基于有限时间范数的末制导系统性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了进一步提高末制导精度,寻的末制导系统的性能综合分析及指标分配工作越来越受到广泛的重视。传统的性能分析主要依靠飞行试验数据或者数字仿真技术,存在着分析与设计脱节、性能指标单一以及分析周期较长等缺点,已无法满足现代精确末制导武器系统的需求。因此,亟待根据末制导系统的特点,从系统与控制的角度建立科学的定量指标体系及相应的分析方法。为此,本文针对末制导系统的性能综合分析问题,进行了以下几个方面的研究:
     首先,分析末制导系统的有限时间、非零初始条件和强时变等特点,在此基础上,建立末制导系统的线性时变模型,并在延拓的L_p空间内对末制导系统的输入和输出信号进行度量,从系统与控制的角度对末制导系统的性能进行描述,为后续的研究工作奠定基础。
     其次,针对末制导过程中的随机误差和目标机动,提出一种基于有限时间广义H_2范数的性能分析框架。提出线性时变系统的有限时间广义H_2范数,以Hermitian Riccati矩阵微分方程(HRMDE)的形式给出有限时间广义H_2性能准则,并对HRMDE的数值解法进行比较研究。利用成形滤波器对导引头量测噪声及目标机动进行数学建模,进而基于有限时间广义H_2范数对末制导系统的均方根脱靶量进行分析。
     然后,对末制导系统的能量需求问题进行深入的研究,提出参数不确定系统的有限时间H_∞鲁棒性能分析准则,并基于线性时变系统的有限时间H_∞范数揭示中末交班误差以及目标机动对末制导能量需求的影响,给出目标最劣的机动形式以及最大的弹目能量消耗之比。仿真分析能量需求与末制导回路动态品质的关系,并对制导设计问题进行相关的讨论。
     再次,针对末制导过程中的需用过载问题,提出基于有限时间L,范数的性能分析方法。对线性时变系统的有限时间L_1范数进行相关的研究,提出有限时间L_1性能准则。基于伴随理论,提出线性连续系统诱导L_∞范数求解的一般性方法,并讨论系统BIBO稳定性与有限时间L_1性能的区别和联系。基于有限时间L_1范数对末制导的最大需用过载进行分析,揭示末制导各个子系统的性能与末制导需用过载的关系。
     最后,针对复杂末制导系统的指标分配问题,在对末制导系统性能综合分析的基础上,提出具体的指标分配思路和方法。在总结前面研究成果的基础上,将控制系统的参数化思想与有限时间范数结合起来,从而解决末制导系统的指标分配问题。在指标分配过程中,根据制导精度要求,基于系统的有限时间范数,确定可行指标分配方案的集合。在此基础上,考虑研制成本、难度、周期等因素,给出某型末制导系统的最佳指标分配方案。
     综上所述,全文紧密围绕末制导系统的性能综合分析问题,提出基于有限时间广义H_2、H_∞和L_1范数的线性时变系统性能分析方法,从而建立比较完善的末制导系统性能的定量指标体系,并对末制导的均方根脱靶量、能量需求、需用过载以及指标分配等关键问题进行较为深入的研究,仿真验证定量指标体系的科学性和分析方法的有效性。
In the past few years, to improve the accuracy of the terminal guidance system, the performance analysis and index distribution of the homing TGS have been paid more and more attention. Conventional performance analysis methods greatly depend on flying trial data or digital simulation technology, which have some drawbacks such as disjunctions between analysis and design, single performance index, long analysis period, and so on. Since they can not satisfy any more the requirements from modern precision terminal guidance weapon systems, it is in urgent need, based on the characteristics of TGS, to establish a scientific and quantitative index system and its corresponding comprehensive analysis methods from the system and control point of view. Therefore, the performance analysis method for homing TGS is focused in this dissertation, and the main contributions are the following:
     Firstly, the characteristics, which are finite-time, non-zero initial conditions and strongly time-varying, are analyzed. Based on this, the linear time-varying (LTV) model is established for TGS. Then, the input-output signals of TGS are measured in an extend L_p space. These works lay the foundation for deeper researches on TGS.
     Secondly, in light of stochastic errors in terminal guidance process and random maneuvers of targets, a new performance analysis framework is presented based on the finite-time generalized H_2 method. The finite-time generalized H_2 performance measure is proposed for a LTV system and the corresponding criterion is given in the form of Hermitian Riccati matrix differential equation (HRMDE). The comparison on numerical solutions of HRMDE is approached. Seeker noises and target maneuvers are described via shaping filters. The root-mean miss distance is analyzed by applying the proposed finite-time generalized H_2 method.
     Thirdly, the energy requirement of homing TGS is investigated. The finite-time H_∞robust performance analysis criterion is proposed for a system with parameter uncertainties. The energy requirement caused by handover errors from midcourse guidance to terminal guidance and target maneuvers is illustrated by applying finite-time H_∞analysis method. The worst maneuver form of the target and the missile-target maximum energy consumption ratio are given. Furthermore, simulation results quantitatively reveal the relation between the energy requirement and terminal guidance loop dynamics. Also, the trade-offs between the energy requirement and miss distance are analyzed by choosing different weight functions.
     Fourthly, with required overload problems in terminal guidance process, a new finite-time L_1 analysis method is proposed. The finite-time L_1 performance measure and criterion of LTV system are studied. Based on the adjoint theory, a general method is proposed for computing the Loo-induced norm of linear continuous system. The relation and distinction between finite-time L_1 performance and BIBO stability are also discussed. The relation between subsystem performance and maximum required overload is analyzed quantitatively by applying the proposed finite-time L_1 method.
     Finally, to solve the index distribution problem of a complicated TGS, considerations and methods for the index distribution are given in detail by solving the finite-time mixed gain measure. By combining the system parameterization method and mixed gain measure, the index distribution problem is formulated as the typical control issue. In the index distribution process, the set of the feasible index distribution schemes is determined via finite-time mixed gain measure method, taking into consideration the guidance accuracy requirement. Furthermore, the optimal index distribution scheme of the certain TGS is given considering the cost, the difficulty, the development period, and so on.
     In summary, we focus on the performance comprehensive analysis problem of homing TGS in this dissertation. Proposing the finite-time H_2, H_∞, and L_1 analysis methods of LTV system aside, it comes up with relatively perfect quantitative performance index system and corresponding comprehensive analysis methods of TGS. It also looks into the key issues such as root-mean miss distance, energy requirement, required overload and index distribution. The superiority and effectivity of these proposed methods have been verified by computer simulations.
引文
1 刘兴堂.精确制导、控制与仿真技术[M].北京:国防工业出版社,2006.
    2 L.Lacroix,S.Kurzius.Peeling the Onion:An Heuristic Overview of Hit-to-kill Missile Defense in the 21st Century[J].Proceedings of SPIE,2005,5732:225-249.
    3 J.Shinar,V.Turetsky,Y.Oshman.New Logic-based Estimation/Guidance Algorithm for Improved Homing against Randomly Maneuvering Targets[C]//AIAA Guidance,Navigation and Control Conference and Exhibit.Providence,RI:AIAA,2004:1-17.
    4 C.Lin.Modern Navigation,Guidance,and Control Processing[M].Prentice Hall Englewood Cliffs,NJ,1991.
    5 B.White,R.Zbikowski,A.Tsourdos.Direct Intercept Guidance using Differential Geometry Concepts[J].Aerospace and Electronic Systems,IEEE Transactions on,2007,43(3):899-919.
    6 I.Manchester,A.Savkin.Circular-Navigation-Guidance Law for Precision Missile /Target Engagements[J].Journal of Guidance,Control,and Dynamics,2006,29(2):314-320.
    7 V.Malyavej,I.Manchester,A.Savkin.Precision Missile Guidance using Radar/Multiple-Video Sensor Fusion via Communication Channels with Bit-Rate Constraints[J].Automatica,2006,42(5):763-769.
    8 J.Chow.Applicability Study of a Neural Network for a Missile Guidance Law[D].Texas:University of Texas at Arlington,1998.
    9 M.Xin,S.Balakrishnan.A New Optimal Nonlinear Control Method and its Application to Missile Guidance Law Design[C]//AIAA Guidance,Navigation and Control Conference.Monterey,California:AIAA,2002:2319-2328.
    10 C.Lin,H.Hung,Y.Chen,et al.Development of an Integrated Fuzzy-Logic-Based Missile Guidance Law Against High Speed Target[J].IEEE Transactions on Fuzzy Systems,2004,12(2):157-169.
    11 D.Zhou,C.Mu,W.Xu.Adaptive Sliding-Mode Guidance of a Homing Missile[J].Journal of Guidance,Control and Dynamics,1999,22(4):589-594.
    12 C.Yang,H.Chen.Nonlinear H_∞ Robust Guidance Law for Homing Missiles[J].Journal of Guidance Control and Dynamics,1998,21(6):882-890.
    13 C.Schumacher,P.Khargonekar.Missile Autopilot Designs using H_∞ with Gain Scheduling and Dynamic Inversion[J].Journal of Guidance,Control,and Dynamics ,1998,21(2):234-243.
    14 J.Kim,J.Jang.Nonlinear Model Inversion Control for Bank-to-Turn Missile [C]//AIAA Guidance,Navigation,and Control Conference.Baltimore,MD:AIAA,1995:1308-1315.
    15 T.Lee,Y.Kim.Nonlinear Adaptive Flight Control using Backstepping and Neural Networks Controller[J].Journal of Guidance,Control,and Dynamics,2001,24(4):675-682.
    16 J.H.Oh,I.J.Ha.Missile Autopilot Design via Functional Inversion and Time-Scaled Transformation[J].IEEE Transactions on Aerospace and Electronic Systems ,1997,33(1):64-76.
    17 徐品高.新一代防空导弹提高制导控制精度的需求与技术途径[J].战术导弹技术,2002,(3):1-8.
    18 P.Zarchan.Complete Statistical Analysis of Nonlinear Missile Guidance Systems-SLAM [J].Journal of Guidance and Control,1979,2(1):71-78.
    19 J.Alpert.Miss Distance Analysis for Command Guided Missiles[J].Journal of Guidance,Control,and Dynamics,1988,11(6):481-487.
    20 丁赤飙,毛士艺.采用修正比例导引的雷达寻的导弹脱靶量研究[J].北京航空航天大学学报,1998,24(1):5-8.
    21 F.W.Nesline,P.Zarchan.Miss Distance Dynamics in Homing Missiles[C]//Guidance and Control Conference.Seattle,WA:AIAA,1984:84-98.
    22 F.Nesline,P.Zarchan.Missile Guidance Design Trade-offs for High-altitude Air Defense[J].Journal of Guidance,Control,and Dynamics,1983,6:39-47.
    23 M.Weiss,D.Bucco.Handover Analysis for Tactical Guided Weapons using the Adjoint Method[C]//Guidance,Navigation,and Control Conference and Exhibit.San Francisco:AIAA,2005:1-11.
    24 M.Weiss,D.Van de Beld.Higher Order Statistics and the Adjoint Method for Guidance Loop Analysis[C]//Guidance,Navigation,and Control Conference and Exhibit.Keystone,Colorado:AIAA,2006:1-11.
    25 M.J.Moorman,E.J.Warkomski,Q.M.Lam,et al.Extending Adjoint Simulation Beyond its Traditional Role:Accounting for Kalman Tracker Dynamic Interaction & Beyond[C]//Guidance,Navigation,and Control Conference and Exhibit.San Francisco,CA:AIAA,2005:1-22.
    26 M.Weiss.Adjoint Method for Missile Performance Analysis on State-Space Models [J].Journal of Guidance,Control,and Dynamics,2005,28(2):236-248.
    27 A.Gelb,R.Warren.Direct Statistical Analysis of Nonlinear Systems:CADET[J].AIAA Journal,1973,11(5):689-694.
    28 葛志强,黄培康.地空导弹弹目视线指向预定角误差协方差分析[J].系统工程与电子技术,2001,23(1):1-4.
    29 李海平,钟瑞麟,魏岳,等.导弹末制导精度分析的协方差方法研究[J].战术导弹技术,2004,(1):49-54.
    30 W.R.Chadwick.Miss Distance of Proportional Navigation Missile with Varying Velocity[J].Journal of Guidance,Control,and Dynamics,1985,8(5):662-665.
    31 A.Spencer,W.Moore.Design Trade-offs for Homing Missiles[C]//AIAA and SDIO,Annual Interceptor Technology Conference.Huntsville,AL:AIAA,1992:1-20.
    32 J.H.Park.Miss Distance Analysis in Homing and Lambert Interceptions with Application to a New Guidance Law[D].Michigan:University of Michigan,1999.
    33 J.Park,P.T.Kabamba.Miss Distance Analysis in a New Guidance Law[C]//Proceedings of the 1999 American Control Conference.San Diego,1999:2945-2949.
    34 H.B.Hablani,D.W.Pearson.Determination of Guidance Parameters of Exoatmospheric Interceptors via Miss Distance Error Analysis[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.Montreal,Canada:AIAA,2001:1-17.
    35 H.B.Hablani,D.W.Pearson.Miss Distance Error Analysis of Exoatmospheric Interceptors[J].Journal of Guidance,Control,and Dynamics,2004,27(2):283-289.
    36 沈明辉,陈磊,吴瑞林,等.大气层内动能拦截器的脱靶量分析[J].宇航学报,2007,28(1):49-52.
    37 P.Zarchan.Proportional Navigation and Weaving Targets[J].Journal of Guidance,Control,and Dynamics,1995,18(5):969-974.
    38 E.J.Ohlmeyer.Root-Mean-Square Miss Distance of Proportional Navigation Missile Against Sinusoidal Target[J].Journal of Guidance,Control,and Dynamics,1996,19(3):563-568.
    39 R.Yanushevsky.Analysis of Optimal Weaving Frequency of Maneuvering Targets [J].Journal of Spacecraft and Rockets,2004,41(3):477-479.
    40 C.Mracek.A Miss Distance Study for Homing Missiles:Tail vs Canard Control [C]//Guidance,Navigation,and Control Conference and Exhibit.Keystone,Colorado:AIAA,2006:1-32.
    41 S.Ghawghawe,D.Ghose.Pure Proportional Navigation Against Time-Varying Target Maneuvers[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1336-1347.
    42 S.Josef.On the Feasibility of'Hit-to-Kill'in the Interception of Maneuvering Targets [C]//Proceedings of the 2001 American Control Conference.Arlington,VA,2001:3358-3363.
    43 D.G.Ji,F.H.He,Y.Yao,et al.Robust H_∞ Performance Analysis Framework for a Missile Terminal Guidance System[C]//Proceedings of the 27th Chinese Control Conference.Kunming,China,2008:728-732.
    44 孙星,万自明,成楚之.空间拦截末制导段能量需求分析[J].现代防御技术,2005,33(6):28-31.
    45 R.Stuckey,M.Lewis.Hypersonic Missile Requirements and Operational Tradeoff Studies[J].Journal of Spacecraft and Rockets,2003,40(2):292-293.
    46 M.Guelman,M.Idan,O.Golan.Three-Dimensional Minimum Energy Guidance [J].Aerospace and Electronic Systems,IEEE Transactions on,1995,31(2):835-841.
    47 V.Rajasekhar,A.Sreenatha.Fuzzy Logic Implementation of Proportional Navigation Guidance[J].Acta Astronautica,2000,46(1):17-24.
    48 刘忠,梁晓庚,曹秉刚.基于动态逆和能量原则的导弹直接力-气动力复合控制[J].西安交通大学学报,2006,40(7):798-802.
    49 P.Zarchan.Tactical and Strategic Missile Guidance[M].5th ed.American Institute of Aeronautics and Astronautics,2007.
    50 顾炳良,陈渊.气动力控制的寻的制导系统的初步设计[J].航天控制,1987,(4):1-8.
    51 郑书娥.中远程空空导弹需用过载分析[J].航空兵器,2005,(1):8-11.
    52 P.Gurfil.Quantitative L~p Stability Analysis of a Class of Linear Time-varying Feedback Systems[J].International Journal of Applied Mathematics and Computational Science,2003,13(2):179-184.
    53 黄琳,段志生,杨莹.现代飞行器控制的几个科学问题[C]//第27届中国控制会议论文集.昆明:北京航空航天大学出版社,2008:6-12.
    54 H.DAngelo.Linear Time-Varying Systems:Analysis and Synthesis[M].Allyn and Bacon,Boston,MA,1970.
    55 R Dorato.Short Time Stability in Linear Time-Varying Systems[J].Proc.IRE International Convention Record Part 4,1961:83-87.
    56 L.Weiss,E.Infante.Finite Time Stability under Perturbing Forces and on Product Spaces[J].IEEE Transactions on Automatic Control,1967,12(1):54-59.
    57 L.Weiss,E.Infante.On the Stability of Systems Defined Over a Finite-Time Interval[J].Proceedings of the National Academy of Sciences of the United States of American,1965,54(1):44-48.
    58 L.Weiss.Converse Theorems for Finite-Time Stability[J].SIAM Jounal on Applied Mathematics,1968,16(6):1319-1324.
    59 A.N.Michel,D.W.Porter.Practical Stability and Finite-Time Stability of Discontinuous Systems[J].IEEE Transactions on Circuit Theory,1972,19(2):123-129.
    60 J.L.Kaplan.Converse Theorems for Finite-Time Stability and Practical Stability[J].IEEE Transactions on Circuit Theory,1973,20(1):66-67.
    61 F.Amato,M.Ariola,P.Dorato.Finite-Time Control of Linear Systems Subject to Parametric Uncertainities and Disturbances[J].Automatica,2001,37(9):1459-1463.
    62 F.Amato,M.Ariola,C.Cosentino,et al.Finite-Time Stability of Discrete-Time Systems[C]//Proceedings of the 2004 American Control Conference.Boston,MA,2004:1440-1444.
    63 F.Amato,M.Ariola.Finite-Time Control of Discrete-Time Linear Systems[J].IEEE Transactions on Automatic Control,2005,50(5):724-729.
    64 F.Amato,M.Ariola,C.Cosentino.Finite-Time Stabilization via Dynamic Output Feedback[J].Automatica,2006,42(2):337-342.
    65 F.Amato,M.Ariola,M.Carbone,et al.Finite-Time Control of Linear Systems:A Survey[J].Current Trends in Nonlinear Systems and Control,2006:195-213.
    66 F.Amato,M.Ariola,C.Cosentino.Finite-Time Control of Linear Time-Varying Systems via Output Feedback[C]//Proceedings of the 2005 American Control Conference.Portland,OR,USA,2005:4722-4726.
    67 辛道义,刘允刚.非线性系统有限时间稳定性分析与控制设计[J].山东大学学报(工学版),2007,37(3):24-30.
    68 F.Amato,M.Ariola,C.Cosentino,et al.Necessary and Sufficient Conditions for Finite-Time Stability of Linear Systems[C]//Proceedings of the 2003 American Control Conference.Denver,CO,2003:4452-4456.
    69 J.Doyle,K.Glover,P.Khargonekar,et al.State-Space Solutions to Standard H_2and H_∞ Control Problems[J].IEEE Transactions on Automatic Control,1989,34(8):831-847.
    70 K.Zhou,J.Doyle,K.Glover.Robust and Optimal Control[M].Prentice Hall Upper Saddle River,NJ,1996.
    71 A.Saberi,P.Sannuti,B.Chen.H_2 Optimal Control[M].Prentice-Hall,Inc.Upper Saddle River,NJ,USA,1996.
    72 I.Petersen,D.McFarlane.Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems[J].IEEE Transactions on Automatic Control,1994,39(9):1971-1977.
    73 L.Yu,J.Chu.An LMI Approach to Guaranteed Cost Control of Linear Uncertain Time-delay Systems[J].Automatica,1999,35(6):1155-1159.
    74 D.Bernstein,W.Haddad.LQG Control with an H_∞ Performance Bound:A Riccati Equation Approach[J].IEEE Transactions on Automatic Control,1989,34(3):293-305.
    75 P.Khargonekar,M.Rotea.Mixed H_2/H_∞ Control:A Convex Optimization Approach [J].IEEE Transactions on Automatic Control,1991,36(7):824-837.
    76 G.Zames.Feedback and Optimal Sensitivity:Model Reference Transformations,Multiplicative Seminorms,and Approximate Inverses[J].IEEE Transactions on Automatic Control,1981,26(2):301-320.
    77 申铁龙.H_∞控制理论及应用[M].北京:清华大学出版社,1996.
    78 D.Youla,H.Jabr,J.Bongiorno Jr.Modern Wiener-Hopf Design of Optimal Controllers-Part Ⅱ:The Multivariable Case[J].IEEE Transactions on Automatic Control,1976,21(3):319-338.
    79 王广雄,王新生,林愈银,等.H_∞控制问题中RIC法和LMI法的一个比较[J].电机与控制学报,2000,4(02):65-68.
    80 王德进.H_2和H_∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001.
    81 王广雄.H_∞控制理论应用中的若干问题[C]//中国控制会议论文集.山东,青岛,1996:127-132.
    82 M.James,J.Baras.Robust H_∞ Output Feedback Control for Nonlinear Systems [J].IEEE Transactions on Automatic Control,1995,40(6):1007-1017.
    83 M.James.Recent Developments in Nonlinear H_∞ Control[J].Annual Reviews in Control,1997,21:43-54.
    84 J.Lee,S.Kim,W.Kwon.Memoryless H_∞ Controllers for State Delayed Systems [J].IEEE Transactions on Automatic Control,1994,39(1):159-162.
    85 Y.Cao,Y.Sun,J.Lam.Delay-Dependent Robust H_∞ Control for Uncertain Systems with Time-Varying Delays[J].IEE Proceedings-Control Theory and Applications,1998,145(3):338-344.
    86 高会军.基于参数依赖Lyapunov函数的不确定动态系统的分析与综合[D].哈尔滨:哈尔滨工业大学航天学院,2005:31-47.
    87 A.Barabanov,O.Granichin.Optimal Controller for a Linear Plant with Bounded Noise[J].Automatika i Telemechanica,1984,5:39-46.
    88 M.Vidyasagar.Optimal Rejection of Persistent Bounded Disturbances[J].IEEE Transaction on Automatic Control,1986,31(6):527-534.
    89 M.Dahleh,J.Pearson Jr.L_1-Optimal Compensators for Continuous-Time Systems [J].IEEE Transactions on Automatic Control,1987,32(10):889-895.
    90 X.Chen,J.Wen.Rational L_1 Compensators with H_∞ Constraints[C]//Proceedings of the 34th IEEE Conference on Decision and Control.New Orleans,1995:809-814.
    91 M.Halpern.Rational Suboptimal Continuous-Time Controller Design[J].IEEE Transactions on Automatic Control,2000,45(9):1731-1734.
    92 J.Abedor,K.Nagpal,K.Poolla.A Linear Matrix Inequality Approach to Peak-to-Peak Gain Minimization[J].International Journal of Robust and Nonlinear Control,1996,6(9-10):899-927.
    93 王夏娇.固定阶L_1控制器的优化设计[D].杭州:浙江大学,2006:19-24.
    94 钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000:32-39.
    95 林喆.捷联成像寻的系统制导信息处理方法研究[D].哈尔滨:哈尔滨工业大学航天学院,2007:14-22.
    96 赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社,1992:132-150.
    97 王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008:78-83.
    98 郝波.直接侧向力技术的应用研究[D].西安:西北工业大学,2004:34-45.
    99 周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002.
    100 雷虎民.比例导引规律的指令加速度[J].电光与控制,1999,(1):19-24.
    101 I.Ha,J.Hur,M.Ko,et al.Performance Analysis of PNG Laws for Randomly Maneuvering Targets[J].Aerospace and Electronic Systems,IEEE Transactions on,1990,26(5):713-721.
    102 T.Takehira,N.Vinh,P.Kabamba.Analytical Solution of Missile Terminal Guidance [J].Journal of Guidance,Control,and Dynamics,1998,21(2):342-348.
    103 D.Zhou,C.Mu,T.Shen.Robust Guidance Law with L_2 Gain Performance[J].Transactions of the Japan Society for Aeronautical and Space Sciences,2001,44(144):82-88.
    104 L.Wu.A Monte Carlo Simulation of Guidance Accuracy Evaluation[J].AD-A313304/8/HDM,1996:1-19.
    105 R Gurfil.Zero-Miss-Distance Guidance Law Based on Line-of-sight Rate Measurement only[J].Control Engineering Practice,2003,11(7):819-832.
    106 崔新,侯明善,秦琴.基于目标最优机动的线性化运动学模型及其特性研究[J].弹箭与制导学报,2004,24(1):73-75.
    107 M.Vidyasagar.Nonlinear Systems Analysis[M].2nd ed.Prentice Hall,1993:270-276.
    108 N.Carpanese.Parameterization for Riccati Inequalities in Hilbert Spaces[C]//Proceedings of the 42nd IEEE Conference on Decision and Control.Maui,Hawali USA,2003:4951-4955.
    109 俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    110 R.Yanushevsky,W.Boord.New Approach to Guidance Law Design[J].Journal of Guidance,Control,and Dynamics,2005,28(1):162-166.
    111 S.Josef,T.Vladimir.Further Improved Homing Accuracy in Ballistic Missile Defense against Randomly Maneuvering Targets[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.San Francisco:AIAA,2005:1-26.
    112 P.Menon,E.Ohlmeyer.Computer-Aided Synthesis of Nonlinear Autopilots for Missiles[J].Nonlinear Studies,2004,11(2):173-198.
    113 M.A.Rotea.The Generalized H_2 Control Problem[J].Automatica,1993,29(2):373-385.
    114 H.Gao,J.Lain,C.Wang.Robust Energy-to-Peak Filter Design for Stochastic Time-Delay Systems[J].Systems & Control Letters,2006,55(2):101-111.
    115 D.Du,S.Zhou,B.Zhang.Generalized H_2 Output Feedback Controller Design for Uncertain Discrete-Time Switched Systems via Switched Lyapunov Functions[J].Nonlinear Analysis,2006,65(11):2135-2146.
    116 L.Wang,G.Feng,T.Hesketh.Piecewise Generalised H_2 Controller Synthesis of Discrete-Time Fuzzy Systems[J].IEE Proceedings-Control Theory and Applications,2004,151(5):554-560.
    117 S.Boyd,G.L.El,E.Feron,et al.Linear Matrix Inequalities in System and Control Theory[M].Society for Industrial Mathematics,1994.
    118 H.Abou-Kandil.Matrix Riccati Equations in Control and Systems Theory[M].Birkh(a|¨)user Verlag,2003.
    119 W.T.Reid.Monotoneity Properties of Solutions of Hermitian Riccati Matrix Differential Equations[J].SIAM Journal on Mathematical Analysis,1970,1(2):195-213.
    120 S.U.Gershon E,Pila A.Difference LMIs for Robust H_∞ Control and Filtering [C]//Proceedings of the European Control Conference.Porto,Portugal,2001:3469-3474.
    121 P.Lancaster,L.Rodman.Algebraic Riccati Equations[M].Oxford University Press,USA,1995.
    122 A.Gelb.Applied Optimal Estimation[M].MIT Press,AOE,1974.
    123 E.Davison,M.Maki.The Numerical Solution of the Matrix Riccati Differential Equation[J].IEEE Transactions on Automatic Control,1973,18(1):71-73.
    124 D.Lainiotis.Generalized Chandrasekhar Algorithms:Time-Varying Models[J].IEEE Transactions on Automatic Control,1976,21(5):728-732.
    125 M.El-Tawil,A.Bahnasawi,A.Abdel-Naby.Solving Riccati Differential Equation using Adomian's Decomposition Method[J].Applied Mathematics and Computation,2004,157(2):503-514.
    126 C.Kenney,R.Leipnik.Numerical Integration of the Differential Matrix Riccati Equation[J].IEEE Transactions on Automatic Control,1985,30(10):962-970.
    127 谭述君,钟万勰.变系数微分Riccati方程的保辛摄动近似求解[J].大连理工大学学报,2006,46(增刊):7-13.
    128 F.Nesline,P.Zarchan.Radome Induced Miss Distance in Aerodynamically Controlled Homing Missiles[C]//Guidance,Navigation,and Control Conference.Seattle,WA:AIAA.1984:99-115.
    129 周宏仁.机动目标跟踪[M].北京:国防工业出版社,1991.
    130 X.Li,V.Jilkov.Survey of Maneuvering Target Tracking.Part Ⅰ:Dynamic Models[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.
    131 P.Zarchan.Representation of Realistic Evasive Maneuvers by the Use of Shaping Filters[J].Journal of Guidance and Control,1979,2(1):290-295.
    132 P.P.Khargonekar,K.M.Nagpal,K.R.Poolla.H_∞ Control with Transients[J].SIAM J.Control and Optimization,1991,29(6):1373-1393.
    133 Y.K.Foo.H_∞ Control with Initial Conditions[J].IEEE Transactions on Circuits and Systems,2006,53(9):867-871.
    134 N.Sivashankar,R R Khargonekar.Characterization of the L_2-induced Norm for Linear Systems with Jumps with Applications to Sampled-data Systems[J].SIAM Journal on Control and Optimization,1994,32(4):1128-1150.
    135 R.Brockett.Finite Dimensional Linear Systems[M].New York:Wiley,1970.
    136 王广雄,李连锋,王新生.鲁棒设计中参数不确定性的描述[J].电机与控制学报,2001,5(1):5-8.
    137 I.Petersen,C.Hollot.A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems[J].Automatica(Journal of IFAC),1986,22(4):397-412.
    138 D.-R.Taur.Nonlinear Guidance and Navigation of a Tactical Missile with High Heading Error[C]//Guidance,Navigation,and Control Conference and Exhibit.California:AIAA,2002:1-19.
    139 谭毅伦.目标机动对于空空导弹ENDGAME段系统性能影响的研究[J].弹箭与制导学报,2005,25(1):273-275.
    140 G.Siouris.Missile Guidance and Control Systems[M].Springer,2004.
    141 R.Yanushevsky.Analysis and Design of Missile Guidance Systems in Frequency Domain[C]//The 44th AIAA Aerospace Sciences Meeting and Exhibit.Nevada:AIAA,2006:1-13.
    142 P.Gurfil,M.Jodorkovsky.Design of Nonsaturating Guidance Systems[J].Journal of Guidance,Control,and Dynamics,2000,23(4):693-700.
    143 M.Dahleh,I.Diaz-Bobillo.Control of Uncertain Systems:a Linear Programming Approach[M].Prentice-Hall,1994.
    144 N.Shneydor.Missile Guidance and Pursuit:Kinematics,Dynamics and Control [M].Harwood,1998.
    145 W.M.Haddad,A.Razavi.H_2,Mixed H_2/H_∞ and H_2/L_1 Optimally Tuned Passive Isolators and Absorbers[C]//Proceedings of the 1997 American Control Conference.Albuquerque,New Mexico,1997:3120-3124.
    146 C.W.Scherer.Mixed H_2/H_∞ Control for Time-Varying and Linear Parametrically-Varying Systems[J].International Journal of Robust and Nonlinear Control,1996,6(9-10):929-952.
    147 G.Duan.Eigenstructure Assignment by Decentralized Output Feedback-Acomplete Parametric Approach[J].IEEE Transactions on Automatic Control,1994,39(5):1009-1014.
    148 G.Duan,G.Liu.Complete Parametric Approach for Eigenstructure Assignment in a Class of Second-Order Linear Systems[J].Automatica,2002,38(4):725-729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700