下颌骨火器伤有限元仿真及生物力学机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Finite Element Analysis and Preliminary Investigation of Biomechanical Mechanism of Wound Ballistics of the Ndible
  • 作者:陈渝斌
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2010
  • 导师:谭颖徽
  • 学科代码:100210
  • 学位授予单位:第三军医大学
  • 论文提交日期:2010-05-01
摘要
颌面部是人体的暴露部位,战时防护薄弱,平时是暴力、自伤的重点部位,在全身各部位的火器伤中,颌面部火器伤占有较大比例。无论平战时,颌面部火器伤创伤弹道学研究都是全身创伤弹道学研究中的重点问题之一。由于动物模型无法直观动态地观察到模型内部的致伤过程,加上颌面部解剖结构精细、组织器官生物力学性质相差大,无法采用人工材料进行模拟,所以颌面部火器伤的研究中,尚无可以用于致伤过程中生物力学机制研究的模型,这也是目前相关研究的瓶颈之一。
     有限元法又称有限元素法(Finite Element Method,FEM)或有限元分析法(Finite Element Analysis,FEA),是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法的原理是把整个结构看作由有限个细小单元相互连接而成的几何实体,每个单元的力学特征的总装效果反映出结构的整体力学特性,是解决复杂工程学问题的必备工具之一,目前已广泛应用于生物力学研究中。
     火器伤致伤机理是投射物与机体二者相互作用的物理、病理和解剖的复杂变化过程,其实质是投射物与机体组织之间的生物力学作用及效应。有限元法能够分析物体间及物体内部的复杂力学过程,预测力学作用的效应(如模型的形状、温度等改变),并且可以在电脑上直观显示或输出量化的计算结果以供分析,具有可重复性好、节约实验成本、实验条件容易控制等优点,可弥补目前火器伤模型在致伤过程生物力学机制研究中的不足。因此,将有限元方法运用于颌面部火器伤研究中,有助于颌面部火器伤致伤机理的深入研究,能为颌面部火器伤诊断、救治、防护及投射物致伤效应评估提供新的工具和思路。
     针对目前颌面部火器伤研究中动物、尸体及人工材料模型在致伤生物力学机制研究中的不足,本研究建立了猪下颌骨火器伤三维有限元模型,通过动物实验验证所采用有限元方法的合理性;用有限元方法仿真不同力学载荷、边界条件下投射物侵彻猪下颌骨的过程,对下颌骨火器伤的生物力学机制进行了初步探讨。
     研究方法和结果:
     1.将猪下颌骨计算机X射线断层扫描(computed tomography,CT)数据导入MIMICS软件,经过三维图像重建、实体模型重建后得到猪下颌骨面网格模型;将猪下颌骨面网格模型导入ANSA软件,采用六面体网格与四面体网格结合的方式建立猪下颌骨火器伤三维有限元模型。建立的猪下颌骨三维有限元模型的单元数为674863,节点数为261997,所有单元均为实体单元。结果表明:该模型网格划分合理,单元质量好,与真实标本的几何外形相似程度高,细节损失小;采用四面体单元与六面体单元结合方式建立猪下颌骨三维有限元模型,降低了建模成本,同时兼顾了计算效率和计算精度,能够满足下颌骨火器伤生物力学机制研究的需要。
     2.通过改良猪下颌骨火器伤动物实验模型,用不同射速、不同形状投射物致伤猪下颌骨标本的下颌角部位,测量各种致伤参数及致伤过程中猪下颌骨的生物力学参数,为分析下颌骨火器伤生物力学机制和验证有限元模型提供可靠的数据。结果表明:实验方法合理,重复性好,测量到的数据具有代表性。
     3.通过选择适合的材料模型、生物力学参数及接触算法,加载与动物实验相似的力学载荷和边界条件,用所建立的猪下颌骨火器伤三维有限元模型在LS-DYNA软件中进行仿真计算;通过比较有限元仿真结果与动物实验中的实测数据,验证所采用的有限元方法的合理性。结果表明,本研究所采用的有限元方法合理、可靠,对下颌骨火器伤生物力学作用机制及其效应有较好的预测能力,能满足深入研究下颌骨火器伤生物力学机制的要求。
     4.利用经过验证的有限元模型及仿真方法,加载不同力学载荷、边界条件,进行了不同形状、不同速度投射物侵彻猪下颌骨过程的有限元仿真;从不同角度观察并分析投射物侵彻猪下颌骨的有限元仿真结果,结合本研究动物实验结果及既往文献资料,对下颌骨火器伤的生物力学机制进行了初步探讨。结果表明:骨组织损伤除了与投射物的物理特性(飞行速度、飞行状态、形状及质量等)有关,还和投射物与骨组织间、骨组织与骨组织间的生物力学作用有关,后两者是导致入口及出口损伤范围差异的主要原因;下颌骨损伤的严重程度与骨组织应变率相关;所采用的有限元方法能合理解释投射物侵彻下颌骨过程中部分生物力学机制。
     5.本研究采用无网格法与有限元法联合建立猪下颌软硬组织复合体模型并进行相关仿真,初步探讨有无网格法仿真肌肉组织火器伤,部分仿真结果与致伤条件相似的动物实验结果接近,说明无网格法在肌肉组织火器伤仿真中有较好的应用前景。
     结论:
     1.成功建立了猪下颌骨火器伤三维有限元模型,验证了所建模型及所采用的有限元分析方法的合理性和可靠性。明确了在研究火器伤生物力学机制方面,有限元方法可以弥补目前火器伤研究模型的不足。
     2.投射物侵彻下颌骨过程中,骨组织损伤除了与投射物的物理特性有关,还和投射物与骨组织间、骨组织与骨组织间的生物力学作用有关,后两者是导致入口及出口损伤范围差异的主要原因。
     3.投射物侵彻下颌骨过程中,应变率的大小及持续时间可以作为判断和评价骨组织损伤严重程度的标准之一,也可以作为有限元仿真过程中预测骨组织损伤的指标。
     4.投射物侵彻下颌角过程中,下颌骨损伤主要集中在弹孔周围及弹孔至下颌骨下缘间区域,单纯的下颌角火器伤伴发其他部位下颌骨骨折的可能性较小。
     5.下颌角部火器伤伴发颅脑损伤时,骨应力传导不是导致颅脑损伤的主要因素。
     6.无网格法在肌肉组织火器伤仿真中有较好的应用前景。
As an exposed part of human body, the maxillofacial region is more susceptible to kinds of firearm-related injuries. The firearm-related injuries of the maxillofacial region have a much higher ratio than the other parts of human body, either in war or peace time. So, it is important to find out the biomechanical mechanism and basic principles of wound ballistics of the maxillofacial region, for clinical, forensic and military purposes. However, due to the difficulty of reproducing the complex anatomical structures of the maxillofacial region by using animal or synthetic material models, the dynamic interactions between projectiles and facial tissues have not been extensively researched.
     Being an effective mathematical method for solving complex mechanical problems with complicated geometries, the finite element method (FEM) is widely used in study of biomechanical mechanisms. FEM can provide an“insight view”of the interaction processes and clarify transient dynamic mechanisms between the projectile and tissues. It may offer the possibility to precisely measure the amount of energy or force delivered to the tissues, which may correlate with the degree or patterns of biological tissue injury. Moreover, FEM has the advantages of good repeatability, low cost and manageable load conditions, which makes up for the insufficiency of human cadavers, animal and synthetic material models.
     In this study, a finite element (FE) model of the pig mandible was developed to simulate ballistic impact, and experimental studies were carried out to validate the FE model. Based on the simulation results of FEM, the biomechanical mechanism of wound ballistics of the mandible was investigated and discussed. The main methods and conclusions were as follows:
     Methods and Results:
     ⅠComputed tomography (CT) data of the pig mandible was imported into MIMICS software. A three-dimension computer-aided design (CAD) model of the pig mandible was reconstructed by using certain functions of MIMICS. Then, the original triangular surface mesh model of the pig mandible was generated by the“remesh”module of MIMICS. Based on the surface model of the pig mandible, a combined hexahedral-tetrahedral FE model of the pig mandible was developed by ANSA software. The results showed that the number of the elements and node were 674863 and 261997 respectively, and all the elements were solid elements. The FE model of the pig mandible was similar to its anatomical structure. With lower cost of modeling, the combined hexahedral-tetrahedral FE model of the pig mandible can meet the demand of biomechanical research of wound ballistics of the pig mandible.
     ⅡBased on the improved animal model of wound ballistics of the pig mandible, an experimental study was carried out to measure impact load parameters from the pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet or 6.3 mm steel ball. The experimental results showed that the data were reliable and representative. The improved animal model of wound ballistics of the pig mandible was reasonable and repeatable. The results of the experimental study can be used to validate the FE model.
     ⅢBy chosing appropriate constitutive model, biomechanical parameters and contact algorithm for the FE model of the pig mandible, finite element analysis (FEA) was performed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The FEM of simulation of wound ballistics of the pig mandible was validated based on the results of comparison between the results of FEA and experimental study. The results showed that the constitutive model, contact algorithm and the parameters, which were chosen for the FE model of pig mandible in our study, were reasonable and reliable. The FEM utilized in our study had a fairly capability of predicting on wound ballistics of the pig mandible.
     ⅣBy using the validated FEM utilized in our study, FEA was made under different loads and boundary conditions, including different velocities and shape of projectiles. Based on the results of comparison of the output data of FEA among different velocities and shape of projectiles, the biomechanical mechanism of wound ballistics of the mandible was investigated and certain conclusion was drawn.
     ⅤBy using the element free Galerkin (EFG) method, the process of muscle tissue penetrated by a 7.62mm bullet was simulated. The results showed that the EFG method can meet the need of simulation of penetrating wound of muscle tissue.
     Conclusions:
     ⅠWhen concerned with the investigation of biomechanical mechanism of wound ballistics, FEM can make up for the insufficiency of human cadavers, animal and synthetic material models.
     ⅡDuring the process of penetration, besides the physical characteristics of projectiles, the biomechanical mechanism between the projectiles and bone tissue and the interactive force among bone tissue can play an important role in the difference between the surface area of entrance and exit.
     ⅢDuring the process of penetration, strain rate of bone tissue can be used to predict and evaluate the severity of damage of bone tissue, both in terms of FEA and experimental study.
     ⅣWhen the mandible was penetrated by projectiles at mandibular angle, besides the damage of penetrated region, there was little possibility for associated fracture to other regions of mandible.
     ⅤBony stress conducted from the mandible was not the main factor of the brain injury associated with the penetrating injuriy of mandibular angle.
     ⅥThe EFG method can meet the need of simulation of penetrating wound of muscle tissue.
引文
[1]李兵仓.现代火器伤研究概览[J].临床外科杂志, 2007,15(11):792-793.
    [2]赖西南.常用的火器伤实验模型[J].创伤外科杂志, 2003,5(5):400-400,372.
    [3]王正国.创伤弹道学研究的思考[J].中华创伤杂志, 2000,16(3):133-134.
    [4]王正国.加强颅脑和颌面创伤的研究[J].第二军医大学学报, 2001,22(12):1101-1102.
    [5] Tan Y, Zhou S, Jiang H. Biomechanical changes in the head associated with penetrating injuries of the maxilla and mandible: An experimental investigation[J]. Journal of Oral and Maxillofacial Surgery, 2002,60(5):552-556.
    [6]谭颖徽,汪遵善.颌面部高速投射伤时颅脑响应的生物力学研究[J].中国临床解剖学杂志, 1994,12(1):69-72.
    [7]谭颖徽,刘荫秋.狗颌面高速投射伤区小血管病理改变[J].临床与实验病理学杂志, 1989,5(4):250-253.
    [8]华泽权,刘荫秋.高速钢珠致伤狗颌面部瞬时空腔效应的研究[J].解放军医学杂志, 1991,16(2):121-122.
    [9]华泽权,刘荫秋,等.颌面部创伤弹道的病理形态学及代谢功能变化的实验研究[J].华西口腔医学杂志, 1991,9(3):191-194,I010.
    [10]谭颖微,周宝桐.颌面部火器伤时是否存在颅脑损伤?[J].现代口腔医学杂志, 1992,6(4):201-203.
    [11]侯军,刘荫秋.犬下颌骨高速投射物损伤的致伤机理分析[J].实用口腔医学杂志, 1993,9(2):108-110.
    [12] Tan Y, Zhou S, Liu Y, et al. Small-vessel pathology and anastomosis following maxillofacial firearm wounds: An experimental study[J]. Journal of Oral and Maxillofacial Surgery, 1991,49(4):348-352.
    [13]吴洋,周树夏.犬下颌小口径枪弹贯通伤的伤情特点[J].第二军医大学学报, 2001,22(12):1123-1135,I1002.
    [14]谭颖徽,周树夏,刘宝林,等.颌面部投射物损伤的动物模型介绍[J].华西口腔医学杂志, 1990,8(2):146.
    [15]龙驭球.有限元法概论[M]. 1978:北京高等教育出版社.
    [16] Turner MJ, Clough RW, Martin HC, et al. Stiffness and deflection analysis ofcomplex structures[J]. J Aero Sci, 1956,23:805-823.
    [17]刘荫秋.现代火器伤致伤机理及创伤弹道的特点[J].战创伤参考资料, 1997,26(1):20-27.
    [18] Friedenberg R. "Direct analysis" or "finite element analysis" in biology: A new computer approach[J]. Biosystems, 1969,3(2):89-94.
    [19] Moore R, Davids N, Friedenberg R. Study of a biological model of membrane function by finite element analysis[J]. Biosystems, 1969,3(2):156-168.
    [20]张美超,钟世镇.国内生物力学中有限元的应用研究进展[J].解剖科学进展, 2003,9(1):53-56.
    [21] Wind G, Finley R W, Rich N M. Three-dimensional computer graphic modeling of ballistic injuries[J]. J Trauma, 1988,28(1 Suppl):S16-20.
    [22] Kormi K, Etheridge R A. Application of the finite-element method to simulation of damage to the human skull as a consequence of missile impact on a multi-layered composite crash helmet[J]. Journal of Biomedical Engineering, 1992,14(3):203-208.
    [23]段彦静,孙文磊.逆向工程在医学上的应用[J].中华现代影像学杂志, 2005,2(11):1007-1009.
    [24] Mahaisavariya B, Sitthiseripratip K, Tongdee T, et al. Morphological study of the proximal femur: a new method of geometrical assessment using 3-dimensional reverse engineering[J]. Medical Engineering & Physics, 2002,24(9):617-622.
    [25] Bailie N A, Gallagher G, Watterson J K, et al. Numerical modeling of nasal airflow[J]. Otolaryngology - Head and Neck Surgery;Annual Meeting of the American Academy of Otolaryngology - Head and Neck Surgery Foundation, Inc 2004 Official Program, 2004,131(2):187-187.
    [26]白石柱,赵铱民,邹石泉,等.快速建立无牙颌上颌骨及颅骨三维有限元模型的方法探讨[J].中华口腔医学杂志, 2005,40(6):515-517.
    [27]胡辉莹,何忠杰,吕丽萍,等.应用Mimics软件辅助重建人体胸廓三维有限元模型的研究[J].解放军医学杂志, 2008,33(3):273-275.
    [28] Provatidis C, Georgiopoulos B, Kotinas A, et al. On the FEM modeling of craniofacial changes during rapid maxillary expansion[J]. Medical Engineering & Physics, 2007,29(5):566-579.
    [29] Pham A M, Rafii A A, Metzger M C, et al. Computer modeling and intraoperativenavigation in maxillofacial surgery[J]. Otolaryngology - Head and Neck Surgery, 2007,137(4):624-631.
    [30]乐莉,闫军,钟秋海.超高速撞击仿真算法分析[J].系统仿真学报, 2004,16(9):1941-1943.
    [31]米双山,张锡恩,陈健.利用LS―DYNA的破片侵彻靶板有限元分析[J].兵工自动化, 2005,24(2):4-5,11.
    [32] Barauskas R, Abraitiene A. Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA[J]. International Journal of Impact Engineering;, 2007,34(7):1286-1305.
    [33] Shokrieh M M, Javadpour G H. Penetration analysis of a projectile in ceramic composite armor[J]. Composite Structures;, 2008,82(2):269-276.
    [34] Pintar F A, Kumaresan S, Yoganandan N, et al. Biomechanical modeling of penetrating traumatic head injuries: a finite element approach[J]. Biomed Sci Instrum, 2001,37:429-434.
    [35] Zhang J, Yoganandan N, Pintar F A, et al. Finite element analysis of penetrating head injury[J]. 2003 ASME International Mechanical Engineering Congress, Nov 15-21 2003, 2003,55:193-194.
    [36] Yoganandan N, Pintar F A, Kumaresan S, et al. Dynamic analysis of penetrating trauma[J]. J Trauma, 1997,42(2):266-272.
    [37] Mota A, Klug W S, Ortiz M, et al. Finite-element simulation of firearm injury to the human cranium[J]. Computational Mechanics, 2003,31(1/2):115-121.
    [38] Ionescu I, Guilkey J E, Berzins M, et al. Simulation of Soft Tissue Failure Using the Material Point Method[J]. Journal of Biomechanical Engineering, 2006,128(6): 917-924.
    [39] Roberts J C, Merkle A C, Biermann P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact[J]. Journal of Biomechanics, 2007,40(1):125-136.
    [40] Caroline D, Franck M, Annie G, et al. A finite element model investigation of gunshot injury[J]. Int J Legal Med, 2007,121(2):143-146.
    [41] Aare M, Kleiven S. Evaluation of head response to ballistic helmet impacts using the finite element method[J]. International Journal of Impact Engineering, 2007,34(3):596-608.
    [42] Raul J S, Deck C, Willinger R, et al. Finite-element models of the human head and their applications in forensic practice[J]. Int J Legal Med, 2008,122(5):359-366.
    [43]薄斌,周树夏.下颌骨在撞击作用下的力学响应特点[J].中华创伤杂志, 1999,15(2):93-95.
    [44]薄斌,周树夏.撞击部位对下颌骨不同结构受力三维有限元分析[J].华西口腔医学杂志, 2000,18(1):67-68.
    [45]张海钟,阎黎津,李师勇, et al.模拟车载乘员撞击上颌骨损伤的有限元研究[J].中华老年口腔医学杂志, 2003,1(1):9-11,F003.
    [46]张海钟,王东胜,阎力津,等.颅面骨撞击伤的生物力学研究[J].中华创伤杂志, 2004,20(1):26-29.
    [47]阮世捷,何培,卢俊鹏,等.基于有限元法的人类头部损伤生物力学的模拟分析[J].中国生物医学工程学报, 2007,26(1):99-104.
    [48]何黎民,吴建国,卢亦成.人颅脑损伤有限元模型研究进展[J].中华创伤杂志, 2004,20(6):381-384.
    [49]何黎民,卢亦成,吴建国,等.额、枕部直接冲击导致脑挫裂伤的力学机制研究[J].中华神经医学杂志, 2005,4(9):874-877.
    [50] Jussila J, Leppaniemi A, Paronen M, et al. Ballistic skin simulant[J]. Forensic Science International, 2005,150(1):63-71.
    [51] Thali M J, Kneubuehl B P, Zollinger U, et al. The "Skin-skull-brain model": a new instrument for the study of gunshot effects[J]. Forensic Science International, 2002,125(2-3):178-189.
    [52] Zhang J, Yoganandan N, Pintar F A, et al. Temporal cavity and pressure distribution in a brain simulant following ballistic penetration[J]. J Neurotrauma, 2005,22(11):1335-1347.
    [53] Thali M J, Kneubuehl B P, Dirnhofer R. A "skin-skull-brain model" for the biomechanical reconstruction of blunt forces to the human head[J]. Forensic Science International, 2002,125(2-3):195-200.
    [54] Thali M J, Kneubuehl B P, Dirnhofer R, et al. Body models in forensic ballistics: reconstruction of a gunshot injury to the chest by bullet fragmentation after shooting through a finger[J]. Forensic Science International, 2001,123(1):54-57.
    [55] Kneubuehl B P, Thali M J. The evaluation of a synthetic long bone structure as a substitute for human tissue in gunshot experiments[J]. Forensic Science International, 2003,138(1-3):44-49.
    [56] Thali M J, Kneubuehl B P, Vock P, et al. High-speed documented experimental gunshot to a skull-brain model and radiologic virtual autopsy[J]. American Journal of Forensic Medicine and Pathology, 2002,23(3):223-228.
    [57]陈琼.三维有限元建模方法的研究现状[J].口腔医学, 2006,26(2):154-155.
    [58] Daas M, Dubois G, Bonnet A S, et al. A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations[J]. Medical Engineering & Physics;, 2008,30(2):218-225.
    [59]朱伟民,付双林,贾昭,等.三维颅骨模型的建立和有限元及实验应力分析的研究[J].生物医学工程研究, 2007,26(3):244-247.
    [60] Roberts J C, O'Connor J V, Ward E E. Modeling the effect of non-penetrating ballistic impact as a means of detecting behind armor blunt trauma[J]. J Trauma, 2005,58(6):1241-1251.
    [61]刘占芳,李琦.构建颅骨上颌骨及牙列的三维有限元模型[J].重庆工学院学报, 2007,21(5):1-4.
    [62] Ichim I, Swain M V, Kieser J A. Mandibular stiffness in humans: Numerical predictions[J]. Journal of Biomechanics, 2006,39(10):1903-1913.
    [63]蒋和田,李忠禹,谭颖徽,等.颌面部高速投射物伤区局部组织损伤的病理特点[J].解放军医学杂志, 1994,19(2):109-111.
    [64]刘彦普,刘荫秋.颌面火器伤创伤弹道学实验研究[J].实用口腔医学杂志, 1992,8(1):29-31,F003.
    [65]刘彦普,雷德林.口腔颌面部高速投射物损伤的实验研究[J].实用口腔医学杂志, 1993,9(2):122-124.
    [66]刘荫秋,王正国,马玉媛.创伤弹道学[M]. 1991,北京:人民军医出版社.
    [67] Newlands S D, Samudrala S, Katzenmeyer W K. Surgical treatment of gunshot injuries to the mandible[J]. Otolaryngol Head Neck Surg, 2003,129(3):239-244.
    [68] Viano D C, Bir C, Walilko T, et al. Ballistic impact to the forehead, zygoma, and mandible: comparison of human and frangible dummy face biomechanics[J]. JTrauma, 2004,56(6):1305-1311.
    [69] Hampson D. Facial injury: A review of biomechanical studies and test procedures for facial injury assessment[J]. Journal of Biomechanics, 1995,28(1):1-7.
    [70] Zaytoun G M, Shikhani A H, Salman S D. Head and neck war injuries: 10-year experience at the American University of Beirut Medical Center[J]. Laryngoscope, 1986,96(8):899-903.
    [71] Weisengreen H H. Gunshot fracture of the mandible: Case report[J]. American Journal of Surgery, 1938,39(1):133-134.
    [72] Neupert E A. Low velocity missile injuries to the mandible: Retrospective analysis of 32 cases[J]. Journal of Oral and Maxillofacial Surgery, 1989,47(8, Supplement 1):120.
    [73]吴洋,李曙光. 5.80mm枪弹狗下颌硬软组织复合贯通伤模型的建立[J].实用口腔医学杂志, 1997,13(2):97-99.
    [74]雷德林,谭颖徽.口腔颌面部火器伤研究进展―火器伤模型与伤情判断[J].实用口腔医学杂志, 2001,17(1):66-68.
    [75]华泽权,刘荫秋.狗颌面部高速钢珠致伤的瞬时空腔效应特点[J].第四军医大学学报, 1990,11(5):327-328.
    [76] Quatrehomme G, Can M Y. Analysis of beveling in gunshot entrance wounds[J]. Forensic Science International, 1998,93(1):45-60.
    [77]孙训芳,方孝淑,关来泰.材料力学(Ⅰ)[M]. 2002:高等教育出版社.
    [78] DuChesne A, Unnewehr M, Schmidt P F, et al. Deformation characteristics of the human mandible in low impact experiments[J]. Int J Legal Med, 2003,117(5): 257-262.
    [79] T Usui K M Y T Y S H T A T D H A M. Measurement of mechanical strain on mandibular surface with mastication robot: influence of muscle loading direction and magnitude[J]. Orthodontics & Craniofacial Research, 2003,6(s1):163-167.
    [80] Unnewehr M, Homann C, Schmidt P F, et al. Fracture properties of the human mandible[J]. Int J Legal Med, 2003,117(6):326-330.
    [81]任常群,刘瑞峰,刘桂才,等.下颌骨体部撞击伤和高速投射物伤的生物力学初步研究[J].实用口腔医学杂志, 2008,24(5):699-702.
    [82]王正勇.小波分析在图像处理中的应用[J].中国教育信息化, 2007,(08S):64-65.
    [83] LS-DYNA Keyword User’s Manual[M]. 2005: Livemore Software Technology Corporation.
    [84] Pithioux M, Subit D, Chabrand P. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches[J]. Medical Engineering & Physics, 2004,26(8):647-653.
    [85] Kopperdahl D L, Keaveny T M. Yield strain behavior of trabecular bone[J]. Journal of Biomechanics, 1998,31(7):601-608.
    [86] Ma L, Bao R-h, Guo Y-m. Waterjet penetration simulation by hybrid code of SPH and FEA[J]. International Journal of Impact Engineering, 2008,35(9):1035-1042.
    [87] Crowninshield R, Pope M. The response of compact bone in tension at various strain rates[J]. Annals of Biomedical Engineering, 1974,2(2):217-225.
    [88] Kirchner H. Ductility and brittleness of bone[J]. International Journal of Fracture, 2006,139(3):509-516.
    [89] Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants[J]. Journal of Biomedical Materials Research, 1993,27(2):167-175.
    [90] Reilly D T, Burstein A H. The elastic and ultimate properties of compact bone tissue[J]. Journal of Biomechanics, 1975,8(6):393-396, IN399-IN311, 397-405.
    [91] Powell K, Atkinson P J, Woodhead C. Cortical bone structure of the pig mandible[J]. Archives of Oral Biology, 1973,18(2):171-180, IN171.
    [92] Bayraktar H H, Morgan E F, Niebur G L, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue[J]. Journal of Biomechanics, 2004,37(1):27-35.
    [93]李晓杰,姜力,赵铮,等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击, 2008,28(1):57-61.
    [94]张刚明,王肖钧,王元博,等.高速碰撞数值计算中的光滑粒子法[J].计算物理, 2003,20(5):447-454.
    [95]崔伟峰,曾新吾. SPH算法在超高速碰撞数值模拟中的应用[J].国防科技大学学报, 2007,29(2):43-46.
    [96] Jr N F K, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J]. Finite Elements in Analysisand Design, 2000,36(2):99-133.
    [97] Anderson A E, Ellis B J, Weiss J A. Verification, validation and sensitivity studies in computational biomechanics[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2007,10(3):171-184.
    [98]赵均海,孙家驹.人密质骨的撞击实验研究[J].中国生物医学工程学报, 2001,20(2):170-174,169.
    [99]李岩峰,吴子恒,刘洪臣.下颌骨弹性模量研究现状[J].中华老年口腔医学杂志, 2006,4(4):241-244.
    [100] Ashman R B, Van Buskirk W C. The Elastic Properties of a Human Mandible[J]. Advances in Dental Research;Advances in Dental Research, 1987,1(1):64-67.
    [101] Stephen C C. bone mechanics handbook[M]. 2001, Boca Raton, FL: CRC Press.
    [102] Suchanek, Yoshimura. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. JOURNAL OF MATERIALS RESEARCH, 1998,13(1):94-117.
    [103] Payan Y, Chabanas M, Pelorson X, et al. Biomechanical models to simulate consequences of maxillofacial surgery[J]. Comptes Rendus Biologies, 2002,325 (4):407-417.
    [104] Gallas Torreira M, Fernadez J R. A three-dimensional computer model of the human mandible in two simulated standard trauma situations[J]. Journal of Cranio- Maxillofacial Surgery, 2004,32(5):303-307.
    [105] Liao S H, Tong R F, Dong J X. Anisotropic finite element modeling for patient-specific mandible[J]. Computer Methods and Programs in Biomedicine, 2007,88(3):197-209.
    [106] Marinescu R, Daegling D J, Rapoff A J. Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions[J]. Anat Rec A Discov Mol Cell Evol Biol, 2005,283(2):300-309.
    [107]赵辉,尹志勇,蒋建新,等.准静态下颞部撞击致颅脑伤的有限元模拟分析及其临床意义[J].创伤外科杂志, 2008,10(2):141-144.
    [108] Augat P S S. The role of cortical bone and its microstructure in bone strength[J]. Age Ageing, 2006,35(suppl_2):ii27-31.
    [109]张万甲.从10-3s-1到106s-1应变率下抗氢钢动态特性研究[J].爆轰波与冲击波, 1999(3):93-104.
    [110] Ellis E, Moos K F, El-Attar A. Ten years of mandibular fractures: An analysis of 2,137 cases[J]. Oral Surgery, Oral Medicine, Oral Pathology, 1985,59(2):120-129.
    [111] Adi M, Ogden G R, Chisholm D M. An analysis of mandibular fractures in Dundee, Scotland (1977 to 1985)[J]. British Journal of Oral and Maxillofacial Surgery, 1990,28(3):194-199.
    [112]谭颖徽,周宝桐.颌面火器伤伴发颅脑伤临界条件的初步研究[J].华西口腔医学杂志, 1992,10(2):101-103.
    [113]雷德林,周树夏.平时颌面火器伤301例特点及救治体会[J].实用口腔医学杂志, 2001,17(3):220-222.
    [114] Willinger R, Kang H-S, Diaw B. Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts[J]. Annals of Biomedical Engineering, 1999,27(3):403-410.
    [115]刘晓华,刘志成.生物软组织力学特性的研究进展[J].中国医学物理学杂志, 2004,21(3):156-158.
    [116] Hill A V. The Heat of Shortening and the Dynamic Constants of Muscle[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1938,126(843):136-195.
    [117] Blemker S S, Pinsky P M, Delp S L. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii[J]. Journal of Biomechanics, 2005,38(4): 657-665.
    [118] Joseph T. Creating and Simulating Skeletal Muscle from the Visible Human Data Set[J]. IEEE Transactions on Visualization and Computer Graphics, 2005,11:317-328.
    [119] R?hrle O, Pullan A J. Three-dimensional finite element modelling of muscle forces during mastication[J]. Journal of Biomechanics, 2007,40(15):3363-3372.
    [120] Fernandez J W, Buist M L, Nickerson D P, et al. Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: A finite element framework[J]. Medical Engineering & Physics, 2005,27(10):862-870.
    [121] Van Loocke M, Lyons C G, Simms C K. A validated model of passive muscle in compression[J]. Journal of Biomechanics, 2006,39(16):2999-3009.
    [122] Ito D, Tanaka E, Yamamoto S. A novel constitutive model of skeletal muscle takinginto account anisotropic damage[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010,3(1):85-93.
    [123]顾元通,丁桦.无网格法及其最新进展[J].力学进展, 2005,35(3):323-337.
    [124]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展, 2009,39(1):1-36.
    [125] Belytschko T, et al. Fracture and crack growth by element free Galerkin methods[J]. Modelling and Simulation in Materials Science and Engineering, 1994,2(3A):519.
    [126] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):3-47.
    [127] Randles P W, Libersky L D. Smoothed Particle Hydrodynamics: Some recent improvements and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):375-408.
    [128] Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D[J]. International Journal for Numerical Methods in Engineering, 2005,63(11):1559-1582.
    [1]李兵仓.现代火器伤研究概览[J].临床外科杂志, 2007,15(11):792-793.
    [2]赖西南.常用的火器伤实验模型[J].创伤外科杂志, 2003,5(5):400-400,372.
    [3]王正国.创伤弹道学研究的思考[J].中华创伤杂志, 2000,16(3):133-134.
    [4]雷德林,谭颖徽,等.口腔颌面部火器伤研究进展—火器伤模型与伤情判断[J].实用口腔医学杂志, 2001,17(1):66-68.
    [5] Fackler ML. Wound ballistics. A review of common misconceptions[J]. JAMA: The Journal of the American Medical Association,1988,259(18):2730-2736.
    [6] Fack1er ML. What's wrong whith the wound ballistics literature, and why. Letterman Arm Institute of Research Report No. 239 ,1987.
    [7] Powers DB, Robertson OB. Ten common myths of ballistic injuries[J]. Oral Maxillofac Surg Clin North Am,2005 , 17(3): 251-259.
    [8] 3rd CAC, Charters AC. Wounding mechanism of very high velocity projectiles. [J]. J Trauma, 1976,16(6):464-470.
    [9]王照领,雷德林,等.超高速投射物致伤作用的初步观察[J].中华创伤杂志, 2001,17(4):238-238.
    [10]陈菁,李兵仓,等.超高速破片对生物杀伤能力的评价标准初探[J].第三军医大学学报, 2001,23(4):381-383.
    [11] Fackler ML, Bellamy RF, Malinowski JA. Wounding mechanism of projectiles striking at more than 1.5 km/sec [J]. J Trauma, 1986,26(3):250-254.
    [12] Fackler ML. Gunshot wound review[J]. Ann Emerg Med, 1996 , 28(2): 194-203.
    [13] Thali MJ, Kneubuehl BP, Vock P, et al. High-speed documented experimental gunshot to a skull-brain model and radiologic virtual autopsy[J]. American Journal of Forensic Medicine and Pathology,2002,23(3): 223-228.
    [14]华泽权,刘荫秋.狗颌面部高速钢珠致伤的瞬时空腔效应特点[J].第四军医大学学报, 1990,11(5):327-328.
    [15] Tan Y, Zhou S, Jiang H. Biomechanical changes in the head associated with penetrating injuries of the maxilla and mandible: An experimental investigation[J]. Journal of Oral and Maxillofacial Surgery,2002,60(5):552-556.
    [16]谭颖徽,汪遵善.颌面部高速投射伤时颅脑响应的生物力学研究[J].中国临床解剖学杂志, 1994,12(1):69-72.
    [17] Zhang J, Yoganandan N, Pintar FA, et al. Temporal cavity and pressure distribution in a brain simulant following ballistic penetration[J]. J Neurotrauma,2005,22(11):1335-1347.
    [18]任常群,刘瑞峰,刘桂才,等.下颌骨体部撞击伤和高速投射物伤的生物力学初步研究[J].实用口腔医学杂志, 2008,24(5):699-702.
    [19] Jussila J. Preparing ballistic gelatine--review and proposal for a standard method [J]. Forensic Science International,2004,141(2-3):91-98.
    [20] Allen IV, Scott R, Tanner JA. Experimental high-velocity missile head injury[J]. Injury,1982,14(2):183-193.
    [21] Jussila J. Wound ballistic simulation : Assessment of the legitimacy of law enforcement firearms ammunition by means of wound ballistic simulation [D]. Helsinki :University of Helsinki, 2005.
    [22] Fackler ML, Malinowski JA. Ordnance gelatin for ballistic studies. Detrimental effect of excess heat used in gelatin preparation[J]. Am J Forensic Med Pathol,1988,:218-219.
    [23] Fackler ML, Surinchak JS, Malinowski JA, et al. Bullet fragmentation: a major cause of tissue disruption[J]. J Trauma, 1984,24(1):35-39.
    [24] Yoganandan N, Pintar FA, Kumaresan S, et al. Dynamic analysis of penetrating trauma[J]. J Trauma, 1997,42(2):266-272.
    [25] Bartlett CS, Bissell BT. Common Misconceptions and Controversies Regarding Ballistics and Gunshot Wounds[J]. Techniques in Orthopaedics,2006, 21(3):190-199.
    [26] Schyma C. Traces of Ricocheted Action Safety Bullets[J]. The American Journal of Forensic Medicine and Pathology, 1997,18(1):51-60.
    [27] Thali MJ, Kneubuehl BP, Zollinger U, et al. The "Skin-skull-brain model": a new instrument for the study of gunshot effects[J]. Forensic Science International,2002,125(2-3):178-189.
    [28] Jussila J, Leppaniemi, Paronen M, et al. Ballistic skin simulant[J].Forensic Science International, 2005,150(1):63-71.
    [29] Kneubuehl BP, Thali MJ. The evaluation of a synthetic long bone structure as a substitute for human tissue in gunshot experiments[J]. Forensic Science International,2003,138(1-3):44-49.
    [30] Thali MJ, Kneubuehl BP, Zollinger U, et al. A study of the morphology of gunshot entrance wounds, in connection with their dynamic creation, utilizing the "skin-skull-brain model"[J]. Forensic Science International,2002,125(2-3):190-194.
    [31] Thali MJ, Kneubuehl BP, Dirnhofer R. A "skin-skull-brain model" for the biomechanical reconstruction of blunt forces to the human head[J]. Forensic Science International,2002, 125(2-3):195-200.
    [32] Thali MJ, Kneubuehl BP, Zollinger U, et al. A high-speed study of the dynamic bullet-body interactions produced by grazing gunshots with full metal jacketed and lead projectiles[J]. Forensic Science International,2003,132(2):93-98.
    [33] Raul JS, Deck C, Willinger R, et al. Finite-element models of the human head and their applications in forensic practice[J]. Int J Legal Med, 2008.
    [34]张美超,钟世镇.国内生物力学中有限元的应用研究进展[J].解剖科学进展, 2003,9(1):53-56.
    [35]王以玲,寇波,王春玲,等.骨缝精确标识性颅面骨三维有限元模型的建立[J].中华医学实践杂志, 2006,5(7):727-729.
    [36] Gallas Torreira M, Fernadez JR. A three-dimensional computer model of the human mandible in two simulated standard trauma situations[J]. Journal of Cranio-Maxillofacial Surgery,2004,32(5):303-307.
    [37] Teoh SH, Chui CK. Bone material properties and fracture analysis: Needle insertion for spinal surgery[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008,1(2):115-139.
    [38] Craig M, Bir C, Viano D, et al. Biomechanical response of the human mandible to impacts of the chin[J]. Journal of Biomechanics,2008,41(14): 2972-2980.
    [39] Subke J, Haase S, Wehner H,et al. Computer aided shot reconstructions by means of individualized animated three-dimensional victim models[J]. Forensic Science International,2002,125(2-3):245-249.
    [40] Pintar FA, Kumaresan S, Yoganandan N, et al. Biomechanical modeling of penetrating traumatic head injuries: a finite element approach[J]. Biomed Sci Instrum,2001, 429-434.
    [41] Mota A, Klug WS, Ortiz M, et al. Finite-element simulation of firearm injury to thehuman cranium[J]. Computational Mechanics,2003,31(1/2):115-121.
    [42] O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading[J]. Clin Oral Implants Res, 2001,12(6):648-657.
    [43] Schwartz-Dabney CL, Dechow PC. Accuracy of elastic property measurement in mandibular cortical bone is improved by using cylindrical specimens[J]. J Biomech Eng, 2002,124(6):714-723.
    [44] Renders GAP, Mulder L, Langenbach GEJ, et al. Biomechanical effect of mineral heterogeneity in trabecular bone[J]. Journal of Biomechanics,2008,41(13):2793-2798.
    [45] Ionescu I, Guilkey JE, Berzins M,et al. Simulation of Soft Tissue Failure Using the Material Point Method[J]. Journal of Biomechanical Engineering,2006, 128(6):917-924.
    [46] Roberts JC, O'Connor JV, Ward EE. Modeling the effect of non-penetrating ballistic impact as a means of detecting behind armor blunt trauma[J]. J Trauma,2005, 58(6):1241-1251.
    [47] Roberts JC, Merkle AC, Biermann PJ, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact[J]. J Biomech,2007, 40(1):125-136.
    [48]李鲁岳,李兵仓,等.颅脑投射物伤合并爆炸伤的动物模型及损伤特点[J].第三军医大学学报, 2002,24(7):753-755.
    [49]刘桂才,王昭领,等.颌面部破片+冲击波复合伤致犬颞下颌关节盘损伤的实验研究[J].中国急救医学, 2003,23(1):9-10.
    [50]王大鹏,宁浩勇,孟宇宏,等.火器伤合并海水浸泡后对大鼠伤口愈合的影响[J].中国比较医学杂志, 2008,18(10):76-76.
    [51]殷作明,胡德耀,李素芝,等.高原高寒战时环境肢体火器伤后应激反应的特点[J].第三军医大学学报, 2005,27(7):581-583.
    [52]曹谊林,张文杰.组织工程与组织器官缺损修复[J].临床外科杂志, 2007,15(1): 40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700