胡宗培,邱玉舫.适宜盐碱地、干旱和半旱地区种植的优良灌木树种四翅滨藜[J].中国水土保持,2004,(6):40.
    [52]王文全,王世绩,刘雅荣,等.粉煤灰复田立地上杨、柳、榆、刺槐根系的分布和生长特点[J].林业科学,1994,30(1),25-33.
    [53]马雪红,周志春,张一,等.马尾松苗遭遇不同养分斑块的觅养行为和生长响应[J].林业科学研究,2010,23(5):697-702.
    [54].范伟国,杨洪强.果树根构型及其与营养和激素的关系[J].果树学报,2006,23(4):587-592.
    [55]熊明彪,田应兵,熊晓山.钾肥对冬小麦根系营养生态的影响[J].土壤学报,2004,41(2):285-291.
    [56]樊剑波,沈其荣,谭炯壮.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    [57]王长庭,王启兰,景增春.不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J].草业学报,2008,17(5):9-15.
    [58]成文竞,崔建宇,闵凡华.三种草坪草的根系分布特征及其对土壤养分的影响[J].草业学报,2009,18(1):179-183.
    [59]江俐妮,魏红旭,刘勇.长白落叶松播种苗根系形态可塑性与氮素空间异质性关系[J].东北林业大学学报,2010,38(1):24-27.
    [60]廖红,戈振杨,严小龙.水磷耦合胁迫下植物磷吸收的理想根构型:模拟与应用[J].科学通报,2001,46(8):641-646.
    [61]李鹏,赵忠,李占斌.植被根系与生态环境相互作用机制研究进展[J].西北林学院.2002,17(2):26-32.
    [62]姚月锋,满秀玲.毛乌素沙地不同林龄沙柳表层土壤水分空间异质性[J].水土保持学报,2007,21(1):111-115.
    [63]周心澄.紫穗槐的固沙效益[J].中国沙漠,1985,5(1):46-51.
    [64]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950.
    [65]王政权,张彦东,王庆成.水曲柳幼苗根系对土壤养分和水分空间异质性的反应[J].植物研究,1999,19(3):329-334.
    [66]周志宇,朱宗元,刘钟玲,等.干旱荒漠区受损生态系统的恢复重建与可持续发展[M].科学出版社,2010:200-217.
    [67]燕辉,刘广全,李红生,青杨人工林根系生物量、表面积和根长密度变化.应用生态学报,2010,21(11):2763-2768.
    [68]Bemtson,GM. Modelling root architecture:Are there trade between efficiency and potential of acquisition.New Phytologist.1994,127:483-493
    [69]Abrahamson W G,Hal C. On the comparative allocation of biomass, energy and nutrient in plants[J]. Ecology.1982,63(4):982-991.
    [70]Derner JD,Briske DD. Does a Tradeoff Exist between Morphological and physiological root plasticity? A comparison of Grass Grom the form[J]. Acta Oecologia.1999,20 (5):519-526.
    [71]Drew M C. Comparison of the effect of a localized supply of phosphate nitrate ammonium and potassium on the growth of the seminal root system, and the shoot in barleys[J]. Hew phytologist 1975,75 479-490.
    [72]Ressull R.S. Plant root systems:their function and interaction with soil[D]. McGraw-Hill Co.Uk.1979.
    [73]Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems[J].ExpBot,2002,53:773-787.
    [74]Bliss K M, Jones R H, Mitchell R J, et al. Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior? [J]. New Phytol.2002,154:409-417.
    [75]Finzi AC, Canham CD,Van Breen N.Canopy tree-soil interactions with temperate forests:species effects on soil carbon and nitrogen[J]. Ecological Application.1998,8:440-446.
    [76]Mckay H M,Malcolm D C. A comparison of the fine root component of a pure and mixed Coniferous stand [J].Canadian Journal of Forestry Research,1988,18:1416-1426.
    [77]Hodge A. The plastic plant:root responses to heterogeneous supplies of nutrients[J]. New Phytologist,2004, 162:9-24.
    [78]Yonker CM, schinel D S, Paroussis E. Patterns of organic Carbon accumulation in A Semiarid shirt-grass sleppe[J]. Colorado Soil science society of American Journal 1988,58(1):478-483.
    [79]Farley R A, Fitter AH.Temporal and spatial variation in soil resources in a deciduous woodland[J].Journal of Ecology,1999,87:688-696.
    [80]Webster R. Quantitative spatial analysis of soil in field[J].Soil Science,1985,3:1-70.
    [81]Fitter AH. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. Exploitation of environmental heterogeneity by plants[J]. Academic press,1994.305-323.
    [82]George E, seith B, Schaeffer C. Responses of picea,Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil[J]. Free physiology,1997,17,39-45.
    [83]Gross K L, Pregitzer K S, Burton AJ. Spatial variation in nitrogen availability in three successional plant communities [J]. Ecol.1995.83:357-367.
    [84]Mohanty B P,Famiglietti J S,Skaggs TH. Evolution of Soil moisture spatial structure in a mixed vegetation pixel during the Southern Great plains[J].Water Resource Research 2000,36:3675-3686.
    [85]Robinson D. Root proliferation. Nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil[J]. Plant and soil 2001,232 (1-2):40-50.
    [86]Casper B B,Jackson R B.plant competition underground[J]. Annual Review of Ecology and systematic, 1997.28:545-570.
    [87]Schenk H J,Jackson R B.The global biogeography of roots[J].Ecol Mono,2002,72:311-328.
    [88]Coile T S. Distribution of forest tree roots in North Carolina Piedmont soils[J]. J For,1936.35:247-257.
    [89]Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems[J].ExpBot,2002,53:773-787.
    [90]Mamo M, Bubenzene G D. Detachment rate, soil erodibility, and soil strength as influenced by living plant roots[J]. Field study. Transactions of the ASAE,2001,44:1175-1181.
    [91]Li H, Reynolds J F. On definition and quantification of heterogeneity[J]. Oikos,1995,73:280-284.
    [921 Coile T S. Distribution of forest tree roots in North Carolina Piedmont soils [J]. J For.1936,35:247-257.
    [93]Campbell B D, Grime J P, Mackey JML. A trade-off between scale and precision in resource foraging[J]. Oecologia.1991,87:532-538.
    [941 Dube O P, Pickup G. Effects of rainfall variability and communal and semi-commercial grazing on land cover in southern African range lands[J]. Climate Res,2001,17 (2):195-208.
    [95]Pregitzer K S,Deforest J L,Burton A J,et al. Fine root architecture of nine North American trees[J]. Ecol Monogr,2002,72(2):293-309.
    [96]Keyes M R, Grier C C. Above and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites[J]. Can. J,1981.11;599-605.
    [971 Mckay H M,Malcolm D C.A comparison of the fine root component of a pure and mixed Coniferous stand[J].Canadian Journal of Forestry Research,1988,18:1416-1426.
    [981 Wilson J B.A review of evidence on the control of shoot:root ratio in relation to model[J].Annals of Botany,1988,61:433-449.
    [99]Jackson RB, Canadell JR, Mooney HA,et al.A global analysis of root distribution for terrestrial biomass[J]. Oecologla,1996,108(3):389-411.
    [1001 Burton A J,Pregitzer K S,Headrick R L.Relationships between fine root dynamics and Nitrogen availability in Michigan northern hardwood forests [J].Oecologla,2000,125(3):389-399.
    [101]Gale M R, Gragal D E. Vertical root distribution of northern Tree species in relation to successional status[J]. Can J For Res,1987,17:829-834.
    [102]Cesar C Andrei P C, Vieira J, et al. Dimethychromene rotenoids from Tephrosin Candida[J].Phyto chemistry, 1997,46(6):1081-1085.
    [103]Yan X L, Lynch J P, Beebe S E. Phosphorus efficiency in common bean genotypes in contrasting soil types. Crop Sci,1995,35-108.
    [104]Lynch J P.Root architecture and plant productivity. Plant Physiol,1995,109:7-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700