500MW锅炉机组燃烧调整试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国华盘山发电公司两台引进前苏联的500WM超临界直流锅炉,原设计燃用晋北烟煤,后改烧神华煤。改烧后一直存在锅炉大面积结渣和掉渣问题,而且锅炉结的渣非常硬,出现了砸伤冷灰斗斜坡水冷壁、影响除渣系统运行和锅炉灭火造成机组非停的问题。
     通过燃煤结渣特性的分析,确定国华盘山500MW锅炉试验燃用的神华补连塔煤具有严重的结渣和沾污倾向,属于具有严重结渣和高度沾污倾向的煤种。
     通过对单只燃烧器出口空气动力场试验和锅炉热态燃烧调整试验,可以得出以下结论:
     (1)二次风旋流挡板位置对燃烧器出口流场的影响非常显著;
     (2)二次风旋流挡板位置在0°~+15°范围内,燃烧器出口流场的回流区和扩散角都比较合适,流场比较合理;
     (3)本锅炉燃烧器旋流特性较强,通常情况下,本锅炉燃烧器二次风旋流挡板不宜在0°以下运行;
     (4)对于燃用优质易燃煤质,可选择较弱的二次风旋流强度运行,如将二次风旋流挡板角度置在+10°~+15°范围内,并在热态时对各燃烧器运行情况进行检查和合理的调整;
     (5)为改善炉内气氛、降低水冷壁表面附近温度和炉膛出口温度,控制和改善锅炉结渣状况,锅炉不宜采用低氧燃烧方式,机组负荷在300~500MW负荷范围内,炉膛出口烟气含氧量宜控制在原设计值5.5%,不得低于5%;
     (6)机组在60%额定负荷以下运行时,为了降低厂用电和保证燃烧稳定,锅炉宜采用四台磨煤机运行,机组在60%~80%额定负荷运行时,宜采用五台磨煤机运行,在80%额定负荷以上运行时,应该采用六台磨煤机运行,一次风压应控制在10kPa;磨煤机通风量应控制在75~90km~3/h范围,过高和过低的通风量都是有害的;
     (7)由于锅炉特性和煤质特性的限制,燃烧调整和运行调整的作用是有限的,必须重视机组的运行方式和定期工作,机组的调峰运行方式、严格按照定期切换制度切换磨煤机、按照锅炉运行状况进行吹灰,也是控制锅炉结渣的重要手段;
     按照试验结果进行合理的运行调整,加上严格的定期工作,盘电500MW锅炉在100%燃用神华煤的情况下,可以保证安全稳定和经济运行。
There are two 500MW supercritical pressure boilers in Pan Shan power station, which are designed to use bituminous in North Shan Xi, but really used coal is Shen Hua coal. The serious slagging is appeared after Shen Hua coal is used, which causes the TBF in bottom of boiler, problem in dust removal system, and flameout leading to outage.
    Analysis of ash slagging performance shows that Shen Hua coal used in the boiler has the serious slagging and fouling characteristic.
    Through the testing of cold air model of single burner and hot combustion regulation the conclusion is as below:
    (1)The position of secondary air baffle has obvious influence on outside flow field of burner;
    (2) When position of secondary air baffle is at 0~+15 the backing flow area and diffusing angle of outside flow field is good;
    (1) As the swirling intensity of the burner is strong the position of secondary air swirling baffle is not fit in 0;
    (2) If the coal is easy to be ignited the swirling intensity of secondary air can be weak, the position of secondary air swirling baffle is better in +10~+15, and the burner's operating situation will be checked and correctly regulated;
    (3) In order to get a good atmosphere and lower temperature near the waterwall and outlet of furnace, which is favorable to slagging controlling in boiler, the low oxygen operation model is not good. When the load is at 300-500MW the gas flow oxygen rate in furnace outlet, will be controlled in 5.5%, not below 5%;
    (4) When the load is below 60%MCR the better operation model is four pulverizers in operating; when the load is at 60%~80%MCR the better operation model is five pulverizers in operating; when the load is above 80%MCR the better operation model is six pulverizers in operating, the pressure of primary air should be controlled in 10kPa, air flow of pulverizer is at 75~90km3/h;
    (5) The effect of combution regulation .is limited other measures must be used.
    If the boiler is operated in correct way the stable and economic operation can be achieved at 500MW load and 100% Shen Hua coal.
引文
1.袁颖、相大光、姚伟,大型锅炉炉膛结渣的预防,中国电力,1994.7,p2-7。
    2.林江,大型电站锅炉设计与运行中防止炉内结渣的措施,中国电力,1999.3,p32-34。
    3.谭玲、黄思林,广东台山电厂2×660MW超临界锅炉选型设计中防止炉内结渣的措施,广西电力工程,2000.3,p33-36。
    4.许宝山、刘晓东、温丽华,大型电站锅炉冷态模化试验研究,黑龙江电力,1999.6,p6-12。
    5.于宏、于德庆、刘永江,电站燃煤锅炉防止炉膛结渣的探讨,锅炉制造,2000.5,p25-27。
    6.李永华、高志成、陶哲、陈鸿伟,锅炉结构对结渣的影响,锅炉技术,2003.5,p31-33。
    7.张雄亚、付林,防止SG-2008/540-M903锅炉燃用神华煤结焦、积灰问题的研究,河北电力技术,2003.4,p23-25。
    8.黄祖文,SG-420/140-M417锅炉结焦.分析和预防措施,华东电力,1994.5,p38-30。
    9.陈培泰,防止锅炉结焦的燃烧调整和管理措施,华东电力,1994.1,p33-36。
    10.艾静、秦裕昆、朱群益,国内外煤灰结渣判别指数的探讨,电站系统工程,1994.2,p4-18。
    11.王疆全,200MW锅炉燃烧调整试验,华东电力,1995.1,p34-37。
    12.林贵和、冯富国,神头一电厂8号炉掉焦灭火原因分析及燃烧调整处理,山西电力技术,1999.2,p32-35。
    13.朱凯春、谭云、周光宇,锅炉燃烧调整对锅炉热效率的影响分析,电站系统工程,1999.9,p43-46。
    14.张戟,段铁城,张向群,600MW机组整套试运阶段锅炉燃烧调整的实施特点,东北电力技术,2000.8,p6-10.
    15.李东雄、刑德山、贾国璋,420t/h锅炉炉内结渣原因分析和燃烧调整试验,电站系统工程,2000.9,p305-307。
    16.李韩英,国产300MW锅炉劣质煤的燃烧调整渭河发电有限公司,西北电力技术,2001.1,p59-60。
    17.吴劲、袁伟,锅炉炉底结渣原因分析,华东电力,1994.12,
    18.赵利敏,梁薇、翟东平,电站燃煤锅炉结渣特性的试验研究,热能动力工程,199.1,p37-42。
    19.池作和、周吴、蒋啸、岑可法,锅炉结渣机理及防结渣技术措施研究,热
    
    力发电,1999.4,p6-11。
    20.李彦林,煤粉锅炉结渣的研究现状及进展,电力安全技术,2000.2,
    21.程志强,神华煤的结渣特性,西北电力技术,2000.6,p62-64。
    22.李瑞扬、赵玉晓、吕薇、王士军、秦裕琨,燃烧器区域速度场对受热面结渣影响的试验研究,热能动力工程,2001.3,p148-151。
    23.高志成,锅炉运行对结渣的影响,山西电力,2002.8,p62-63。
    24.陈吟颖、石惠芳、阎维平,330MW燃煤机组燃烧内蒙西部煤结渣性能的分析研究,能源研究与利用,2002.4,p9-10。
    25.池作和、周昊、蒋啸、徐璋、岑可法、易绪涛、王维,解决300MW锅炉炉内严重结渣问题的技术和方法热力发电,2002.5,p34-38。
    26.兰泽全、曹欣玉、周俊虎、赵显桥、岑可法,锅炉受热面沾污结渣的危害及其防治措施,电站系统工程,2003.1,p31-33。
    27.周吴、孙平、池作和、蒋啸、岑可法,“600MW偏转二次风系统锅炉炉内结渣特性的数值模拟,燃烧科学与技术,2002.4,p328-332。
    28.吴占松、王斌忠、王民汉、张衍国,煤粉炉整体结渣故障诊断模型,热力发电,2003.1,p13-16。
    29.李菁芳,关于火力发电炉内结渣的成因分析与对策,内蒙古科技与经济,2003.9,p69-71。
    30.杨圣春,电站燃煤锅炉结渣预测的研究,热力发电,2003.1,p31-35。
    31. Hatt Roderick M., Fireside deposits in coal-fired utility boilers, Progress in Energy and Combustion Science, v16, n4, 1990, p235-241.
    32. Protsailo M. Ya., Matvienko V. S., Slagging with high-temperature combustion of Kansk-Achinsk coals, Thermal Engineering (English translation of Teploenergetika), v37, n4, Apr, 1990, p168-171.
    33. Heinzel T., Sie V., Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility, Fuel Processing Technology, v54, n1-3, Mar, 1998, p 109-125.
    34. Norton Olin Perry, Skaqqs Annette, Numerical prediction of the velocity profiles of the slagging stage of an MHD combustion chamber, Proceedings of the Intersociety Energy Conversion Engineering Conference, v3, 1991, p 81-86.
    35. Heikkinen Ritva, Laitinen Risto S., Slagging tendency of peat ash, Fuel Processing Technology, v56, n1-2, Jul, 1998, p 69-80.
    36. Xu Minghou, He Xiuquang, An advanced model to assess fouling and slagging in coal fired boilers, International Journal of Energy Research, v26, n14, November, 2002, p 1221-1236.
    37. Pease Benjamin R., Levasseur Armand A., Fuel switching: a
    
    pilot-scale approach to boiler performance predictions, Energy & Fuels, v7, n6, Nov-Dec, 1993, p 768-773.
    38. Zhou Hao, Sun Ping, Chi Zuo-He, Simulation of slagging prevention property of the furnace with deviated secondary air system, Journal of Combustion Science and Technology, v 8, n 4, August, 2002, p328-332.
    39. Jiang Xiao, Xu Zhang, Cold model test and CAT of improving 300Mw boiler slagging by adding guide-plate at the exit of the burner, American Society of Mechanical Engineers, Fuels and Combustion Technologies Division (Publication) FACT, v23-1, 1999, p209-211.
    40. Zhu Zhenjin, Chi ZuoHe, Slagging analysis and prevention of utility boilers with tilting burners, Proceedings of the International Conference on Energy and Environment, ICEE, Energy and Environment, 1996, p644-649.
    41. Wigley Stephen A., Heible Joseph J., Slagging indices for UK coals and their relationship with mineral matter, Fuel Processing Technology, v24, n1-3, Jan, 1900, p383-389.
    42. Jonson Stephen A., Heible Joseph J., Evaluating differences in slagging behavior of similar coals, Proc Eng Found Conf Coal Blending Switching Low Sulfur West Coals, 1994, p265-279.
    43. Osborn G. A., Review of sulphur and chlorine retention in coal-fired boiler deposits, Fuel, v 1, n2, Feb, 1992, p 131-142.
    44. Sun GuoJun, Gu Yizhi, Analyzing the inadaptibility of uniform air distributing burner for bituminite with high slagging property, American Society of Mechanical. Engineers, Fuels and Combustion Technologies Division (PublicatiOn) FACT, v23-1, 1999, p315-318.
    45. Wall T. F., Gupta S. K., False deformation temperatures for ash fusibility associated with the conditions for ash preparation, Fuel, v78, n9, Jun, 1999, p1057-1063.
    46. Valero A., Cortes C., Ash fouling in coal-fired utility boilers. Monitoring and optimization of on-load cleaning, Progress in Energy and Combustion Science, v22, n2, 1996, p189-200.
    47. Walsh Peter M., Sayre Alan N., Deposition of bituminous coal ash on an isolated heat exchanger tube. Effects of coal properties on deposit growth, Progress in Energy and Combustion Science, v16, n4, 1990, p327-346.
    48. Boric Richard W., Pease Benjamin R., New approach for solving ash
    
    deposit and corrosion problems, American Society of Mechanical Engineers, Environmental Control Division Publication, EC, v1, 1996, p389-410.
    49. Charon O., Sarofim A. F., Distribution of mineral matter in pulverized coal, Progress in Energy and Combustion Science, v16, n4, 1990, p319-326.
    50. Pohl John H., Holcombe Don, A comparison of thermal condition between pilot- and full-scale furnaces for studying slagging and fouling propensity in PF boilers, Combustion Science and Technology, v165, n1, 2001, p129-150.
    51. Jiang Xu-Min, Zhang Chu-Guang, Effect of super-fine pulverized coal on ash and slag buildup in boiler heating surfaces, Journal of Engineering for Thermal Energy and Power, v17, n3, May 20, 2002, p254-257+323.
    52. Chen Z. G., Hua Y. M., Studies on the motion of pyrite particle in furnace and effect on slag deposit by numerical simulation, Journal of Combustion Science and Technology, v7, n2, May, 2001, p132-134.
    53. Breeding Charlie, Beneley Chris, Slag monitoring using strain gages at Georgia Power Plant Bowen, Proceedings of the 2003 International Joint Power Generation Conference, 2003, p795-801.
    54. Shu J., Meng F., The calculation and selection of drying agents in connection with the change of fuel for a boiler from brown coal to bituminous one, Journal of Engineering for Thermal Energy and Power, v16, n4, Jun 20, 2001, p 453-456+466.
    55. Goryacheva Z. E., Staritsyna E. L., Resistance of plasma coatings in slags with high vanadium and sulfur contents, Refractories (English translation of Ogneupory), v31, n11-12, Jul, 1991, p626-631.
    56. Taft Cyrus W., Coffey Lonnie A., Pulverizer air flow measurement aids combustion optimization, ISA TECH/EXPO Technology Update Conference Proceedings, v51, n2, 1996, p1427-1432.
    57. Hatt Roderick M., Fireside deposits in coal-fired utility boilers, Progress in Energy and Combustion Science, v16, n4, 1990, p235-241.
    58. Carter H. Randy, Koksal Cevdet G., Furnace cleaning in utility boilers burning powder River Basin coals, American Society of Mechanical Engineers (Paper), 1992, 92-JPGC-Pwr-35, p1-7.
    59. Marcy Jack C., Burger Roger R., Unique blending practices utilized
    
    in Foster Wheeler boilers to burn Oklahoma high-sulfur bituminous and Wyoming powder river basin low-sulfur bituminous and Wyoming powder river basin-low sulfur subbtiminous coals, Proc Eng Found Conf Coal Blending Switching Low Sulfur West Coals, 1994, p231-242.
    60. Bool Lawrence E. Ⅲ., Peterson Thomas W., Partitioning of iron during the combustion of pulverized coal, Combustion and Flame, v100, n1-2, Jan, 1995, p262-270.
    61. Das Swapan K., Srikanth S., Combustion and deposit formation behavior on the fireside surfaces of a pulverized fuel boiler fired with a blend of coal and petroleum coke, Combustion Science and Technology, v175, n9, September, 2003, p1625-1647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700