沈阳卧龙湖湿地生态退化机制及保护对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地作为地球三大生态系统之一,具有重要的生态服务功能,是一种重要的物质资源和国土资源。长期以来,由于自然因素与人为因素的干扰导致湿地生态系统功能退化与丧失是湿地研究面临的严峻现实。因此,研究湿地生态系统的退化演变机制成为当今湿地科学关注的焦点问题和重要内容,也是对湿地进行科学保护与有效管理和合理开发利用的前提和基础。本文以辽宁省最大的天然内陆型湿地-沈阳卧龙湖湿地省级自然保护区为例,对湿地生态系统的结构与功能首次进行全面分析、评价的基础上,采用定性、定量相结合的方法研究了半干旱内陆型湿地的生态退化机制问题,并提出了相应的保护对策。论文以对新方法的使用为努力和探索的方向,希望为半干旱典型区域的湿地退化研究做出有益的探索。围绕着湿地退化机制的主题本文主要开展了以下相关研究:
     (1)全面分析了卧龙湖湿地的生态结构及服务功能,计算了湿地的使用价值价值与存在价值,进一步强化了保护卧龙湖湿地的重要意义。依据现代价值论的理论和计算方法对湿地的经济功能、生态功能和社会功能三个方面的共10项使用和非使用价值进行了量化计算,并提出了湿地存在价值的计算方法。计算结果显示,卧龙湖湿地的总价值为Y208.88亿元人民币,其中直接使用价值为¥4.965亿元人民币,非使用价值为¥203.92亿元人民币。
     (2)考察了自然因素和人为因素变化对卧龙湖湿地退化的影响,建立了湿地脆弱性评价指标体系,采用APH-综合指数法对卧龙湖湿地的生态脆弱性进行了动态评价,在此基础上探讨了湿地生态系统退化的机制问题。评价的结果表明卧龙湖湿地1994年以来的脆弱性呈上升趋势,整体处于严重脆弱的状态。从单因子的权重分析来看,湿地区域的气候因子、蓄水量和水污染程度等指标的权值较高。从湿地的退化机制分析得出,由于卧龙湖湿地地处半干旱的沙漠化区域,区域的气候变化是导致近年来湿地退化的主要原因,人为因素与自然因素的叠加进一步加剧了湿地退化的过程。
     (3)运用初等突变理论的思想方法,建立了卧龙湖湿地生态系统退化的尖点突变判别模型,以模型描述的方式对卧龙湖湿地的生态退化状态进行了判别。根据卧龙湖湿地地处半干旱地区的实际环境特点,选择以直接影响湿地生态环境状况的蓄水量指标和水环境质量指标作为湿地尖点突变模型的控制变量,以生物多样性指标作为状态变量,湿地的生态功能综合指数作为势函数,分别对卧龙湖湿地1994年、2000年、2002年、2003年、2005年和2006年的退化状态进行了尝试性的模拟判别。结果表明,卧龙湖湿地生态系统于2002年发生了退化突变现象,其结果与湿地实际退化的状况基本吻合,结果还表明,突变理论模型可以对未来的湿地退化趋势进行预测。
     (4)利用人工智能建模的思想方法,将遗传程序设计(GP)算法应用到卧龙湖湿地的年蓄水量变化趋势的模拟和预测中。在研究所需数据量不足的条件下,对影响湿地生态系统退化的主要控制因素-湿地蓄水量的变化趋势进行了模拟和预测。结合湿地所处半干旱地区的环境特征分析的结论,本文将区域蒸发量和降水量作为模型算法的输入变量,蓄水量作为输出变量,在小数据量条件下模拟了湿地蓄水量的变化,结果表明,GP智能建模的模拟精度较高,适用于半干旱地区的湿地蓄水量变化的模拟,尤其在小数量条件下优于传统的神经网络模型(ANN)和灰色系统模型(GM)。本文还对卧龙湖湿地蓄水量未来的变化趋势进行了预测,结果表明,按照区域降水量持续下降(-0.802mm/a)及蒸发量持续上升的(7.471mm/a)趋势,未来卧龙湖湿地的蓄水量下降趋势明显。
     (5)针对卧龙湖湿地区域水资源缺乏的现状,结合区域经济发展的中远期规划目标,制定了基于区域生态、经济可持续发展的用水方案,采用多目标模糊规划的方法确定了区域以保护生态为主,兼顾经济效益提高为目标的水资源配置最优方案。最后针对湿地现行管理存在的相关问题提出了相应的保护对策。
Wetland ecosystems, being as one of the three important ecosystems on the earth, have been considered as the key important material resource for its various ecological functions and even the key soil resource for its significance in scientific research and supporting the susatainable developmemt of regional ecomomy. The status of degradation and lost of wetland all over the world, owing to the disturbance from natural environment and anthropogenic activities is serious. The researches about the degradation mechanism have, therefore, become the focus and important investigation area, which is considered to be the the premise and basis for scientific protection and effective management of wetlands. Taking the Shenyang Wolonghu Inland-Wetland Natural Conservation, the biggest natural inland-wetland in Liaoning province, this paper presents a case study of degradation mechanism and correspond protecting measures of the wetland based on fully analysis of the structure and functions of the wetland. The purpose of this paper is to make an exploration in application of new methods in research of wetland.The main work of this dissertation is summarized as follows:
     (1) The ecological functions and the structure of the Wolonghu weltand are fully analyzed. The enormous valuea of the wetland are confirmed, which reveal the key significance of the existence and being worthy of protection of the wetland.10-item function values of use value and non-use value from three main function categories as economic ecological and social functions have been calculated quantitatively according the the modern value theory and its corresponding calculation method. A new method of calculating the existence value of the wetland has been proposed in the paper. The calculation results show that the total value of the Wolonghu wetland is to be 20.822 billion RMB per year, of which the use value is 0.497 billion RMB per year and the non-use value is 20.392 billion RMB per year.
     (2) Two factors, natural and anthropogenic ones are investigated about impacting the wetland degradation and then the index system of frangibility is set up. Consequently, the frangibility of the wetland has been estimated by means of AHP-integrated index method and followed by the analysis of the degradation mechanism of the wetland. The results of the frangibility estimation show that the frangibility of the wetland is at the serious level with a rising trend since 1994. The precipitation, evaporation, water storage and water quality level factors bear the relatively higher weights. The degradation mechanism of the wetland shows that it is a collective effect from natural factors and anthropogenic activities that result in the wetland degradation, of which the cause of climate changes is dominant.
     (3) A cusp catastrophic model of Wolonghu wetland has been set up in light of the elementary catastrophe theory for further investigating the degradation process and degradation level of the weltand. The water storage and water quality level are taken as the controlling variables, biodiversity index as the status variable, synthesized index of the wetland ecological functions as the catastrophic function and degradation level of the weltand at 1994,2000,2002,2003,2005,2006 are simulated and estimated, respectively. The results show that the catastrophic phenomenaon of degradation of the wetland was occurring at the year of 2002, which was relative in agreement with the actual facts. Furthermore, the model can be used for prediction of the degradation trend of the wetland.
     (4) In this paper, based on the condition of small hydrological database, a new artificial inteletgent method of genetic programming (GP) has been proposed for simulating and forecasting the behaiviors of the water strorage of the wetland. The relative controlling factors of the method have been determined after fully analysis of the hydrological conditions of the weltand area. Taking the precipitation and evaporation as the input variables and water storage the output variable, the simulation results from GP show a large agreement with the actual values compared to the popular tools of artifical neural networks (ANN) and grey theory model (GM) under the same condition of small database. The prediction results from the GP evolution model indicate that the water storage in the Wolonghu wetland will sharply reduce in the year of 2015 and 2020 along with the trend of regional precipition and evaporation changes.
     (5) An optimal water utilization plan has been determined by means of multi-objective fuzzy plan in terms of the principal of sustainable development of regional ecosystem and social economy basing on the condition analysis of regional water resource. Some other protection countermeasures, such as new water resource developing for weltand and management regulations of the wetland, etc. have been put forward.
引文
[1]Mitsch, W.J., Gosselink, G.J. Wetland,3rd edition [M]. New York:John Wiley & Sons Press,2000.
    [2]王宪礼,李秀珍.湿地的国内外研究进展[J].生态学杂志,1997,1:58-62.
    [3]安树青.湿地生态工程[M].北京:化学工业出版社,2003.
    [4]王宪礼.我国自然湿地的基本特点[J].生态学杂志,1997,16(4):64-67.
    [5]安娜,高乃云,刘嫦娥.中国湿地退化原因、评价及保护[J].生态学杂志,2008,27(5):821-828.
    [6]Kusler, J. A., Kentula, M. E. Wetland Creation and Restoration-the State of the Science [M]. Island Press.1995.
    [7]McComb, A. J., Davis, J. A. Wetlands for the future. Proceedings of Intecolsv International Wetlands Conference. Gleneagles Publishing,1998.
    [8]贾萍,宫辉力.我国湿地研究的现状和发展趋势[J].首都师范大学学报(自然科学版),2003,24(3):84-89.
    [9]王仁卿,刘纯慧.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-76.
    [10]The Ramsar Convention Bureau. Ramsar Convention on Wetlands (http://www.ramsar.org).
    [11]李长安.中国湿地环境现状与保护对策[J].中国水利,2004,4:24-26.
    [12]刘洋,鲁奇.中国湿地保护初探[J].生态经济,2004,4(2):45-48.
    [13]刘权,马铁民.中国湿地保护策略研究[J].中国水利,2004,17:10-12.
    [14]刘守江.中国湿地资源的现状、问题与可持续发展研究[J].宜春学院学报,2004,26(6):34-37.
    [15]杨亚妮.湿地生态系统研究及防治退化对策[J].新技术新方法,2002,24(2):95-99.
    [16]张英.地球的节日-写在第十个世界湿地日到来之际[J].中国林业,2005,2:4-8.
    [17]杨雄雄.湿地的价值[J].绿色观察,2004,5:40-41.
    [18]张新时.中国生态区评价纲要[J].四川师范大学学报(自然科学版),2000,4(2):123-125.
    [19]万洪秀,孙占东,王润.博斯腾湖湿地生态脆弱性评价研究[J].干旱区地理,2006,29(2):248-254.
    [20]O'CONNELL M J. Detecting, measuring and reversing changes to wetlands [J]. Wetlands Ecology and Management,2003,11,397-401.
    [21]Mitsch, W.J. Wetland creation, restoration, and conservation:A Wetland Invitational at the Olentangy River Wetland Research Park [J]. Ecological Engineering,2005,24,243-251.
    [22]Finlayson, C.M., Rea, N. Reasons for the loss and degredation of Australian wetlands [J]. Weltands Ecology and Management,1999,7,1-11.
    [23]Jones, W. The wetlands of the south-east of South Australia [J]. Nature Conservation,1978,7,11-20.
    [24]Jones T A, Hughes J M R. Wetland inventories and wetland lossstudies:a European perspective //Waterfowl and wetland conservation in the 1990s:A global perspective, Proceedings of the IWRB Symposium, Florida, USA,1993.
    [25]Taylor, R. D., Howard, G. W., Begg, G. W. Developing wetland inventories in Southern Africa:a review [J]. Vegetatio,1995,118:57-79.
    [26]Beth Middleton. Wetland Restoration-Flood Pulsing and Disturbance Dynamics [M]. John Wiley &Sons Press,1999.
    [27]Jefferson, R.G., Grice, P.V. Conservation of lowland wet grass land in England. In:European Wet Grassland:Biodiversity, Management and Restoration (eds CB Joyce and PM Wade) [M]. John Wiley &Sons Press,1998.
    [28]Youngs, E.G. An examination of computed steady-state water-table heights in unconfined aquifers: Dupuit-Forchheimer estimates and exact analytical results [J]. Journal of Hydrology,1990,119, 201-214.
    [29]Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests [J]. Ecol. Eng.,2005,24,403-418.
    [30]Bradley, C. The hydrological basis for conservation of flood plain wetlands:implication of water at Narborough Bog, UK. Aquatic Conservation [J]. Marine and Fresh water ecosystems,1997,7,41-62.
    [31]Youngs, E.G., Chapman, J.M., Leeds-Harrison, P.B., Spoor, G. The application of soil physics model to the management of soil water conditions in wetland environments in wildlife conditions. Hydrological Basis of Ecological Sound Management of Soil and Groundwater. IAHS Publ.1991, No.202.
    [32]Gilman, K. Water balances of wetland areas, Conference on "The balance of water-present and future", AGMET Group (Ireland) and agricultural group of the Royal meteorological Society (UK),1994, Dublin,7-9 September.
    [33]Acreman, M., Jose, P. Wetlands. In:The Hydrology of the UK, a Study of Change (ed M. Acreman): 2000,204-224.Routledge, London.
    [34]Bradley, C. Transient modeling of water-table variation in floodplain wetland, Narborough Bog, Leicestershire [J]. Journal of Hydrology,1996,137,149-163.
    [35]廖玉静,宋长春.湿地生态系统退化综述[J].土壤通报,2009,40(5):1109-1203.
    [36]黄金国.洞庭湖区湿地退化现状及保护对策[J].水土保持研究,2005,12(4):261-263.
    [37]李莉莉,刘炳江,徐齐福.试析我国湿地的退化、保护与恢复[J].环境科学与管理,2006,31(3):138-141.
    [38]白军红,王庆改.中国湿地生态威胁及其对策[J].水土保持研究,2003,10(4):247-249.
    [39]谷东起,赵晓涛,夏东兴.中国海岸湿地退化压力因素的综合分析[J].海洋学报,2003,25(1):78-85.
    [40]刘兴土.三江平原沼泽[M].北京:科学出版社,1982.
    [41]罗先香,何岩,邓伟,等.三江平原典型沼泽性河流径流演变特征及趋势分析-以挠力河为例[J].资源科学.2002,24(5):52-57.
    [42]杨永兴.三江平原沼泽区“稻-苇-鱼”复合生态系统生态效益研究[J].地理科学,1993,13(1):41-48.
    [43]郭龙珠.三江平原地下水动态变化规律与仿真问题研究[D].东北农业大学,2005.
    [44]张永泽,王煊.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):42-46.
    [45]赵生才.中国湿地退化、保护与恢复-香山科学会议第241次学术讨论会[J].地球科学进展,2005,20(6):701-704.
    [46]Kentula, M. E. Perspectives on setting success criterial for wetland restoration [J]. Ecologcial Engineering,2000,15,199-209.
    [47]杨永兴.国际湿地科学研究进展和中国湿科学研究优先领域与展望[J].地球科学进展,2002,17(4):22-26.
    [48]王仁卿,刘纯慧,晁敏.从第五届湿地国际会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-77.
    [49]吕宪国.湿地生态系统保护与管理[M].北京:化学工业出版社,2004.
    [50]张晓龙.现代黄河三角洲滨海湿地环境演变及退化研究[D].河海大学,2005.
    [51]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展,2002,21(2):111-117.
    [52]吕宪国,刘红玉.湿地生态系统保护与管理[M].北京:化学工业出版社,2004.
    [53]王宪礼.我国自然湿地的基本特点[J].生态学杂志,1997,16(4):64-67.
    [54]倪晋仁,殷康前,赵智杰.湿地综合分类研究Ⅰ.分类[J].自然资源学报,1998,13(3):214-221.
    [55]谢文海,王晓平.中国的湿地及保护[J].玉林师范学院学报(自然科学),2001,22(3):98-101.
    [56]王文卿,刘纯慧,晁敏.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-76.
    [57]USEPA (U.S.Environmantl Protection Agency). Index of Watershed Indicators:An Overview.Office of Wetlands, Oceans, and Watersheds,2002.
    [58]Davis, S.M., Ogden, J.C. Everglades the Ecosystem and Its Restoration [M]. Delray Beach:StLucie Press,1994.
    [59]杨永兴.若尔盖高原生态环境恶化与沼泽退化及其形成机制[J].山地学报,1999,17(4):318-323.
    [60]杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,17(4):508-514.
    [61]周劲松.山地生态系统的脆弱性与荒漠化[J].自然资源学报,1997,12(1):10-16.
    [62]赵平,彭少麟,张经炜.生态系统的脆弱性与退化生态系统[J].热带亚热带植物学报,1998,6(3):179-186.
    [63]赵慧霞,吴绍洪,姜鲁光.自然生态系统响应气候变化的脆弱性评价研究进展[J].应用生态学报,2007,18(2):445-450.
    [64]王小丹,钟祥浩.生态环境脆弱性若干概念的探讨[J].山地学报,2003,21(3):21-25.
    [65]乔青,高吉喜,王维,等.生态脆弱性综合评价方法与应用[J].环境科学研究,2008,21(5):117-123.
    [66]赵跃龙,张玲娟.脆弱生态环境定量评价方法的研究[J].地理科学,1998,18(1):73-79.
    [67]赵跃龙.中国脆弱生态环境类型分布及其综合整治[M].北京:中国环境科学出版社,1999.
    [68]姚健,艾南山,丁晶.中国生态环境脆弱性及其评价研究进展[J].兰州大学学报(自然科学版),2003,39(3):77-80.
    [69]崔宝山,杨志峰.湿地学[M].北京:北京师范大学出版社,2006.
    [70]叶幕亚.鄱阳湖典型湿地生态环境脆弱性评价[D].江西师范大学,2006.
    [71]付博.3S技术支持下的扎龙湿地生态脆弱性评价研究[D].东北师范大学,2006.
    [72]赵跃龙.中国脆弱生态环境类型分布及其综合整治[M].北京:中国环境科学出版社,1999.
    [73]黄方,刘湘南,张养贞.吉林省西部生态脆弱态势评价研究[J].地理科学与进展,2003,22(1):56-61.
    [74]Jia, M. A GEOSPATIAL METHODOLOGY FOR ASSESSING WETLAND VUNERABBILITY UNDER ANTHROPOGENIC PRESSURES AT A WATERSHED SCALE [D]. University of Missouri-Kansas City,U.S.,2006.
    [75]赵桂久,刘燕华,赵名茶.生态环境综合整治和恢复技术研究(第一集)[M].北京:北京科学技术出版社,1993.
    [77]赵桂久,刘燕华,赵名茶.生态环境综合整治与恢复技术研究(第二集)[M].北京:北京科学技术出版社,1995.
    [78]牛文元.生态环境脆弱带ECOTONE的基础判定[J].生态学报,1989,9(2):97-105.
    [79]吕昌河.我国典型脆弱生态类型浅析.见:赵桂久等主编,生态环境综合整治与恢复技术研究[M].北京:北京科学技术出版社,1995,25-31.
    [80]刘燕华.中国脆弱环境划分与指标.见:赵桂久等主编,生态环境综合整治与恢复技术研究[M].北京:北京科学技术出版社,1995,8-17.
    [81]王让会,樊自立.塔里木河流域生态脆弱性评价研究川[J].干旱环境监测,1998,12(4):218-223.
    [82]李矿明,李喜保,卢力等.洞庭湖湿地生态系统及其评价[J].中南林业调查规划,1998,18(3):43-47.
    [83]王学雷.江汉平原湿地生态脆弱性评估与生态恢复[J].华东师范大学学报,2001,35(2):237-240.
    [84]许健民.黄河三角洲湿地生态评价与保护利用对策研究[J].农业资源与区划,2001,22(2):45-49.
    [85]刘振乾.二江平原湿地生态脆弱性研究[J].应用生态学报,2001,12(2):241-246.
    [86]朱德明,周鸣歧.太湖生态脆弱性特征的评价指标体系研究[J].生态经济,1998(6):1-4.
    [87]陈久和.城市边缘湿地生态环境脆弱性研究[J].科技通报,2003,19(5):395-402.
    [88]李瑾,安树青.生态系统健康评价的研究进展[J].植物生态学报,2001,25(6):641-647.
    [89]蔡海生,陈美球.脆弱生态环境脆弱度评价研究[J].江西农业大学学报,2003,25(2),270-275.
    [90]杨永兴.从魁北克2000-世纪湿地大事活动看21世纪国际湿地科学研究热点与前沿[J].地理科学,2002,22(2):150-155.
    [91]安树青.湿地生态工程-湿地资源利用与保护的优化模式[M].北京:化学工业出版社,2003
    [92]陈宜瑜.中国湿地研究[M].长春:吉林科学技术出版社,1995.
    [93]李禄康.湿地与湿地公约[J].世界林业研究,2001,14(1):1-7.
    [94]Gilman, K. Hydrology and Wetland Conservation [M]. John Wiley & Sons Press,1994.
    [95]陆健健.中国湿地[M].上海:华东师范大学出版社,1990.
    [96]王宪礼,肖笃宁.中国湿地研究[M].长春:吉林科学技术出版社,1995.
    [97]殷康前,倪晋仁.湿地研究综述[J].生态学报,1998,18(5):539-546.
    [98]高士武,李伟,张曼胤,等.湿地退化评价研究进展[J].世界林业研究,2008,21(6):13-18.
    [99]Davis, J.A., Froend, R.Loss and degradation of wetlands in southwestern Australia:underlying causes, consequences and solutions [J]. Wetlands Ecology and Management,1999,7,13-23.
    [100]Mccomb, A.J., Lake, P.S. The conservation of Australian wetlands [M]. Surrey Beaty and Sons Press, Sydney,1988.
    [101]Hobbs, R. J., Norton, D. A. Towards a conceptual framework for restoration Ecology [J]. Restoration Ecology,1996,4,93-110.
    [102]Micacchion, M. Ohio Environmental Protection Agency. As emblage selection and index development for wetland IBIS[EB/OL] http://www:epa. gov/water-science/biocriteria/modules.
    [103]Shukla, V. P. Modelling the dynamics of wetland macrophytes:Keoladeo National Park wetland, India [J]. Ecological Modelling,1998,109,99-114.
    [104]Paul, L. A., Erftemeijer. A new technique for rapid assessment ofmangrove degradation:A case study of shrimp farm encroachmentin Thailand [J]. Trees,2002,16,204-208.
    [105]李波,苏岐芳,周晏敏,等.扎龙湿地的生态环境评价及防治对策[J].环境保护科学,2002,18(3):33-37.
    [106]罗磊.青藏高原湿地退化的气候背景分析[J].湿地科学,2005,3(3):190-199.
    [107]鲁丽萍.青海可可西里地区湖泊变化的遥感研究[D],中国地质大学,2006.
    [108]高兴国.大包山湿地生态系统脆弱性及其保护对策研究[D].西南大学,2008.
    [109]肖德荣.滇西北高原典型湿地植物群落分布格局与驱动力[D].西南林业学院,2007.
    [110]李永健.拉鲁湿地生态环境质量评价的景观生态学应用研究[J].环境学报,2002,2(3):54-58.
    [111]刘振乾,刘红玉,吕宪国.三江平原湿地生态脆弱性研究[J].应用生态学报,2001,12(2):241-243.
    [112]王学雷,吴后建,任宪友.长江中游湿地系统驱动关系的演变及保护展望[J].长江流域资源与环境,2005,14(5):644-648.
    [113]雷昆.长江中下游流域湿地演变历史及保护展望[J].绿色中国,2005,8(6):34-35.
    [114]卞建民,王娟,杜崇.向海湿地生态环境退化机制研究[J].地域研究与开发,2004,23(5):125-128.
    [115]王克林.洞庭湖区湿地生态功能退化与避洪、耐涝高效农业建设[J].热带地理,1999,4(2):131-133.
    [116]杨炜.洞庭湖湿地生态恢复模式与综合效益评价[D].西南大学,2008.
    [117]皮红莉.洞庭湖湿地生态系统服务功能价值评价及其恢复对策研究[D].湖南师范大学,2004.
    [118]黄金国.洞庭湖区湿地退化现状及保护对策[J].水土保持研究,2005,12(4):261-263.
    [119]张光贵.洞庭湖演变对湖区农业生态环境的影响[J].农村生态环境,1997,13(2):33-37.
    [120]庄大昌.洞庭湖区湿地生物资源特征及生态系统评价[J].热带地理,2000,20(4):262-264.
    [121]王晓鸿.鄱阳湖湿地生态系统评估[M].北京:科学出版社,2004.
    [122]谭衢霖.鄱阳湖湿地生态环境遥感变化监测研究[D].中国科学院遥感研究所,2002.
    [123]宗浩.西藏拉萨市拉鲁湿地的生态特征与退化机理的探讨[D].西南民族大学学报(自然科学版),2005,31(1):72-78.
    [124]李春.拉鲁湿地生态环境及动植物五种资源演变特征研究[J].自然资源学报,2005,1:145-151.
    [125]罗新正,朱坦,孙广友.松嫩平原湿地生态环境退化机制探讨[J].干旱区资源与环境,2002,16(4): 39-43.
    [126]崔保山,杨志峰.湿地生态环境需水量等级划分与实例分析[J].资源科学,2005,25(1):21-28.
    [127]李宁云.纳帕海湿地生态系统退化评价指标体系研究[J].西南林学院学报,2006,4(2):41-44.
    [128]田昆.云南纳帕海高原湿地土壤退化过程及驱动机制[D].中国科学院东北地理与农业生态研究所,2004.
    [129]张晓龙,李培英.湿地退化标准的探讨[J].湿地科学,2004,2(1):36-41.
    [130]Zedler, J.B. Progress in wetland restoration ecology [J]. Tree,2000,15(10):402-407.
    [131]崔保山.湿地生态环境需水量研究[J].环境科学学报,2002,22(2):219-224.
    [132]崔保山,杨志峰.湿地生态环境需水量等级划分与实例分析[J].资源科学,2003,25(1):21-29.
    [133]邓伟,胡金明.湿地水文学研究进展及科学前沿问题[J].湿地科学,2004,1(1): 12-20.
    [134]Gleiek, P.H. The Changing Water Paradigm:A Look at Twenty-first Century Water Resource Development [J]. Water Intemational,2000,25(1):127-138.
    [135]Capper, P.F., Fleming, P.M., Kalma, J.D. Prediction of lake level using water'balance moedels [J]. Environmental Software,1996,11(4):251-258.
    [136]Odland, A. Patterns in the secondary succession of a Carex vesicarial wetland following a permanent drawdown [J]. Aquatic Botany,2002,74,233-244.
    [137]Kozlowski, T.T. Physiological-Ecologicla Impacts of Flooding on Riparian Forests Ecosystems [J]. Wetlands,2002,22(3):550-561.
    [138]Stragic,1. Influence of water management on wetland plant biodiversity [D]. Royal Road University, Canada,2004.
    [139]Matthews, R.C., Bao, Y. The texas method of preliminary instream flow determination [J]. Rivers, 1991,2(4):295-310.
    [140]Docampo, L., Bikuna, B.G. The Basque Method for determination instream flows in Morthern Spain [J]. Rivers,1995,4:292-311.
    [141]Caissie, D., Nassir, E. Comparison and regionalization of hydrologically based instream flow techniques in Atlantic Canada [J]. J.Civ.Eng.1994,22:235-246.
    [142]周林飞.沼泽湿地生态环境及水循环评价研究[D].大连理工大学,2007.
    [143]崔保山,杨志峰.湿地生态环境需水量研究[J].环境科学学报,2002,22(2):243-250.
    [144]刘静玲,杨志峰.湖泊生态环境需水量计算方法研究[J].自然资源学报,2002,17(5):604-609.
    [145]杨志峰,崔保山,刘昌明,等.生态环境需水量理论、方法与实践[M].北京:科学出版社,乏003.
    [146]许新宜,杨志峰.试论生态环境需水量[J].水利规划与设计,2003,1(3):21-26.
    [147]郑冬燕,夏军,黄友波.生态需水量估算问题的初步探讨[J].水电能源科学,2002,20(3):3-6.
    [148]贾宝全,许英勤.干旱区生态用水的概念和分类-以新疆为例[J].干旱区地理,1998,21(2):8-12.
    [149]贾宝全,慈龙骏.新疆生态用水量的初步估算[J].生态学报,2000,20(2):243-250.
    [150]王芳,梁瑞驹,杨小柳,等.中国西北地区生态需水研究(1)-干旱半干旱地区生态需水理论分析[J].自然资源学报,2002,17(1):1-8.
    [151]赵翔,崔保山,杨志峰.白洋淀湿地最低生态水位研究[J].生态学报,2005,25(5):1033-1040.
    [152]刘永泉,王晓峰,吴颜.艾比湖最低生态水位研究[J].干旱区资源与环境,2008,22(10):111-114.
    [153]宁龙梅,王学雷.洪湖湿地最低生态水位研究[J].武汉理工大学学报,2007,29(3):67-70.
    [154]刘正茂,吕宪国,武海涛,等.兴凯湖最低生态安全水位研究[J].水利水电技术,2008,39(2):8-11.
    [155]王学雷,宁龙,肖锐.洪湖湿地恢复中的生态水位控制与江湖联系研究[J].湿地科学,2008,6(2):316-320.
    [156]姜德娟,王会肖,李丽娟.生态环境需水量分类及计算方法综述[J].地理科学进展,2003,22(4):369-378.
    [157]崔丽娟,鲍达明,肖红.湿地生态用水计算方法探讨与应用实例[J].水土保持学报,2005,19(2):147-]51.
    [158]Trivedi, H.V., Singh, J.K. Application of grey theory in the development of a runoff prediction model [J]. Biosyst. Eng,2005,92,521-527.
    [159]草原手册[M].内蒙古:内蒙古人民出版社,1977.
    [160]卧龙湖湿地自然保护区(2006-2020)保护规划[M]沈阳市林业局,2006.
    [161]王晓鸿,樊哲文,崔丽娟.鄱阳湖湿地生态系统评估[M].北京:科学技术出版社,2004.
    [162]李健娜.杭州西溪湿地生态系统服务功能研究[J].西南大学学报,2006,3(1):34-36..
    [163]吴炳方,黄进良,沈良标,等.湿地的防洪功能分析评价-以东洞庭湖为例[M].地理研究,2000,19(2):189-193.
    [164]王晓鸿.鄱阳湖湿地生态系统评估[M].北京:科学出版社,2004.
    [165]Mitsch, W.J., Gosselink J.G., Wetlands [M]. Van Nostrand Reinhold Company,2000.
    [166]陈宜瑜,吕宪国.湿地功能与湿地科学的研究方向[J].湿地科学,2003,1(1):7-11.
    [167]黄志忠.鄱阳湖湿地重金属形态分布及植物富集研究[D].南昌大学,2005.
    [168]余国营.湿地研究的若干基本科学问题初论[J].地理科学进展,2001,20(2):177-183.
    [169]翟水晶,胡维平,钱谊.江苏泗洪洪泽湖湿地自然保护区生态服务功能价值评价[J].生态与农村环境学报,2008,24(1):24-28.
    [170]刘立,王旭辉,赵旭阳,等.湿地生态服务功能价值评价研究进展[J].石家庄学院学报,2007,9(3):94-97.
    [171]邓培雁,刘威.湿地退化的制度成因分析[J].生态环境,2007,1(3):149-151.
    [172]欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10(5):635-640.
    [173]崔丽娟.扎龙湿地价值货币化评价[J].自然资源学报,2002,17(4):451-456.
    [174]吴玲玲,陆健健,童春富,等.长江口湿地生态系统服务功能价值的评估[J].长江流域资源与环境,2003,12(5):369-387.
    [175]崔丽娟.鄱阳湖湿地生态系统服务功能评价评估研究[J].生态学杂志,2004,23(4):47-51.
    [176]段晓男,王效科,欧阳志云.乌梁素海湿地生态系统服务功能及价值评估[J].资源科学,2005,27(2): 110-115.
    [177]辛琨,肖笃宁.盘锦地区湿地生态系统服务价值估算[J].生态学报,2005,22(8):1345-1349.
    [178]王伟,陆健健.三垟湿地生态系统服务功能及其价值[J].生态学报,2005,25(3):404-407.
    [179]吴翠,唐万鹏,史玉虎,等.长湖湿地生态价值评价[J].湖北林业科技,2008,1,45-47.
    [180]武海涛,吕宪国.中国湿地评价研究进展与展望[J].世界林业研究,2005,18(4):49-53.
    [181]赵士洞.新千年生态系统评估-背景、任务和建议[J].第四纪研究,2001,21(4):330-336.
    [182]张峥,张建文,李寅年.湿地生态评价指标体系[J].农业环境保护,1999,18(6):283-285.
    [183]高原竞.闽江河口湿地生态服务功能价值评价[D].海南大学,2009.
    [184]薛达元.生物多样性经济价值评估[M].北京:中国环境科学出版社,1999.11-36.
    [185]陈仲新,张新时.中国生态系统效益的价值[J].科学通报,2000,45(1):17-22.
    [186]沈阳市统计年鉴[M].沈阳市统计局,2006.
    [187]张培.白洋淀湿地价值评价[D].河北农业大学,2008.
    [188]孙睿,朱启疆.陆地植被净第一生产力的研究[J].应用生态学报,1999,10(6):757-760.
    [189]段刚.西双版纳气候因子对自然植被净第一生产力的影响[J].云南农业大学学报,2005,20(3):419-423.
    [190]Uchijima, Z., Seino, H. Agoraclimatic evaluation of primary productivity of natural vegetations-Chikugo Model for evaluation of net primary productivity [J]. Agr. Met.,1985,40(4): 343-352.
    [191]周广胜,张新时.自然植被第一净生产力模型初探[J].植物生态学报,1995,19(3):1992-2001.
    [192]陈渭民.卫星气象学[M].北京:气象出版社,2003.
    [193]陈世训,陈创买,林应河.气象学[M].广州:中山大学出版社,1993.
    [194]辽宁省统计年鉴[M].辽宁省统计局,2006.
    [195]曾贤刚.湿地经济价值的研究[J].前沿论坛,2002,9(3):51-54.
    [196]张素珍,李贵宝.白洋淀湿地生态服务功能及价值估算[J].南水北调与水利科技,2005,3(4):22-25.
    [197]庄大昌.洞庭湖湿地生态服务功能价值评估[J].经济地理,2004,24(3):391-394.
    [198]李加林,童亿勤,徐继琴,等.杭州湾南岸生态系统服务功能及其经济价值研究[J].地理与地理信息科学,2004,20(6):104-107.
    [199]谢高地,鲁春霞,冷允法,等.青藏高原生态资产的价值评估[J].生态学杂志,2003,18(2):189-196.
    [200]万洪秀,孙占东,王润.博斯腾湖湿地生态脆弱性评价研究[J].干旱区地理,2006,2(29)248-254.
    [201]王学雷.江汉平原湿地脆弱性与生态恢复[J].华中师范大学学报(自科版),2001,35(2):65-69.
    [202]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1997.
    [203]万忠娟,于少鹏.松嫩平原典型湿地脆弱性分析与评价[J].东北师大学报自然科学版,2003,35(2):93-94.
    [204]刘健康.东湖生态学研究(一)[M].北京:科学出版社,1990.
    [205]刘健康.东湖生态学研究(二)[M].北京:科学出版社,1995.
    [206]何池全,崔宝山,赵志春.吉林省典型湿地生态评价[J].应用生态学报,2001,12(5):754-756.
    [207]孟宪民.湿地与全球环境变化[J].地理科学,1999,19(5):385-391.
    [208]陈隆勋.近40年我国气候变化的初步分析[J].应用气象学报,1991,49(2):164-173.
    [209]丁一汇,戴晓苏.中国近百年来的温度变化[J].气象学报,1994,20(12):19-26.
    [210]潘响亮,邓伟,张道勇.东北地区湿地的水文景观分类及其对气候变化的脆弱性.环境科学研究,2003,16(1):14-18.
    [211]陈大光.康平县土地沙漠化遥感动态研究[A].中国遥感会议论文集,2004,249-257.
    [212]李东.辽宁省康平县沙漠化发生原因与恢复对策的研究[D].东北林业大学,2003.
    [213]何池全,赵魁义,等.湿地生态过程研究进展[J].地球科学进展,2000,13(5):165-171.
    [214]王让会.西部干旱区退化生态系统模式研究[J].中国农业生态学报.2001,9(3):8-11.
    [215]沈松平,王军,杨铭军.若尔盖高原沼泽湿地萎缩退化要因初探[J].四川地质学院学报,2003,3(6):123-125.
    [216]孙福义.浅析卧龙湖干涸之气象原因[J].辽宁气象,2003,2(1):40.
    [217]柴宇,陆秀君,王铁良.沈阳生态安全屏障—卧龙湖的退化原因分析与对策[J].安徽农业科学,2006,34(20):5312-5313.
    [218]王会.沈阳卧龙湖湿地的保护措施[J].环境保护科学,2006,6(32):66-68.
    [219]张福群,,孙丽娜,尼庆伟,等.卧龙湖湿地环境演化及其成因分析[J].地质与资源,2007,16(2):23-26.
    [220]蔡晓明.生态系统生态学[M].北京:科学出版社,2000.
    [221]Arnold,V.I.Catastrophe Theory(突变理论)[M].北京:高等教育出版社,1990.
    [222]勒内·托姆.突变论:思想和应用[M].上海:上海译文出版社,1989.
    [223]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1997.
    [224]彭越,樊宏.突变理论在山地生态环境脆弱性分析评价中的应用初探[J].西南民族大学学报(自然科学版),2004,30(5):633-637.
    [225]施玉群,吴益民.基于突变评价理论的施工截流标准优选[J].武汉水利电力大学学报,1997,30(6):46-51.
    [226]陈云峰, 殷福才,陆根法.水华爆发的突变模型—以巢湖为例[J].生态学报,2006,26(3):878-883.
    [227]赵正跃,项成龙.突变理论在环境预测中的应用[J].中国环境监测,2002,18(4):59-60.
    [228]桑博德.突变理论入门[M].上海:上海科学技术文献出版社,1983.
    [229]Thom,R.Structural stability and morphogenesis[M].Benjamin-Addsion Wesley,NY,USA,1975.
    [230]赵松年,于允贤.突变理论及其在生物医学中的应用[M].北京:科学出版社,1987.
    [231]John,M.,Cubitt,B.S.The geological implication of steady state mechanism in catastrophe theory[J]. Math.Geo.1976,8(4):657-661.
    [232]Poston,T.Steawart,1.Catastrophe theory and its application[M].London: Pitman Publishing Limited,1978.
    [233]刘厚田.湿地生态环境[J].生态学杂志,1996,15(1):75-78.
    [234]陆健健,何文珊,童春富,王伟.湿地生态学[M].北京:高等教育出版社,2006.
    [235]Kristin, R. Wetland restorarion in urban settings:Studies of vegetation and seed bands in restored and refrerence tidal freshewater after marshes [D]. University of Maryland, USA,2005.
    [236]周进.受损湿地植被的恢复与重建研究进展[J].植物生态学报,2001,25(5):561-572.
    [237]Aqil, M., Kita, I., Yano, A., Nishiyama, S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool [J]. Journal of Environmental Management.2007,85, 215-223.
    [238]Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G. M. Toreno N. River flow forecast for reservoir management through neural networks [J]. Neurocomputing,2003,55,421-437.
    [239]Abrahart, R. J., Kneale, P. E. Exploring neural network rainfall-runoff modelling. BHS 6th National Symposium, Salford, UK,1997, pp.935-944.
    [240]Amisigo, B. A., Van de Giesen, N., Rogers, C., Andah, W. E. I., Friesen. J. Monthly stream flow prediction in the Volta Basin of West Africa:A SISO NARMAX polynomial modeling [J]. Physics and Chemistry of the Earth.2008,33,141-150.
    [241]Castellano-Mendez, M., Gonzalez-Manteiga, W., Febrero-Bande, M,, Prada-Sanchez, J, M,, Lozano-Calderon, R. Modelling of the monthly and daily behaviour of the runoff of the Xallas River using Box-Jenkins and neural networks methods [J]. Journal of Hydrology.2004,296, 38-58.
    [242]Chen, J. S. River water quality theory and river water quality in China [M]. Beijing:Science Press, 2006.
    [243]Chen, J. Y., Lin, Y. H. Design of Fuzzy Sliding Mode Controller with Grey Predictor [J]. Journal of Grey System.1996,8(2):147-164.
    [244]Chiao, J.H., Wang, W. Y., Lu, M. J. A study for Applying Grey Forecasting to Improve the Reliability of Product. Second National Conference on Grey Theory and Applications (Taiwan) 1997, pp.202-206.
    [245]Collischonn, W., Haas, R., Andreolli, I., Tucci, C. E. M. Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model [J]. Journal of Hydrology.2005,305, 87-98.
    [246]Coulibaly, P., Anctil, F., Bobee, B. Daily reservoir inflow forecasting using artificial neural network for stopping training approach [J]. Journal of Hydrology.2000,230,244-257.
    [247]Dawson, C. W., Wilby, R. An artificial neural network approach to rainfall-runoff modeling [J]. Hydrol. Sci.,1998,43,14-66.
    [248]邓聚龙.灰色系统理论教程[M].武汉:武汉理工大学出版社,1992.
    [249]Deng, J.L. Introduction to grey system theory [J]. Journal of Grey System,1989,1(1):1-24.
    [250]Deo, M. C., Thirumalaiah, K. Real time forecasting using neural networks, In:Govindaraju, R.S., Ramachandra Rao, A. (Eds.), Artificial Neural Networks in Hydrology, Kluwer Academic, Dordrecht,2000,53-71.
    [251]Hao, Y. H., Yeh, T. C. J., Gao, Z. Q., Wang, Y. R., Zhao, Y. A gray system model for studying the response to climate change:The Liulin Karst springs, China [J]. Journal of Hydrology,2006,328, 668-676.
    [252]Koza, J. R. Genetic Programming on the Programming of Computers by Means of Natural Selection, Seventh Printing, MIT Press, Cambridge, MA, USA,1992, pp.73-164.
    [253]Wang, X. P., Cao, L. M. Genetic Algorithm:Theory Application and Software implement [M]. Xian Jiaotong University Press.2002.
    [254]Kamal, H. A, Eassa M. H. Solving Curve Fitting Problems using Genetic Programming [J]. IEEE MELECON.2005,7(9):316-321.
    [255]Whigham, P. A., Crapper, P. F. Modelling Rainfall-Runoff using Genetic Programming [J]. Mathematical and Computer Modelling,2001,33,707-721.
    [256]Fan, W. G., Gordon, M. D., Pathak, P. A generic ranking function discovery framework by genetic programming for information retrieval [J]. Information Processing Management,2004,40,587-602.
    [257]Ong, C. S., Huang, J. J., Tzeng, G. H. Building credits scoring models using genetic programming [J]. Experts Systems with Application,2005,29,41-47.
    [258]Muttil, N., Lee, J. H. W. Genetic programming for analysis and real-time prediction of coastal algal blooms [J]. Ecological Modelling,2005,189:363-376.
    [259]Nath, R., Rajagopalan, B., Ryker, R. Determining the saliency of input variables in neural network classifiers [J]. Computers and Operations Research,1997,24,767-773.
    [260]Huang, W., Foo, S. Neural Network modeling of salinity variation in Apalachicola River [J]. Water Research 2002,36,356-362.
    [261]Imrie, C. E., Durucan, S., Korre, A. River flow prediction using artificial neural networks: generalisation beyond the calibration range [J]. Journal of Hydrology,2000,233,138-153.
    [262]Zealand, C. M., Burn, D. H., Simonovic, S P. Short term stream flow forecasting using artificial neural networks [J]. Journal of Hydrology.1999,214,32-48.
    [263]Deng, J. L. Introduction to grey system theory [J]. Journal of Grey System,1989, 1(1):1-24.
    [264]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    [265]Kirk, J.A., Wis, W.R., Delfino, J.J. Water budget and cost-effectiveness analysis of wetland restoration alternatives:a case study of Levy Prairie, Alachua County, Florida [J]. Ecological Engineering,2004,22,43-60.
    [266]孙志林,夏珊珊,许丹,等.区域水资源的优化配置模型[J].浙江大学学报(工学版),2009,43(2):344-348.
    [267]Rashin, P. D., Hansen, E., Margolis, R.M. Water and sustainability:Global Patterns and Long-range Problems [J]. Natural Researches Forum,1996,20(1):1-15.
    [268]Gleick, P. H. Water in Crisis:Paths to Sustainable Water Use [J]. Ecological Applications,1998,8(3): 571-579.
    [269]胡继才,万福骏,吴珍权,等.应用模糊数学[M].武汉:武汉测绘科技大学出版社,1998.
    [270]李俊清.森林生态学[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700