多源遥感数据和GIS支持下的台风影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上受台风影响最严重的国家之一,影响中国的台风主要来自西北太平洋。西北太平洋是全球唯一的一年四季都有台风形成,而且发生频数最多、分布范围最广的海域。台风影响范围很广,既能带来狂风、暴雨、风暴潮等灾害,又具有缓解干旱、降低高温等有益的作用。改革开放以来,中国的社会经济得到了飞速的发展,人口和社会财富高度集中,更容易受到台风的影响。研究台风的影响,意义深远。
     本研究首先利用1971-2008年登陆中国热带气旋的最佳路径资料,结合地理信息系统GIS(Geographic Information System)研究热带气旋在中国的时空分布特征;然后使用MODIS(Moderate Resolution Imaging Spectroradiometer)1B影像,经过一系列预处理,反演地表温度;再利用植被供水指数,结合AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System)土壤湿度研究台风缓解干旱,并使用气象站点实测日最高气温和AMSR-E地表温度数据研究台风降低高温影响;最后基于HJ-1影像研究台风带来降雨引起水库水体面积变化和滑坡泥石流灾害,以及台风影响植被生长。研究的主要方法和结论如下:
     1登陆中国热带气旋的时空分布特征
     利用1971-2008年登陆中国热带气旋的最佳路径资料,从频数、强度和登陆地点等方面分析登陆中国热带气旋的时空分布特征。结果表明20世纪70年代初是热带气旋登陆中国的高发期,20世纪90年代末是热带气旋登陆中国的低发期。热带气旋登陆主要集中在7-9月,登陆热带气旋个数总体上以8月为中心,成对称减少分布。77%的登陆热带气旋强度都在风力10级以上。热带气旋登陆的地点主要在广东、台湾、海南、福建、浙江和广西等东南沿海省份。统计2004-2008年期间每次热带气旋每6小时的七级和十级风圈半径,分析风圈半径与热带气旋近中心最大风速之间的关系,重建历史热带气旋的风圈半径,并在GIS的支持下,可视化1971-2008年热带气旋在中国的空间分布,可以看出热带气旋对中国的影响从沿海到内陆逐渐减弱,海南、台湾以及其它东南沿海地区影响最为严重。
     2 MODIS 1B影像预处理及地表温度反演
     MODIS 1B是MODIS的1级产品,是将探测到的数据信号按一定比例缩放成16位整数值SI(Scaled Integer)保存的文件。利用MODIS 1B数据的SI值反演地表反射率,需要经过辐射校正(辐射定标和大气校正)、几何校正、去边缘重叠(bow-tie效应)等预处理,而且为了获取研究区全覆盖资料,通过检测去除云、多天影像去云后拼接得到研究区的反射率。地表温度通过分裂窗算法反演,该方法使用MODIS 1B影像的可见光、近红外和热红外波段,通过Planck方程由辐亮度计算亮度温度;通过大气水汽含量、温度校正函数和视角校正函数求算大气透过率;基于植被覆盖率来估算地表比辐射率。最后结合估算出来的亮度温度、大气透过率和地表比辐射率三个因素计算地表温度。
     3台风缓解干旱和降低高温影响的遥感评估
     台风带来的降雨能缓解干旱,而且由于台风期间云层增厚,减少了地表大气对太阳辐射的吸收,温度降低。本研究利用多源遥感数据评估台风缓解干旱和降低高温影响。
     (1)首先使用地面实测降雨量资料计算台风“海棠”影响前研究区的降水距平来分析台风影响前研究区的干旱状况;再利用MODIS 1B数据计算的归一化差值植被指数(Normalized Difference Vegetation Index, NDVI)和反演的地表温度(Land Surface Temperature, LST)计算植被供水指数(Vegetation Supply Water Index, VSWI),植被供水指数从植被生长和地面温度两个方面来监测干旱状况。通过对比台风“海棠”前后植被供水指数的变化,分析由于受台风影响,研究区干旱状况的变化;另一方面利用台风“海棠”前后AMSR-E土壤湿度的变化来反映台风缓解干旱。台风后研究区的平均植被供水指数由18.62增大到20.67,而平均土壤湿度由35.70%增大到52.37%。二者都增大,说明研究区的干旱状况得到了缓解。
     (2)台风“海棠”影响研究区期间,研究区各气象站点的实测日最高气温都大幅下降,平均下降8.6℃。由于气象站点是单点数据,点不能反映面的温度变化,而MODIS等光学影像在云雨较多的台风期间,又很容易受到云的影响,所以本研究使用不受云影响的微波AMSR-E数据。通过对比台风“海棠”前后三天的平均AMSR-E地表温度来反映台风对地表温度的影响。由于AMSR-E地表温度和实测日最高气温之间有一定差距,所以利用实测日最高气温来订正AMSR-E地表温度。台风后研究区订正后的平均AMSR-E地表温度明显下降,由34.51℃降低为29.53℃。
     4台风引起的灾害遥感评估
     首先对HJ-1星影像进行了一系列预处理,然后从台风前后台湾曾文水库水体面积的变化、台风导致台湾小林村滑坡泥石流以及台风大风影响植被生长三个方面来反映台风引起的灾害。
     (1)利用台风“莫拉克”前后多时相的HJ-1影像,通过去相关拉伸光谱增强方法减小波段间的相关性,再利用最大似然分类法分类,提取多时相台湾曾文水库水体信息。经过去相关拉伸的各时相影像总体分类精度达90%以上,Kappa系数也达0.9以上,精度明显高于没有进行去相关拉伸光谱增强的分类精度。台风前曾文水库面积为10.72km2,台风带来的强降雨使曾文水库水位暴涨,台风后第五天影像上提取的水库水体面积为14.81km2。监测台风对水库水体面积的影响,可以为合理地调度泄洪,保证水库下游的安全提供决策依据。
     (2)利用台风“莫拉克”前后多时相的HJ-1影像,通过基于去相关拉伸光谱增强的最大似然法分类,提取台风前后由于台风暴雨使小林村后山发生滑坡泥石流灾害而引起各种地类的变化。结合TRMM资料分析台风降雨情况,并辅以DEM资料,形成3D视图分析滑坡泥石流灾害。各时相影像的总体分类精度都高于90%,Kappa系数也都大于0.9。台风后小林村后山植被区域变成裸地,呈现较清晰的滑坡边界和形态特征,并在河流处形成明显的泥石流洪积扇沉积区,滑坡泥石流(包括泥石流沉积区)总面积约2.92km2,3D视图更直观的反映小林村滑坡泥石流灾害的发生。
     (3)由于HJ-1影像会受到云的影响,在台风“莫拉克”移动路径上选择一处多时相HJ-1影像都未被云污染的区域作为研究区,根据MODIS MCD12Q1资料分析研究区的土地覆盖情况。由于研究区内植被的归一化差值植被指数达到饱和,所以通过分析增强型植被指数的变化来反映台风大风对植被生长的影响。植被处于生长期,但台风大风吹落树叶、折断树枝,导致增强型植被指数明显下降。到台风后一个月,植被逐渐恢复,增强型植被指数有所回升。
China is one of the countries in the world most affected by the typhoon, and the typhoon affecting China is mainly from Northwest Pacific. Northwest Pacific is the only sea in which typhoon formation all the year round. The number of typhoon is largest, and the distribution of typhoon is most widely. Typhoon has a wide range, and it can bring disasters such as wind, rainstorm and storm surge. On the other hand, it can bring some benefits. For example, it can relieve drought and make temperature drop substantially. With the rapid development of economic, China is more vulnerable to typhoon due to the high concentration of population and social wealth. It is significant to study the impact of typhoons on China.
     In the study, the spatio-temporal distribution of typhoon was analyzed based on the best track data of tropical cyclones in 1971-2008 and GIS (Geographic Information System). Then, MODIS 1B (Moderate Resolution Imaging Spectroradiometer) image was preprocessed and land surface temperature (LST) was retrieved from MODIS 1B. Next, the benefit of drought relief of typhoon was studied combining vegetation supply water index (VSWI) and AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) soil moisture data, and the benefit of temperature drop of typhoon was studied by daily maximum temperatures of meteorological stations and AMSR-E land surface temperature data. Finally, disasters caused by typhoon including the water body change, landslide, debris flow and vegetation disturbance were assessed by HJ-1 images. The mainly methods and conclusions are as follows:
     1 Spatio-temporal distribution of tropical cyclones landfalling in China
     According to the best tracks of landfalling tropical cyclones in 1971-2008, landfalling frequency, intension and place were analyzed. The results showed that landfalling tropical cyclone kept high frequency in the early 1970s, and kept low frequency in the late 1990s. Tropical cyclone concentrated in the July to September, and August is as the center. Tropical cyclones with wind level above 10 acounted for 77% of the landfalling tropical cyclones. Tropical cyclones landed mainly in the southeast coast of China including Guangdong, Taiwan, Hainan, Fujian, Zhejiang and Guangxi provinces.
     Wind radius of historical tropical cyclone was reconstructed by studying the relationship between wind radius and maximum wind speed near the center at 6 hourly intervals of every tropical cyclone in 2004-2008, and the spatial distribution of tropical cyclone was mapped with the support of GIS. It can be seen from the spatial distribution map, the impact reduced when tropical cyclone moving inland, and the southeast coast provinces comprising Hainan, Taiwan and so on suffered the severest impact.
     2 Preprocess of MODIS 1B image and LST retrieval
     MODIS 1B is the level 1 product, and it writes a 16-bit scaled integer representation of the calibrated digital signals measured by the MODIS. Reflectance can be retrieved from SI through radiometric correction (radiometric calibration and atmospheric correction), geometric correction, bow-tie removal. Then, cloud detection and mosaic were applied for getting the data of the whole study area. LST was retrieved by split window algorithm combining visible, near infrared with thermal infrared band. Brightness temperature was calculated by radiance through Planck function. Atmospheric transmittance was gotten based on atmospheric water vapor, temperature correction function and perspective correction function. Surface emissivity was computed by vegetation coverage. Finally, LST was calculated by brightness temperature, atmospheric transmittance and surface emissivity.
     3 Remote sensing assessments on the drought relief and temperature drop cuased by typhoon
     Typhoon brings rain to relieve drought condition. As the typhoon has thick clouds, and the absorption of solar radiation reduces, temperature decreases. In the study, drought relief and temperature drop caused by typhoon were assessed using multi-source remote sensing data.
     (1) First, precipitation anomaly calculated on the basis of measured rainfall was adopted to analyze drought condition before typhoon Haitang. Then, vegetation supply water index (VSWI) integrating NDVI (Normalized Difference Vegetation Index) with LST was used to monitor the drought change. Impact of typhoon on drought was studied through comparing VSWI before and after typhoon Haitang. On the other hand, AMSR-E soil moisture change was also used to reflect the drought change. After typhoon Haitang, average VSWI and soil moisture increased from 18.62 to 20.67 and from 35.70% to 52.37%, respectively. It indicated that drought was relieved.
     (2) During the typhoon Haitang, daily maximum temperature of meteorological stations all dropped, the average is 8.6℃. Due to the daily maximum temperature of meteorological stations is point data, it can not reflect the temperature of a polygon, in addition, optical Images such as MODIS, are vulnerable to contamination by clouds, microwave data of AMSR-E were used in the study. Average AMSR-E LST before and after typhoon Haitang was compared to reflect the impact of typhoon on temperature. Moreover, because there had difference between AMSR-E LST and daily maximum temperature, AMSR-E LST was revised by daily maximum temperature. After typhoon Haitang, revised average AMSR-E LST decreased from 34.51℃to 29.53℃.
     4 Remote sensing assessments on the disasters caused by typhoon
     After a series of preprocess on HJ-1, disasters caused by typhoon were shown from three aspects, including change of water body, landslide and debris flow, and wind disturbance on vegetation.
     (1) Using multi-temporal HJ-1 images before and after typhoon Morakot, decorrelation stretch (DS) was applied to decrease the correlations among bands, and water body of the Tseng-Wen reservoir was extracted through maximum likelihood classification (MLC). The overall accuracie of each phase was all above 90%, Kappa coefficient was above 0.9, and they were better than that of direct MLC without DS spectral enhancement. The area of the water body was 10.72km2 before typhoon Morakot, and after the typhoon, the area went up to 14.81km2. It can provide a basis for decision-making in scheduling flood discharge and ensure the safety of reservoir downstream by monitoring water body impacted by typhoon.
     (2) Using multi-temporal HJ-1 images before and after typhoon Morakot, land types change in Xiaolin village caused by typhoon was extracted by MLC based on DS. TRMM data were adopted to know precipitation brought by typhoon, and 3D view was used to analyze landslide and debris flow with the aid of DEM. The overall accuracie of each phase was all above 90%, Kappa coefficient was above 0.9. After the typhoon, vegetation became bare land, and it appeared clear boundaries and morphological characteristics of landslide. Xiaolin village buried by landslide and debris flow, and clear alluvial fan deposition zone of debris flow was formed at the river. The whole area of landslide and debris flow (including alluvial fan deposition zone of debris flow) was about 2.92km2. It can reflect landslide and debris flow more directly from 3D view.
     (3) Due to HJ-1 images are vulnerable to contamination by clouds, the study area was selected in a cloudless area along the typhoon track. The NDVI is saturated in the study area, according to land cover type of MODIS MCD12Q1, the change of enhanced vegetation index (EVI) was used to reflect wind disturbance on vegetation through comparing multi-temporal HJ-1 images before and after typhoon Morakot. Vegetation was in the growing season at that time, but wind blew down leaves and broken branches, resulting in EVI decrease. After one month, vegetation gradually recovered and EVI rebounded too.
引文
[1]Adler-Golden S M, Matthew M W, Bernstein L S. Atmospheric correction for short-wave spectral imagery based on MODTRAN4. SPIE Proceeding, Imaging Spectrometry V, Volume 3753,1999.
    [2]Alam M M, Hossain M A, Shafee S. Frequency of bay of Bengal cyclonic stroms and depressions crossing different coastal zones. International Journal of Climatology,2003,23:1119-1125.
    [3]Andreas H F, Peter S. Tropical cyclones. Naturwissenschaften,1998,85:482-493.
    [4]Aosier B, Kaneko M. Evaluation of the forest damage by typhoon using remote sensing technique. IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, July 23-27.
    [5]Ayala-Silva T, Twumasi Y A. Hurricane Georges and vegetation change in Puerto Rico using AVHRR satellite data. International Journal of Remote Sensing,2004, 25 (9):1629-1640.
    [6]Barton I J, Bathols J M. Mornitoring floods with AVHRR. Remote Sensing of Environment,1989,30(1):89-94.
    [7]Becker F, Li Z L. Towards a local split window method over land surface. International Journal of Remote Sensing,1990,3:369-393.
    [8]Becker F, Li Z L. Surface temperature and emissivity at various scales:Definition, measurements and related problems. Remote Sensing Reviews,1995,12:225-253.
    [9]Bellingham P J, Tanner E V J, Healey J R. Damage and responsiveness of Jamaican montane tree species after disturbance by a hurricane. Ecology,1995, 76(8):2562-2580.
    [10]Bhalme HN. Trends and quasi-biennial oscillation in the series of cyclonic disturbances over the Indian region. Indian Journal of Meteorology and Geophysics,1972,23(3):355-358.
    [11]Boose E R, Foster D R, Fluet M. Hurricane impacts to tropical and temperate forest landscapes. Ecological Monographs,1994,64(4):369-400.
    [12]Borghuis A M, Chang K, Lee H Y. Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery. International Journal of Remote Sensing,2007,28:1843-1856.
    [13]Brady A, Shaikh M, King A, et al. Remote sensing and the Great Cumbung Swamp, Wetlands Australia,1999,7:596-606.
    [14]Brun J, Barros A P. Mapping the History of Environmental Impacts of Land-Falling Hurricanes in the Southeastern United States-A Demonstration for Isabel. IEEE Transactions on Geoscience and Remote Sensing,2008,4:355-358.
    [15]Brunsden D, Prior D B. Slope instability. John Wiley and Sons, New York, 1984:620.
    [16]Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews,1994,9:161-173.
    [17]Chan J C L. Tropical cyclone activity in the northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Monthly Weather Review,1985,113: 599-606.
    [18]Chan J C L. Tropical cyclone activity over the western north Pacific associated with El Nino and La Nina Events. Journal of Climate,1999,13:2960-2972.
    [19]Chan J C L. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorology and Atmospheric Physics,2005,89: 143-152.
    [20]Christopher S. Multitemporal analysis of urban reflectance. Remote Sensing of Environment,2002,81(2-3):427-442.
    [21]Colby J D, Mulcahy K, Wang Y. Modeling flooding extent from Hurricane Floyd in the coastal plains of North Carolina. Environmental Hazard,2000,2:157-168.
    [22]Cooper-Ellis S, Foster D R, Carlton G, et al. Forest response to catastrophic wind:results from an experimental hurricane. Ecology,1999,80(8):2683-2696.
    [23]Curtis S, Crawford T W, Lecce S A. A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood. Natural Hazards, 2007,43:187-198.
    [24]David R S. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment,2003,85(3):282-289.
    [25]Dousset B, Gourmelon F. Satellite multi-sensor data analysis of urban surface temperature and land-cover. ISPRS Journal of Photogrammetry and Remote Sensing,2003,58:43-54.
    [26]Emaunel K. Increasing destructiveness of TCs over the past 30 years. Nature, 2005,436:686-688.
    [27]Fogarty E A, Elsner J B, Jagger T H, et al. Variation in typhoon landfalls over China. Advances in Atmospheric Science,2006,23:665-677.
    [28]Franca G B, Cracknell A P. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in northeastern Brazil. International Journal of Remote Sensing,1994,15:1695-1712.
    [29]Frazier P S, Page K J. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing,2000,66:1461-1467.
    [30]Gao B C, Kaufman Y J. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels. Journal of Geogphysical Research-Atmosphores,2003,108 (D13):4389.
    [31]Gillespie A, Rokugawa S, Matsunaga T, et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) Images. IEEE Transactions on Geoscience and Remote Sensing,1998,36 (4):1113-1126.
    [32]Goetz S J, Halthore R N, Hall F G, et al. Surface temperature retrieval in a temperate grass land with multi resolution Sensors. Journal of Geophysical Researeh,1995,100:25397-25410.
    [33]Goetz S J. Muti-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 1997,18(1):71-94.
    [34]Grings F M, Ferrazzoli P, Karszenbaum H, et al. Model investigation about the potential of C band SAR in herbaceous wetlands flood monitoring. International Journal of Remote Sensing,2008,29(17-18):5361-5372.
    [35]Guariguata M R. Landslide disturbance and forest regeneration in the upper luquillo mountains of Puerto-Rico. Journal of Ecology,1990,78:814-832.
    [36]Henry J B, Chastanet P, Fellah K, et al. Envisat multi-polarized ASAR data for flood mapping. International Journal of Remote Sensing,2006,27:1921-1929.
    [37]Holmes T R H, De Jeu R A M, Owe M, et al. Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research, 2009,114, D04113.
    [38]Huete A R. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25:295-309.
    [39]Huffman G J, Adler R F, Bolvin D T, et al. The TRMM Multi-Satellite Precipitation Analysis (TMPA):quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology,2007,8: 38-55.
    [40]Imamura F, Vanto D. Flood and Typhoon Disasters in Viet Nam in the Half Century Since 1950. Natural Hazards,1997,15:71-87.
    [41]Imhoff M L, Vermilion C, Story M H, et al. Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data. Photogrammetric Engineering and Remote Sensing,1987,4:405-413.
    [42]Islam M M, Sado K. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrological Processes, 2000,14:605-620.
    [43]Islam T, Peterson R E. Climatology of landfalling tropical cyclones in Bangladesh 1877-2003. Natural Hazards,2009,48:115-135.
    [44]Jain S K, Saraf A K, Goswami A, et al. Flood inundation mapping using NOAA AVHRR data. Water Resources Management,2006,20:949-959.
    [45]Shi J, Chen K S, Li Q, et al. A parameterized surface reflectivity model and estimation of bare surface soil moisture with L-band radiometer. IEEE Transactions on Geoscience and Remote Sensing,2002,40:2674-2686.
    [46]Jibson R W, Harp E L, Michael J A. A method forproducingdigital probabilistic seismic landslide hazard maps. Engineering Geology,2000,58 (3-4):271-289.
    [47]Kambezidis H D, DjepaPetrova V, Adamopoulos A D. Radiative transfer.1. Atmospheric transmission monitoring with modeling and ground-based multispectral measurements. Applied Optics,1997,36 (27):6976-6982.
    [48]Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992,30: 261-270.
    [49]Kaufman Y J, Gao B C. Remote sensing of water vapor in the Near IR from EOS/MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(5):871-884.
    [50]Kaufman Y J,Tanre D. Strategy for direct and indirect method for correcting the aerosol effect on remote sensing:from AVHRR to EOS-MODIS. Remote Sensing of Environment,1996(55):65-79.
    [51]Kawanishi T, Imaoka K, Sezai T, et al. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Transactions on Geoscience and Remote Sensing,2003,41,184-194.
    [52]Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing of Environment,1992,41:197-209.
    [53]Kiage L M, Walker N D, Balasubramanian S, Babin A, Barras J. Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. International Journal of Remote Sensing,2005,26(24): 5359-5380.
    [54]Klotzbach P, Gray W. United States landfall probability webpage,2005. http://www.e-transit.org/hurricane/welcome.html.
    [55]Korup O. Geomorphometric characteristics of New Zealand landslide dams. Engineering Geology,2004,73:13-35.
    [56]Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology,2000,39:1965-1982.
    [57]Kupfer, J A, Myers A T, Mclane S E, et al. Patterns of forest damage in a southern Mississippi landscape caused by hurricane Katrina. Ecosystems,2008, 11:45-60.
    [58]Lau W P. Environmental change detection in relation to landslide hazard using landsat TM image (BSc Dissertation). Sydney, University of New South Wales, 2004:1-72.
    [59]Lee M F, Lin T C, Vadeboncoeur M A, et al. Remote sensing assessment of forest damage in relation to the 1996 strong typhoon Herb at Lienhuachi experimental forest, Taiwan. Forest Ecology and Management,2008,255:3297-3306.
    [60]Leroi E, Rouzeau O, Scanvic JY, et al. Remote-Sensing and Gis Technology in Landslide Hazard Mapping in the Colombian Andes. Episodes,1992,15:32-35.
    [61]Li L, Wang Y, Adler R F, et al. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Natural Hazards,2009,50:109-123.
    [62]Liang S L, Fang H L, Chen M Z. Atmospheric correction of Landsat ETM+ land surface imagery-Part I:Methods. IEEE Transaction on Geoscience and Remote sensing,2001(39):2490-2498.
    [63]Liu J, Woing T. A practical approach to creating a landslide database using Taiwan SPOT mosaic. Proceedings of the 20th Asian Conference on Remote Sensing(ACRS 1999), Hong Kong, China.
    [64]Liu J G, Moore, J M. Direct decorrelation stretch technique for RGB colour composition. International Journal of Remote Sensing,1996,17:1005-1018.
    [65]Liu Z, Huang F, Li L, et al. Dynamic monitoring and damage evaluation of flood in north-west Jilin with remote sensing. International Journal of Remote Sensing, 2002,23:3669-3679.
    [66]Manavalan P, Sathyanath P, Rajegowda G L. Digital Image-Analysis Techniques to Estimate Waterspread for Capacity Evaluations of Reservoirs.Photogrammetric Engineering and Remote Sensing,1993,59:1389-1395.
    [67]Martinez J M, Le Toan T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment,2007,108:209-223.
    [68]McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing,1996, 17:1425-1432.
    [69]Mckean J, Buechel S, Gaydos L. Remote Sensing and Landslide Hazard Assessment. Photogrammetric Engineering and Remote Sensing,1991,57(9): 1185-1193.
    [70]McMillin L M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research,1975, 80:5113
    [71]Mcnulty S G. Hurricane impacts on US forest carbon sequestration. Evrionmental Pollution,2002,116:s17-s24.
    [72]Merrens E J, Peart D R. Effects of hurricane damage on individual growth and stand structure in a hardwood forest in New Hampshire, USA. Journal of Ecology, 1992,80:787-795.
    [73]Miura M, Manabe T, Nishimura N, et al. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan:a 7-year study of a 4-ha plot. Journal of Ecology,2001,89:841-849.
    [74]Mooley D A. Severe cyclonic storms in the bay of Bengal,1877-1977. Monthly Weather Review,1980,108:1647-1655.
    [75]Nakayama Y, Du Y, Nakamura J. An analysis of the flood area in the middle reaches of Yangtze River by satellite and DEM data. IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, July 23-27.
    [76]NASA. MODIS Level IB Product User's Guide, For Level IB Version 4.3.0 (Terra) and Version 4.3.1 (Aqua), Prepared by Members of the MODIS Characterization Support Team For NASA/Goddard Space Flight Center, Greenbelt, MD 20771,2003, USA.
    [77]Nezry E, Sarti F, Romeijn P, et al. The devastation of Venezuela by heavy rains in December 1999:Assessment of the situation using ERS InSAR tandem data and SPOT images. Proceedings of the ERS-ENVISAT Symposium, Gothenburg (Sweden),16-20 October 2000.
    [78]Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing,2005,26:1913-1926.
    [79]Nico G, Pappalepore M, Pasquariello G, et al. Comparison of SAR amplitude vs. coherence flood detection methods-a GIS application. International Journal of Remote Sensing,2000,21:1619-1631.
    [80]Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing,2003,41:215-229.
    [81]Owe M, De Jeu R A M, Holmes T R H. Multisensor historical climatology of satellite-derived global land surface moisture. Journal of Geophysical Research,2008,113, F01002.
    [82]Paling E I, Kobryn H T, Humphreys G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuarine, Coastal and Shelf Science,2008,77:603-613.
    [83]Patwardhan S K, Bhalme H N. A study of cyclonic disturbances over india and the adjacent ocean. International Journal of Climatology,2001,21:527-534.
    [84]Profeti G, MacIntosh H. Flood management through Landsat TM and ERS SAR data:A case study. Hydrological Processes,1997,11:1397-1408.
    [85]Qin Q, Ghulam A, Zhu L, et al. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. International Journal of Remote Sensing,2008,29:1983-1995.
    [86]Qin Z, Dall'Olmo G, Kamieli A, et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-AVHRR data. Journal of Geophysical Research,2001,106(D19): 22655-22670.
    [87]Raghavendra V K. A statistical analysis of the number of tropical storms and depressions in the bay of bengal during 1890-1969. Indian Journal of Meteorology and Geophysics,1973,24:125-130.
    [88]Ramos J G, Mendoza J E, Jimenez A A, et al. Application of SPOT 5/DEM and orthoimages to asses the suchiate river conditions after heavy rains at the south pacif coast of Mexico. Proceedings of the Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle upon Tyne,11-14 September 2007.
    [89]Ramsey E W, Chappell D K, Baldwin D G. AVHRR imagery used to identify hurricane damage in a forested wetland of Louisiana. Photogrammetric Engineering and Remote Sensing,1997,63 (3):293-297.
    [90]Rao KN, Jayaraman S. A statistical study of frequency of epressions:cyclones in the Bay of Bengal. Indian Journal of Meteorology and Geophysics,1958,9(3): 233-250.
    [91]Reaearch System Inc. FLAASH User's Guide. Envi Flaash Version 1.0,2001: 8-40.
    [92]Rodgers J C, Murrah A W, Cooke W H. The impact of hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from NDVI Data. Estuaries and Coasts,2009,32:496-507.
    [93]Saha A K, Gupta R P, Sarkar I, et al. An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides, 2005,2:61-69.
    [94]Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides,2007,4:113-122.
    [95]Sheng Y, Gong P, Xiao Q. Quantitative dynamic flood monitoring with NOAA AVHRR. International Journal of Remote Sensing,2001,22:1709-1724.
    [96]Sheng Y W, Su Y F, Xiao Q G. Challenging the cloud-contamination problem in flood monitoring with NOAA/AVHRR imagery. Photogrammetric Engineering and Remote Sensing,1998,64:191-198.
    [97]Simonett D S, Schuman R L, Williams D L. The use of air photos in a study of landslides in New Guinea, Kansas University,1970,62 p.
    [98]Singhroy V, Mattar K E, Gray A L. Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Advances in Space Research,1998,21:465-476.
    [99]Sobrino J A, Coll C, Caselles V. Atmospheric correction for land surface temperature using NOAA-11AVHRR channels 4 and 5. Remote Sensing of Environment,1991,38:19-34.
    [100]Sobrino J A, Jimenez-Muiioz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM5. Remote Sensing of Environment,2004,90:434-440.
    [101]Stowasser M, Wang Y, Hamilton K. TC changes in the Western North Pacific in a global warming scenario. Journal of Climate,2007,20:2378-2396.
    [102]Subbaramayya I, Rao S R M. Frequency of Bay of Bengal cyclones in the Post-monsoon season. Monthly Weather Review,1984,112:1640-1642.
    [103]Townsend P A. Mapping seasonal flooding in forested wetlands using multi-temporal radarsat SAR. Photogrammetric Engineering and Remote Sensing, 2001,67(7):857-864.
    [104]Townsend PA. Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. International Journal of Remote Sensing,2002,23(3):443-460.
    [105]Villegas H. Multi-temporal study and detailed photogeological mapping of the Armero debris flow (Colombia), Using Landsat TM 5 Images. Geocarto International,2003,18:1,67-74.
    [106]Waide R B, Zimmerman J K, Scatena E N. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology,1998,79(1): 31-37.
    [107]Wang B Z, Xu Y L, Bi B G. Forecasting and warning of tropical cyclones in China. Data Science Journal (Supplement),2007,6:723-737.
    [108]Wang Q, Watanabe M, Hayashi S, et al. Using NOAA AVHRR data to assess flood damage in China. Environmental Monitoring and Assessment,2003,82: 119-148.
    [109]Wang W T, Qu J J, Hao X J, et al. Post-hurricane forest damage assessment using satellite remote sensing. Agricultural and Forest Meteorology,2010,150: 122-132.
    [110]Wang X L, Wu L G, Ren F M, et al. Influence of tropical cyclones on China during 1965-2004. Advances in Atmospheric Sciences,2008,25(3):417-426.
    [111]Wang Y. An eYcient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. International Journal of Remote Sensing, 2002,23(18):3681-3696.
    [112]Wang Y. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. International Journal of Remote Sensing,2004,25(5):959-974.
    [113]Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing,2006,27(14):3025-3033.
    [114]Yamashita A, Sano J, Yamamoto S I. Impact of strong typhoon on the structure and dynamics of an old-growth beech (Fagus crenata) forest, southwestern Japan. Folia Geobot,2002,37:5-16.
    [115]Youssef, A M. An enhanced remote sensing procedure for material mapping in the western desert of Egypt:a tool for managing urban development. Natural Resources Research,2008,17(4):215-226.
    [116]Zandbergen P A. Exposure of US counties to Atlantic tropical storms and hurricanes,1851-2003. Natural Hazards,2009,48:83-99.
    [117]Zhou X N, Lin D D, Yang H M, et al. Use of landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River Basin. Acta Tropica,2002,82:199-205.
    [118]阿布都瓦斯提·吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气校正.北京大学学报(自然科学版),2004,40(4):611-618.
    [119]白志勇.陆地卫星SPOT、TM数据复合影像在泥石流调查中的应用.水土保持学报,2001,15(1):116-121.
    [120]陈桂红,唐伶俐,戴昌达等.洪涝灾情快速反应的星载SAR与TM数据的 融合处理.地球信息科学,2003(1):103-108.
    [121]陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979.
    [122]陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类.测绘工程,2007,16(3):40-42,47.
    [123]陈林,牛生杰,仲凌志. Matlab对基于HDF格式的MODIS 1B数据的提取方法与实现.气象科学,2006,26(6):676-681.
    [124]陈佩燕,杨玉华,雷小途.我国台风灾害成因分析及灾情预估.自然灾害学报,2009,18(1):64-73.
    [125]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    [126]陈述彭,赵英时.遥感地学分析.北京:测绘出版社,1990.
    [127]陈香,陈静,王静爱.福建台风灾害链分析-以2005年“龙王”台风为例.北京师范大学学报(自然科学版),2007,43(2):203-208.
    [128]程思思,甘甫平,刘钦甫等.CBERS-2B星数据在“5·12”地震滑坡调查的应用-以唐家山至北川县城堵江河道滑坡为例.国土资源遥感,2009(1):93-96.
    [129]池宏康,周广胜,许振柱等.表观反射率及其在植被遥感中的应用.植物生态学报,2005,29(1):74-80.
    [130]崔鹏,刘世建,谭万沛.中国泥石流监测预报研究现状与展望.自然灾害学报,2000,9(2):10-15.
    [131]戴昌达,唐伶俐.从TM图像自动提取洪涝灾情的研究.自然灾害学报,1993,2(2):50-54.
    [132]邓劲松,李君,王珂.基于多时相PCA光谱增强和多源光谱分类器的SPOT影像土地利用变化检测.光谱学与光谱分析,2009,29(6):1627-1631.
    [133]邓伟,何会中,程明虎等.TRMM卫星微波成像仪分级产品及其反演降水算法.气象科技,2004,32(4):206-212.
    [134]丁莉东,吴昊,王长健等.MODIS图像湖泊水体信息的快速识别与制图.海洋测绘,2006,26(6):31-34.
    [135]杜刚.基于EOS/MODIS的植被指数监测模型研究及应用(硕士学位论文).武汉,华中科技大学,2005,1-59.
    [136]方莉,刘强,柳钦火等.HJ-1B卫星红外扫描图像的几何定位和精校正方法研究.高技术通讯,2009,19(3):237-241.
    [137]方向池.遥感技术应用于公路工程及铁路工程的现状.云南交通科技,1998,14(3):34-37.
    [138]冯利华.热带气旋的风险评估.海洋通报,1999,18(2):40-43.
    [139]高建华,朱晓东,余有胜等.我国沿海地区台风灾害影响研究.灾害学,1999,14(2):73-77.
    [140]高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法.干旱区研究,2007,24(1):113-119.
    [141]龟山哲,张继群,王勤学等.应用Terra/MOIDS卫星数据估算洞庭湖蓄水量的变化.地理学报,2004,59(1):88-94.
    [142]郭芳芳,杨农,孟晖等.地形起伏度和坡度分析在区域滑坡灾害评价中的应用.中国地质,2008,35(1):131-143.
    [143]郭倩.基于EOS/MODIS数据的地表温度反演及多层土温估算研究-以陕西省为例(硕士学位论文).南京,南京信息工程大学,2008,1-65.
    [144]韩涛,朱学光.一种计算大气透过率的方法.红外技术,2002,24(6):51-53.
    [145]韩念龙.利用AMSR-E数据反演裸露地表土壤水分(硕士学位论文).长春,吉林大学,2008,1-58.
    [146]何慧,陆虹,欧艺.强台风“黑格比”暴雨洪涝特征及成因分析.热带地理,2009,29(5):440-444.
    [147]何会中,崔哲虎,程明虎等.TRMM卫星及其数据产品应用.气象科技,2004,32(1):13-18.
    [148]何全军,曹静,黄江等.基于多光谱综合的MODIS数据云检测研究.国土资源遥感,2006(3):19-22.
    [149]胡德勇,李京,赵文吉等.基于对象的高分辨率遥感图像滑坡监测方法.自然灾害学报,2008,17(6):42-46.
    [150]胡娅敏,宋丽莉,刘爱君等.近58年登陆我国热带气象的气候特征分析.中山大学学报(自然科学版),2008,47(5):115-121.
    [151]黄春林,李新.HDF-EOS数据格式在处理空间数据中的应用.遥感技术与 应用,2001,16(4):252-259.
    [152]黄勇,李崇银,王颖.2006年西北太平洋热带气旋生成频数和源地异常的成因分析.热带气象学报,2008,24(6):590-598.
    [153]纪瑞鹏,张淑杰,班显秀等.用Landsat TM订正NOAA/AVHRR监测洪涝精度方法研究.气象科技,2004,32(1):60-62.
    [154]简文敏.文化资产与变迁:小林平埔族传统神灵信仰研究[J].文化资产保存学刊,2008(5):24-34.
    [155]蒋耿明.MODIS数据基础处理方法研究和软件实现(硕士学位论文).北京,中国科学院研究生院,2003,1-69.
    [156]姜立鹏,覃志豪,谢雯.MODIS数据地表温度反演分裂窗算法的IDL实现.测绘与空间地理信息,2006,29(3):114-117.
    [157]金雪峰,饶芮菱,鲁怀伟.电子散斑干涉条纹骨架线提取的新方法.应用光学,2007,28(2):221-225.
    [158]居为民,孙涵,汤志成.气象卫星遥感洪涝面积估算.气象科学,1997,17(2):131-142.
    [159]康若兰,林登秋,詹进发等.2000年碧利斯台风干扰前后福山试验林NDVI变动之研究.台湾林业科学,2005,20(1):73-87.
    [160]李登科.MODIS 1B数据与物理量计算.气象科技,2006,34(4):505-508.
    [161]李国砚,张仲元,郑艳芬等. MODIS影像的大气校正及在太湖蓝藻监测中的应用.湖泊科学,2008,20(2):160-166.
    [162]李江南,王安宇,杨兆礼等.台风暴雨的研究进展.热带气象学报,2003,19(增刊):152-159.
    [163]李晶晶,覃志豪,唐巍.农业旱灾遥感监测系统中的MODIS 1B影像几何校正方法及其比较研究.遥感信息,2009(2):17-22.
    [164]李柳霞. MODIS影像数据预处理技术研究(硕士学位论文).北京,中国农业大学,2004,1-34.
    [165]李瑞英.台风对我国水稻生产的影响及风险分析-以福建省为例(硕士学位论文).北京,中国农业科学院,2008,1-47.
    [166]李微,方圣辉,佃袁勇等.基于光谱分析的MODIS云检测算法研究.武汉 大学学报(信息科学版),2005,30(5):435-438,443.
    [167]李小青.用TRMM资料反演降水强度和水凝物垂直结构(硕士学位论文).北京,中国气象科学研究院,2003,1-98.
    [168]李英,陈联寿,张胜军.登陆我国热带气旋的统计特征.热带气象学报,2004,20(1):14-23.
    [169]梁必骐.天气学教程.北京:气象出版社,1995.
    [170]梁必骐,梁经萍,温之平.中国台风灾害及其影响的研究.自然灾害学报,1995,4(1):84-91.
    [171]梁必骐,樊琦,杨洁等.热带气旋灾害的模糊数学评价.热带气象学报,1999,15(4):305-311.
    [172]梁芸,张峰,韩涛.利用EOS/MODIS植被供水指数监测庆阳地区的土壤湿度.干旱气象,2007,25(1):44-47.
    [173]柳钦火,徐希孺.遥测地表温度与比辐射率的迭代反演方法-理论推导与数值模拟.遥感学报,1998,2(1):1-9.
    [174]刘希林,莫多闻.地貌灾害预测预报的基本问题-以泥石流预测预报为例.山地学报,2001,19(2):150-156.
    [175]刘希林.我国泥石流危险度评价研究:回顾与展望.自然灾害学报,2002,11(4):1-8.
    [176]刘玉洁,杨忠东. MODIS遥感信息处理原理与算法.北京科学出版社,2001.
    [177]刘勇洪,牛铮,徐永明等.多种分类器在华北地区土地覆盖遥感分类中的性能评价.中国科学院研究生院学报,2005,22(6):724-732.
    [178]陆亚龙,肖功建.气象灾害及其防御.北京:气象出版社,2001.
    [179]马超飞,刘素红,蔺启忠.专题信息提取中降低植被影响的处理方法研究.遥感技术与应用,1998,13(4):9-13.
    [180]毛克彪,覃志豪. MODIS影像反演环渤海地区的大气水汽含量.遥感信息,2004,76(4):47-49.
    [181]毛克彪,覃志豪,李满春等.AMSR被动微波数据介绍及主要应用研究领域分析.遥感信息,2005(3):63-65.
    [182]毛克彪,施建成,李召良等.一个针对被动微波AMSR-E数据反演地表温 度的物理统计算法.中国科学(D辑),2006,36(12):1170-1176.
    [183]毛克彪.针对热红外和微波数据的地表温度和土壤水分反演算法研究(博士学位论文).北京,中国科学院研究生院,2007,1-193.
    [184]梅安新,彭望碌,秦其明等.遥感导论.北京:高等教育出版社,2001.
    [185]孟霖达.利用AMSR-E数据反演地表温度(硕士学位论文).长春,吉林大学,2007,1-45.
    [186]莫伟华,王振会,孙涵等.基于植被供水指数的农田干旱遥感监测研究.南京气象学院学报,2006,29(3):396-401.
    [187]钮学新.热带气旋动力学.北京:气象出版社,1992.
    [188]裴志远,杨邦杰.应用NOAA图像进行大范围洪涝灾害遥感监测的研究.农业工程学报,1999,15(4):203-206.
    [189]齐述华,骆成凤,王长耀等.气温与陆地表面温度和光谱植被指数关系的研究.遥感技术与应用,2006,21(2):130-136.
    [190]亓雪勇,田庆久.光学遥感大气校正研究进展.国土资源遥感,2005(4):1-6.
    [191]钱乐祥.遥感数字影像处理与地理特征提取.北京:科学出版社,2004.
    [192]钱峻屏,黄菲.基于MODIS数据的典型能见度条件下大气透过率计算.中国图象图形学报,2006,11(4):575-579.
    [193]乔建平,赵宇.滑坡危险度区划研究述评.山地学报,2001,19(2):157-160.
    [194]覃志豪,Zhang M H, Karnieli A等.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-466.
    [195]覃志豪,李文娟,吴波. Landsat TM6波段范围内地表比辐射率的估计.国土资源遥感,2004(3):27-32.
    [196]覃志豪,高懋芳,秦晓敏.农业旱灾监测中的地表温度遥感反演方法-以MODIS数据为例.自然灾害学报,2005,14(4):64-71.
    [197]裘国庆,方维模.全球热带气旋预报指南.北京:气象出版社,1995.
    [198]邱玉宝,施建成,蒋玲梅等.AMSR-E被动微波土壤水分与降雨率时空相关性分析研究.北京师范大学学报(自然科学版),2007,43(3):350-355.
    [199]阮均石.气象灾害十讲.北京:气象出版社,2000.
    [200]沈强.基于辐射传输模型的遥感影像大气纠正(硕士学位论文).武汉,武汉 大学,2005,1-67.
    [201]宋连春.干旱.北京:气象出版社,2003.
    [202]宋小宁,赵英时.应用MODIS卫星数据提取植被-温度-水分综合指数的研究.地理与地理信息科学,2004,20(2):13-17.
    [203]宋晓宇,王纪华,刘良云等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH.遥感技术与应用,2005,20(4):393-398.
    [204]苏强.基于DEM的黄土滑坡危险性评价研究(博士学位论文).北京,中国地质大学,2006,1-138.
    [205]孙华生.利用多时相MODIS数据提取中国水稻种植面积和长势信息(博士学位论文).杭州,浙江大学,2009,1-138.
    [206]孙亮,孙睿,贾成刚等.MODIS数据反演地表温度劈窗算法比较.北京师范大学学报(自然科学版),2008,44(4):434-438.
    [207]孙毅义,李治平,杨波.高分辨率大气传输模FASCOD2量子电子学报,1997,14(1):75-80.
    [208]谭衢霖,邵芸,范湘涛.崩滑流雷达遥感应用潜力分析.自然灾害学报,2002,11(1):128-133.
    [209]唐伶俐,戴昌达,李传荣.雷达卫星图像与TM复合快速反应98洪涝灾情.遥感信息,1998(4):14-15.
    [210]童小华,张学,刘妙龙.基于多光谱遥感影像分类的城镇用地变化研究.光谱学与光谱分析,2009,29(8):2131-2135.
    [211]万保峰,袁水华,苏建平.基于纹理分析的滑坡遥感图像识别.地矿测绘,2009,25(2):11-14.
    [212]汪宝存,苗放,陈建华等.基于ASTER数据的归一化差异水体指数的建立及其应用.测绘科学,2008,33(2):177-179.
    [213]王继志.近百年西北太平洋台风活动.北京:海洋出版社,1991.
    [214]王静爱,史培军,朱骊等.中国沿海自然灾害及减灾对策.北京师范大学学报(自然科学版),1995,31(3):403-409.
    [215]王伟民,周祖刚,李海民等.大气对Noaa通道辐射透过率的影响研究.气象科学,2004,24(3):285-293.
    [216]王晓芳,李红莉,王金兰.登陆我国热带气旋的气候特征.暴雨灾害,2007,26(3):251-255.
    [217]王小玲,任福民.1951-2004年登陆我国热带气旋频数和强度的变化.海洋预报,2008,25(1):65-73.
    [218]王小平,郭铌.遥感监测干旱的方法及研究进展.干旱气象,2003,21(4):76-81.
    [219]王正兴,刘闯,Huete, A R.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI.生态学报,2003,23(5):979-987.
    [220]王治华.遥感技术在我国水电建设前期工作中的应用.国土资源遥感1995(3):1-8.
    [221]王治华.滑坡、泥石流遥感回顾与新技术展望.国土资源遥感,1999(3):10-15,39.
    [222]王治华.滑坡遥感调查、监测与评估.国土资源遥感,2007(1):10-15,23.
    [223]武胜利.基于TRMM的主被动微波遥感结合反演土壤水分算法研究(博士学位论文).北京,中国科学院研究生院,2006,1-139.
    [224]夏虹,武建军,刘雅妮等.中国用遥感方法进行干旱监测的研究进展.遥感信息,2005(1):55-58,31.
    [225]卫捷,马柱国.Palmer干旱指数、地表湿润指数与降水距平的比较.地理学报,2003,58(增刊):117-124.
    [226]吴景坤,满开言,蔡军刚等.铁路地质灾害研究中的遥感技术的应用.中国地质灾害与防治学报,1994,15(增刊):272-276.
    [227]吴庆梅.利用TRMM卫星资料研究我国降水的微波特征(硕士学位论文).南京,南京气象学院,2002,1-72.
    [228]席晓燕,沈楠,李小娟.ETM+影像水体提取方法研究.计算机工程与设计,2009,30(4):993-996.
    [229]相里斌,王忠厚,刘学斌等.“环境与灾害监测预报小卫星”高光谱成像仪.遥感技术与应用,2009,24(3):257-262.
    [230]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,2005,9(5):589-595.
    [231]徐建平.日本MTSAT多功能卫星.气象科技,2005,33(1):96,F003.
    [232]徐兴奎.互补相关理论在卫星遥感领域的应用研究.遥感学报,1999,1:54-58.
    [233]杨存建,魏一鸣,王思远等.基于DEM的SAR图像洪水水体的提取.自然灾害学报,2002,11(3):121-125.
    [234]杨静学,王云鹏,杨勇.基于高程或气溶胶厚度与6s模型校正参数回归方程的遥感图像大气校正模型.遥感技术与应用,2009,24(3):331-340.
    [235]杨丽萍,乌日娜,闫伟兄.利用植被供水指数法监测干旱的研究.干旱环境监测,2007,21(4):226-228,239.
    [236]杨亚新.西北太平洋热带气旋发生的时空变化特征.海洋预报,2005,22(1):86-91.
    [237]姚睿,李琦,尹奇国等.THz激光主动图像预处理方法研究.应用光学,2009,30(2):233-235.
    [238]叶润青,邓清禄,王海庆.基于图像分类方法滑坡识别与特征提取-以归州老城滑坡为例.工程地球物理学报,2007,4(6):574-577.
    [239]叶英,董波.登陆我国热带气旋活动的年代际变化分析.海洋预报,2002,19(2):23-30.
    [240]易善桢,王志辉.不同方法在水体遥感提取中的应用实现.红外,2007,28(4):1-4.
    [241]喻光明,王朝南,钟儒刚等.基于DEM的洪涝灾害信息提取与损失估算.国土资源遥感,1996(1):42-50.
    [242]郁金康,黄永胜,冯学智等.SPOT卫星影像的水体提取方法及分类研究.遥感学报,2001,5(3):214-219.
    [243]喻世华,陆胜元.热带天气学概论.北京:气象出版社,1986.
    [244]张国平,徐晶,毕宝贵.滑坡和泥石流灾害与环境因子的关系.应用生态学报,2009,20(3):653-658.
    [245]张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用.北京:北京师范大学出版社,2007.
    [246]张金存,魏文秋,马巍.洪水灾害的遥感监测分析系统研究.灾害学,2001,16(1):39-44.
    [247]赵春江,宋晓宇,王纪华等.基于6S模型的遥感影像逐像元大气纠正算法.光学技术,2007,33(1):11-15.
    [248]赵海龙.干旱区地表温度反演及其时空特征分析(硕士学位论文).新疆,新疆大学,2007,1-91.
    [249]赵文化,单海滨,钟儒祥.MODIS遥感数据格式及使用方法综合分析.气象与环境科学,2007,30(1):44-48.
    [250]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    [251]郑伟,曾志远.遥感图像大气校正方法综述.遥感信息,2004(4):6-70.
    [252]中国资源卫星应用中心(CRESDA).2009.环境减灾星座A/B星各载荷在轨绝对辐射定标系数.http://www.cresda.com/n16/n1115/n1522/n2103/9592.html.
    [253]周红妹,杨星卫,陆贤.NOAA气象卫星云检测方法的研究.环境遥感,1995,10(2):137-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700