局域共振型结构的带隙调控与减振降噪特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,声物理发展前沿关于“局域共振型声子晶体”和“声学超材料”等新概念的提出为工程结构的减振降噪设计提供了新的思路。类比局域共振型声子晶体和声学超材料的设计思想,通过在杆、梁、板等传统工程结构上周期性地附加局域共振单元,可以得到一类局域共振型人工周期结构(本文简称为“局域共振型结构”)。目前已有的初步探索研究表明:局域共振型结构具有显著的弹性波带隙特性,在其带隙频率范围内可以高效地抑制结构振动。这些研究为结构减振降噪技术发展开辟了一条新的途径。然而,要实现局域共振型结构的减振降噪应用,在其性能预报、行为调控、机理揭示以及轻质宽带设计等方面还面临大量的基础问题有待解决。
     本文紧紧围绕局域共振型结构在减振降噪应用方面目前面临的关键理论和技术问题展开系统深入研究,研究的主要内容包括:(1)局域共振型结构的带隙及振动与声学特性计算方法;(2)局域共振型结构的带隙调控与形成机理;(3)局域共振型结构的带隙展宽方法及宽带减振降噪特性。论文研究取得的主要创新成果包括:
     1、提出了计算局域共振杆/梁结构中振动传递特性的波动/谱元法,并将平面波展开法推广用于计算局域共振板结构的带隙特性及声透射特性,为局域共振型结构的带隙与减振降噪特性研究提供了高效工具。
     2、系统分析了局域共振型结构的设计参数对其带隙特性的调控规律,并发现了有价值的新带隙现象及效应,深化了对于局域共振型结构带隙行为的认识。首次发现局域共振杆中两种带隙(局域共振带隙和Bragg带隙)可以精确地耦合成为一个超宽的完全带隙;首次发现当两种带隙被调节至相互靠近时,不仅局域共振单元的局域共振作用对Bragg带隙可以产生展宽效应,而且周期结构的Bragg散射作用对局域共振带隙也可以产生展宽效应;首次发现局域共振型结构中局域共振单元的谐振频率可以落在Bragg带隙范围内,甚至是通带范围内。
     3、深入揭示了局域共振型结构的带隙形成机理,推导得到了封闭的解析设计公式,可以精确地或近似地预报局域共振型结构中设计参数对带隙边界频率的调控规律,以及确定结构中两种带隙发生相互耦合和相互转换的条件,为带隙设计提供依据。
     4、提出了基于两种带隙相互耦合机制、结构参数失谐设计以及局域共振单元多频谐振作用的三种带隙展宽方法,为实现局域共振型结构在轻质条件下的宽带减振降噪设计提供了技术支持。
     5、率先研究了局域共振板的声透射降噪特性,首次发现在亚波长晶格条件下,若将局域共振单元的谐振频率调谐至基体板声透射的质量密度定律区,局域共振板可以实现远高于同质量均质板的传声损失(隔声量);若将谐振频率调谐至基体板的声透射吻合效应区,局域共振板可以抑制吻合效应,大幅提高整个吻合效应区的传声损失。这些特性对于局域共振板的降噪应用具有重要指导意义。
     总之,本文主要针对局域共振型结构在减振降噪应用方面需要解决的关键理论与技术问题展开系统深入研究:进一步完善了局域共振型杆、梁、板结构的带隙及振动与声学特性计算方法,深入揭示了这类局域共振型结构的带隙特性调控规律与形成机理,并提出了实现其带隙及减振降噪频带展宽的三种方法,从相关研究中提炼出了系列设计公式、准则及建议。这些研究成果为局域共振型结构的减振降噪应用奠定了若干重要的理论基础和技术支撑。
In the past few years, the new concept of “locally resonant phononic crystals” and“acoustic metamaterials” developed in the frontiers of acoustical physics providedsome new ideas for the control of vibration and noise of engineering structures. Byanalogy with locally resonant phononic crystals and acoustic metamaterials, locallyresonant periodic engineering structures (called “locally resonant structures” in thisdissertation) can be constructed by attaching periodic arrays of local resonators tostructural waveguides such as rods, beams, plates, etc. Some initial studies have shownthat locally resonant structures can exhibit notable elastic wave band gaps, andstructural vibrations can be significantly attenuated within the frequency ranges ofband gaps. These studies provide a novel approach to control vibration and noise ofengineering structures. However, to achieve practical applications of locally resonantstructures in engineering, there exist still many important problems required to beexamined, such as the performance prediction, behavior tuning, mechanismsexplanation, as well as the lightweight and broadband design.
     The purpose of this dissertation is to investigate some crucial theoretical andtechnical problems systematically to promote the applications of locally resonantstructures in the field of vibration and noise control. The following three aspects havebeen considered:(1) the methods for calculating band gaps and the methods forpredicting vibration/noise properties of locally resonant structures;(2) the tuningbehavior of band gaps and the underlying band-gap formation mechanisms;(3) themethods for broadening band gaps and the study of resulting performance ofbroadband vibration/noise reduction. The main findings of this dissertation are listed asfollows:
     1. A wave/spectral element method is proposed to predict vibration transmittanceof general locally resonant rods/beams, and a plane wave expansion method isdeveloped for the calculation of band gaps and sound transmission properties ofgeneral locally resonant thin plates. These methods are provided as efficient tools forthe study of band gap and vibration/noise reduction properties of locally resonantstructures.
     2. The tuning band gap behavior of locally resonant structures by changing designing parameters is analyzed in a systematic manner, and some valuable new bandgap phenomena and effects have been discovered. It is shown that two types of bandgaps (locally resonant and Bragg band gaps) can exactly couple together to form acombined super-wide band gap. It is also found that when the location of two types ofband gaps is tuned to be very close to each other, not only that the locally resonanteffect can broaden Bragg band gap, but also that the Bragg scattering effect can widenthe locally resonant band gap. In addition, it is found that the resonance frequency oflocal resonators can appear in a Bragg band gap, and even more surprisingly, in a passband.
     3. The band gap formation mechanisms of locally resonant structures have beenclarified in depth. A number of explicit analytical design formulas are derived to enablean exact prediction of the dependence of band edge frequencies on the designingparameters of locally resonant structures. Furthermore, explicit formulas are alsoprovided to enable a direct determination of the conditions of coupling or transitionbetween two types of band gaps. These results provide guidelines for the band gapdesign in locally resonant structures.
     4. Three band gap broadening methods are proposed, respectively based on theband gap coupling mechanism, the design of disordered structural parameters, and theutilization of multi-resonant local resonators. These methods provide technical supportto realize lightweight locally resonant structures with broadband vibration/noisereduction performance.
     5. For the first time, the sound transmission loss (STL) behavior of locallyresonant thin plates is investigated. It is found that, under the condition ofsubwavelength lattice constant, if the resonance frequency of local resonators is tunedto the mass-law region of sound transmission for the host plate, the locally resonantplate can achieve much higher STL than a homogeneous plate with the same surfacemass. While, if the resonance frequency is tuned to the coincidence region of soundtransmission, the locally resonant plate can break the coincidence effect, resulting in asignificantly increased STL over the whole coincidence region. These properties are ofgreat interest for the application of locally resonant plates in the noise control field.
     In summary, this dissertation is concerned with some crucial theoretical andtechnical problems involved in the investigations and applications of locally resonantstructures for the purpose of reducing structural vibration/noise. The maincontributions of this dissertation include:1) some efficient methods are developed for the calculation of band gaps and for the prediction of vibration/noise properties ofgeneral locally resonant structures;2) the dependence of band gap behavior on somekey designing parameters is explored, and the underlying band gap formationmechanisms are clarified;3) several band gap broadening methods are proposed, and anumber of design formulas, principles and suggestions are provided. The results of thisdissertation present significant theoretical foundations and technical guidelines tofacilitate the application of locally resonant structures in reducing structural vibrationand noise.
引文
[1]国家自然科学基金委员会,中国科学院.未来10年中国科学发展战略:工程科学[M].北京:科学出版社,2012.
    [2]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [3]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [4]马兴瑞,郑钢铁,段广仁,催平远.动力学、振动与控制新进展[M].北京:中国宇航出版社,2006.
    [5]何琳,朱海潮,邱小军,杜功焕.声学理论与工程应用[M].北京:科学出版社,2006.
    [6]陈克安.有源噪声控制[M].北京:国防工业出版社,2003.
    [7]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版设,1997.
    [8] Norton M, Karczub D. Fundamentals of Noise and Vibration Analysis forEngineers[M]. Cambridge: Cambridge University Press,2003.
    [9] Martinez-sala R, Sancho J, Sanchez J V, Gomez V, Llinares J, Meseguer F.Sound attenuation by sculpture[J]. Nature.1995,378(6554):241-241.
    [10] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P. Locally resonantsonic materials[J]. Science.2000,289(5485):1734-1736.
    [11] Fang N, Xi D, Xu J, Ambati M, Strituravanich W, Sun C, Zhang X. Ultrasonicmetamaterials with negative modulus[J]. Nature Materials.2006,5:452-456.
    [12] Zhu J, Christensen J, Jung J, Martin-moreno L, Yin X, Fok L, Zhang X,Garcia-Vidal F J. A holey-structured metamaterial for acousticdeep-subwavelength imaging[J]. Nature Physics.2011:52-55.
    [13] Lai Y, Wu Y, Sheng P, Zhang Z. Hybrid elastic solids[J]. Nature Materials.2011,10:620-624.
    [14] Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P. Dark acoustic metamaterials assuper absorbers for low-freqeuncy sound[J]. Nature Communications.2012,3:756.
    [15] Li J, Chan C T. Double-negative acoustic metamaterial[J]. Physical Review E.2004,70:055602(R).
    [16] Liu Z, Chan C T, Sheng P. Analytic model of phononic crystals with localresonances[J]. Physical Review B.2005,71(1):014103.
    [17] Sheng P, Mei J, Liu Z, Wen W. Dynamic mass density and acousticmetamaterials[J]. Physica B.2007,394(2):256-261.
    [18] Fok L, Ambati M, Zhang X. Acoustic metamaterials[J]. MRS Bulletin.2008,33.
    [19] Lu M H, Feng L, Chen Y F. Phononic crystals and acoustic metamaterials[J].Materials Today.2009,12(12):34-42.
    [20] Liu Y, Zhang X. Metamaterials: a new frontier of science and technology[J].Chemical Society Reviews.2011,40:2494-2507.
    [21]王刚.声子晶体局域共振带隙机理及减振特性研究[D].长沙:国防科学技术大学,2005.
    [22] Wang G, Wen J, Wen X. Quasi-one-dimensional phononic crystals studied usingthe improved lumped-mass method: Application to locally resonant beams withflexural wave band gap[J]. Physical Review B.2005,71:104302.
    [23] Wang G, Wen X, Wen J, Liu Y. Quasi-one-dimensional periodic structure withlocally resonant band gap[J]. Journal of Applied Mechanics.2006,73(1):167-170.
    [24] Yu D, Liu Y, Wang G, Zhao H, Qiu J. Flexural vibration band gaps inTimoshenko beams with locally resonant structures[J]. Journal of AppliedPhysics.2006,100(12):124901.
    [25] Yu D, Liu Y, Zhao H, Wang G, Qiu J. Flexural vibration band gaps inEuler-Bernoulli beams with locally resonant structures with two degrees offreedom[J]. Physical Review B.2006,73(6):064301.
    [26] Yu D, Wen J, Zhao H, Liu Y, Wen X. Vibration reduction by using the idea ofphononic crystals in a pipe-conveying fluid[J]. Journal of Sound and Vibration.2008,318(1-2):193-205.
    [27]郁殿龙.基于声子晶体理论的梁板类周期结构振动带隙特性研究[D].长沙:国防科学技术大学,2006.
    [28]王刚,温激鸿,温熙森,郁殿龙,刘耀宗.细直梁弯曲振动中的局域共振带隙[J].机械工程学报.2005,41(10):107-110.
    [29] Sigalas M M, Economou E N. Elastic and acoustic wave band structure[J].Journal of Sound and Vibration.1992,158(2):377-382.
    [30] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-rouhani B. Acoustic bandstructure of periodic elastic composites[J]. Physical Review Letters.1993,71(13):2022-2025.
    [31] Sigalas M, Kushwaha M S, Economou E N, Kafesaki M, Psarobas I E, SteurerW. Classical vibrational modes in phononic lattices: theory and experiment[J].Zeitschrift Fur Kristallographie.2005,220(9-10):765-809.
    [32] Pennec Y, Vasseur J O, Djafari-rouhani B, Dobrzynski L, Deymier P A.Two-dimensional phononic crystals: Examples and applications[J]. SurfaceScience Reports.2010,65(8):229-291.
    [33]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云.声子晶体[M].北京:国防工业出版社,2009.
    [34] Brillouin L. Wave Propogation in Periodic Structures[M]. New York: Dover,1946.
    [35] Sigalas M M. Elastic wave band gaps and defect states in two-dimensionalcomposites[J]. Journal of the Acoustical Society of America.1997,101(3):1256-1261.
    [36] Sigalas M M. Defect states of acoustic waves in a two-dimensional lattice ofsolid cylinders[J]. Journal of Applied Physics.1998,84(6):3026-3030.
    [37] Torres M, Montero E F, Garc P D, Garc N. Sonic band gaps in finite elasticmedia: Surface states and localization phenomena in linear and point defects[J].Physical Review Letters.1999,82(15):3054--3057.
    [38] Psarobas I E, Stefanou N, Modinos A. Phononic crystals with planar defects[J].Physical Review B.2000,62(9):5536-5540.
    [39] Wu F, Hou Z, Liu Z, Liu Y. Point defect states in two-dimensional phononiccrystals[J]. Physics Letters A.2001,292(3):198-202.
    [40] Chandra H, Deymier P A, Vasseur J O. Elastic wave propagation alongwaveguides in three-dimensional phononic crystals[J]. Physical Review B.2004,70(5):054302.
    [41] Romero-garcia V, Sanchez-perez J V, Garcia-raffi L M. Propagating andevanescent properties of double-point defects in sonic crystals[J]. New Journalof Physics.2010,12:083024.
    [42] Romero-garcia V, Sanchez-perez J V, Garcia-raffi L M. Analytical model topredict the effect of a finite impedance surface on the propagation properties of2D Sonic Crystals[J]. Journal of Physics D: Applied Physics.2011,44(26):265501.
    [43] Yang S, Page J H, Liu Z, Cowan M L, Chan C T, Sheng P. Focusing of sound ina3D phononic crystal[J]. Physical Review Letters.2004,93(2):24301-24304.
    [44] Qiu C, Zhang X, Liu Z. Far-field imaging of acoustic waves by atwo-dimensional sonic crystal[J]. Physical Review B.2005,71(5):54302-54306.
    [45] Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J, Zhu Y Y.Negative refraction of acoustic waves in two-dimensional sonic crystals[J].Physical Review B.2005,72(3):033108-4.
    [46] Li J, Liu Z, Qiu C. Negative refraction imaging of acoustic waves by atwo-dimensional three-component phononic crystal[J]. Physical Review B.2006,73(5):054302.
    [47] Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu SN, Ming N B. Acoustic backward-wave negative refractions in the second bandof a sonic crystal[J]. Physical Review Letters.2006,96(1):14301-14304.
    [48] Lu M, Zhang C, Feng L, Zhao J, Chen Y, Mao Y, Zi J, Zhu Y, Zhu S, Ming N.Negative birefraction of acoustic waves in a sonic crystal[J]. Nature Materials.2007:744-748.
    [49] Li J, Liu Z, Qiu C. Negative refraction imaging of solid acoustic waves bytwo-dimensional three-component phononic crystal[J]. Physics Letters A.2008,372(21):3861-3867.
    [50] Qiu C, Liu Z. Acoustic directional radiation and enhancement caused byband-edge states of two-dimensional phononic crystals[J]. Applied PhysicsLetters.2006,89(6):063106.
    [51]温熙森.光子/声子晶体理论与技术[M].北京:科学出版社,2006.
    [52] Sigalas M M, Soukoulis C M. Elastic-wave propagation through disorderedand/or absorptive layered systems[J]. Physical Review B.1995,51(5):2780--2789.
    [53] Djafari-rouhani B, Dobrzynski L, Duparc Hardouin O, Camley R E, MaradudinA A. Sagittal elastic waves in infinite and semi-infinite superlattices[J]. PhysicalReview B.1983,28(4):1711-1720.
    [54] Camley R E, Djafari-rouhani B, Dobrzynski L, Maradudin A A. Transverseelastic waves in periodically layered infinite and semi-infinite media[J]. PhysicalReview B.1983,27(12):7318-7329.
    [55] Kushwaha M S, Halevi P, Mart G, Dobrzynski L, Djafari-rouhani B. Theory ofacoustic band structure of periodic elastic composites[J]. Physical Review B.1994,49(4):2313-2322.
    [56] Wu F, Liu Z, Liu Y. Acoustic band gaps in2D liquid phononic crystals ofrectangular structure[J]. Journal of Physics D: Applied Physics.2002,35(2):162-165.
    [57] Hou Z, Assouar B M. Modeling of Lamb wave propagation in plate withtwo-dimensional phononic crystal layer coated on uniform substrate usingplane-wave-expansion method[J]. Physics Letters A.2008,372:2091.
    [58] Liu Z, Chan C T, Sheng P. Three-component elastic wave band-gap material[J].Physical Review B.2002,65(16):165116.
    [59] Sainidou R, Stefanou N, Psarobas I E, Modinos A. Scattering of elastic waves bya periodic monolayer of spheres[J]. Physical Review B.2002,66(2):024303.
    [60] Liu Z, Chan C T, Sheng P, Goertzen A L, Page J H. Elastic wave scattering byperiodic structures of spherical objects: Theory and experiment[J]. PhysicalReview B.2000,62(4):2446-2457.
    [61] Oudich M, Assouar M B, Hou Z. Propagation of acoustic waves andwaveguiding in a two-dimensional locally resonant phononic crystal plate[J].Applied Physics Letters.2010,97:193503.
    [62] Oudich M, Li Y, Assouar B M, Hou Z. A sonic band gap based on the locallyresonant phononic plates with stubs[J]. New Journal of Physics.2010,12:083049.
    [63] Hsu J C. Local resonances-induced low-frequency band gaps intwo-dimensional phononic crystal slabs with periodic stepped resonators[J].Journal of Physics D: Applied Physics.2011,44(5):055401.
    [64] Huang Z G, Chen Z Y. Acoustic waves in two-dimensional phononic crystalsWith reticular geometric structures[J]. Journal of Vibration and Acoustics.2011,133(3):31011-31016.
    [65] Kafesaki M, Economou E N. Interpretation of the band-structure results forelastic and acoustic waves by analogy with the LCAO approach[J]. PhysicalReview B.1995,52(18):13317-13331.
    [66] Kushwaha M S, Halevi P. Band-gap engineering in periodic elasticcomposites[J]. Applied Physics Letters.1994,64(9):1085-1087.
    [67] Vasseur J O, Deymier P A, Chenni B, Djafari-rouhani B, Dobrzynski L, PrevostD. Experimental and theoretical evidence for the existence of absolute acousticband gaps in two-dimensional solid phononic crystals[J]. Physical ReviewLetters.2001,86(14):3012-3015.
    [68] Vasseur J O, Deymier P A, Trimblanks G F, Hong G, Djafari-rouhani B,Dobrzynski L. Experimental evidence for the existence of absolute acousticband gaps in two-dimensional periodic composite media[J]. Journal of Physics:Condensed Matter.1998(27):6051.
    [69] Wu F, Hou Z, Liu Z, Liu Y. Acoustic band gaps in two-dimensional rectangulararrays of liquid cylinders[J]. Solid State Communications.2002,123(5):239-242.
    [70] Khelif A, Mohammadi S, Eftekhar A A, Adibi A, Aoubiza B. Acousticconfinement and waveguiding with a line-defect structure in phononic crystalslabs[J]. Journal of Applied Physics.2010,108(8):84515-84515.
    [71] Sanchez-dehesa J, Garcia-chocano V M, Torrent D, Cervera F, Cabrera S, SimonF. Noise control by sonic crystal barriers made of recycled materials[J]. Journalof the Acoustical Society of America.2011,129(3):1173-1183.
    [72] Wu T T, Hsu J C, Sun J H. Phononic plate waves[J]. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control.2011,58(10):2146-2161.
    [73] Matar O B, Robillard J F, Vasseur J O, Hladky-hennion A-, Deymier P A,Pernod P, Preobrazhensky V. Band gap tunability of magneto-elastic phononiccrystal[J]. Journal of Applied Physics.2012,111(5):54901-54914.
    [74] Goffaux C, Sanchez-dehesa J, Yeyati A L, Lambin P, Khelif A, Vasseur J O,Djafari-rouhani B. Evidence of Fano-like interference phenomena in locallyresonant materials[J]. Physical Review Letters.2002,88(22):225502.
    [75] Goffaux C, Sanchez-dehesa J. Two-dimensional phononic crystals studied usinga variational method: Application to lattices of locally resonant materials[J].Physical Review B.2003,67(14):144301-144310.
    [76] Goffaux C, Sanchez-dehesa J, Lambin P. Comparison of the sound attenuationefficiency of locally resonant materials and elastic band-gap structures[J].Physical Review B.2004,70(18):184302-184306.
    [77] Wang G, Shao L, Liu Y, Wen J. Accurate evaluation of lowest band gaps internary locally resonant phononic crystals[J]. Chinese Physics.2006,15(8):1843-1848.
    [78] Hirsekorn M. Small-size sonic crystals with strong attenuation bands in theaudible frequency range[J]. Applied Physics Letters.2004,84(17):3364.
    [79] Wang G, Wen X, Wen J, Shao L, Liu Y. Two-dimensional locally resonantphononic crystals with binary structures[J]. Physical Review Letters.2004,93(15):154302.
    [80] Wang G, Liu Y, Wen J, Yu D. Formation mechanism of the low-frequency locallyresonant band gap in the two-dimensional ternary phononic crystals[J]. ChinesePhysics.2006,15(2):0407.
    [81] Cai L, Han, Xiaoyun, Wen X. Band-structure results for elastic wavesinterpreted with multiple-scattering theory[J]. Physical Review B.2006,74:153101.
    [82]温激鸿.声子晶体振动带隙及减振特性研究[D].长沙:国防科学技术大学,2005.
    [83]温激鸿,王刚,刘耀宗,赵宏刚.金属/丁腈橡胶杆状结构声子晶体振动带隙研究[J].振动工程学报.2005,18(1):1-7.
    [84]温激鸿,郁殿龙,王刚,赵宏刚,刘耀宗.周期结构细直梁弯曲振动中的振动带隙[J].机械工程学报.2005,41(4):1-6.
    [85]温激鸿,郁殿龙,王刚,赵宏刚,刘耀宗.薄板状周期栅格结构中弹性波传播特性研究[J].物理学报.2007,56(4):2298-2304.
    [86] Wen J, Wang G, Yu D, Zhao H, Liu Y. Theoretical and experimentalinvestigation of flexural wave propagation in straight beams with periodicstructures: Application to a vibration isolation structure[J]. Journal of AppliedPhysics.2005,97:114907.
    [87] Wen J, Yu D, Wang G, Honggang Z. Theory and experimental investigation offlexural wave propagation in thin rectangular plate with periodic structure[J].Chinese Journal of Mechanical Engineering.2005,18(3):385-388.
    [88] Wen J, Yu D, Wang G, Zhao H, Liu Y, Wen X. The directional propagationcharacteristics of elastic wave in two-dimensional thin plate phononic crystals[J].Physics Letters A.2007,364:323–328.
    [89] Wen J, Yu D, Wang G, Zhao H, Liu, Yao-zong, Wen X. Directional propagationcharacterisics of flexural waves in two-dimensional thin-plate phononiccrystals[J]. Chinese Physics Letters.2007,24(5):1305-1308.
    [90] Wen J, Yu D, Liu J, Xiao Y, Wen X. Theoretical and experimental investigationsof flexural wave propagation in periodic grid structures designed with the ideaof phononic crystals[J]. Chinese Physics B.2009,18(6):2404-2411.
    [91]郁殿龙,刘耀宗,王刚,温激鸿,邱静.一维杆状结构声子晶体扭转振动带隙研究[J].振动与冲击.2006,25(1):104-106.
    [92]郁殿龙,刘耀宗,王刚,温激鸿,邱静.一维杆状声子晶体振动中的表面局域态研究[J].机械工程学报.2005,41(06):35-38.
    [93]郁殿龙,刘耀宗,王刚,温激鸿,邱静.二维声子晶体薄板的振动特性[J].机械工程学报.2006(02):150-154.
    [94] Yu D, Liu Y, Qiu J, Zhao H, Liu Z. Experimental and theoretical research on thevibrational gaps in two-dimensinal three-component composite thin plates[J].Chinese Physics Letters.2005,22(8):1958.
    [95] Yu D, Liu Y, Qiu J, Wang G, Wen J. Doubly coupled vibration band gaps inperiodic thin-walled open cross-section beams[J]. Chinese Physics.2005,14(08):1501-1506.
    [96] Yu D, Liu Y, Wang G, Cai L, Qiu J. Low frequency torsional vibration gaps inthe shaft with locally resonant structures[J]. Physics Letters A.2006,348(3-6):410-415.
    [97] Yu D, Wen J, Liu Y, Jing Q, Wang G. Flexural vibrations band gaps in periodicbeams including rotary inertia and shear deformation effects[J]. Chinese Journalof Mechanical Engineering.2006,19(1):25-27.
    [98] Yu D, Liu Y, Qiu J, Wang G, Zhao H. Complete flexural vibration band gaps inmembrane-like lattice structures[J]. Physics Letters A.2006,357:154-158.
    [99] Yu D, Wang G, Liu Y, Wen J, Qiu J. Flexural vibration band gaps in thin plateswith two-dimensional binary locally resonant structures[J]. Chinese Physics.2006,15(2):0266-06.
    [100] Shen H, Wen J, Yu D, Wen X. The vibrational properties of a periodic compositepipe in3D space[J]. Journal of Sound and Vibration.2009,328(1-2):57-70.
    [101] Ho K M, Cheng C K, Yang Z, Zhang X X, Sheng P. Broadband locally resonantsonic shields[J]. Applied Physics Letters.2003,83(26):5566.
    [102] Romero-garcia V, Sanchez-perez J V, Garcia-raffi L M. Tunable widebandbandstop acoustic filter based on two-dimensional multiphysical phenomenaperiodic systems[J]. Journal of Applied Physics.2011,110(1):014904.
    [103] Olsson R H I, El-kady I. Microfabricated phononic crystal devices andapplications[J]. Measurement Science and Technology.2009,20(1):012002.
    [104] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractiveindex[J]. Science.2004,305:788.
    [105] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative indexof refraction[J]. Science.2001,292:77-79.
    [106] Ding Y, Liu Z, Qiu C, Shi J. Metamaterial with simultaneously negative bulkmodulus and mass density[J]. Physical Review Letters.2007,99(9):093904.
    [107] Milton G W, Willis J R. On modifications of Newton's second law and linearcontinuum elastodynamics[J]. Proceedings of the Royal Society A.2007,463(2079):855-880.
    [108] Fokin V, Ambati M, Sun C, Zhang X. Method for retrieving effective propertiesof locally resonant acoustic metamaterials[J]. Physical Review B.2007,76:144302.
    [109] Yang Z, Mei J, Yang M, Chan N H, Sheng P. Membrane-type acousticmetamaterial with negative dynamic mass[J]. Physical Review Letters.2008,101(20):204301.
    [110] Zhou X, Hu G. Analytic model of elastic metamaterials with local resonances[J].Physical Review B.2009,79(19):195109.
    [111] Mei J, Liu Z, Wen W, Sheng P. Effective dynamic mass density of composites[J].Physical Review B.2007,76:134205.
    [112] Wu Y, Lai Y, Zhang Z. Effective medium theory for elastic metamaterials in twodimensions[J]. Physical Review B.2007,76:205313.
    [113] Milton G W. New metamaterials with macroscopic behavior outside that ofcontinuum elastodynamics[J]. New Journal of Physics.2007,9(10):359.
    [114] Torrent D, Sanchez-dehesa J. Multiple scattering formulation oftwo-dimensional acoustic and electromagnetic metamaterials[J]. New Journal ofPhysics.2011,13(9):093018.
    [115] Yang Z, Dai H M, Chan N H, Ma G C, Sheng P. Acoustic metamaterial panelsfor sound attenuation in the50-1000Hz regime[J]. Applied Physics Letters.2010,96(4):041906.
    [116] Lee S H, Park C M, Seo, Yong M, Wang Z G, Kim C K. Composite acousticmedium with simultaneously negative density and modulus[J]. Physical ReviewLetters.2010,104:054301.
    [117] Fok L, Zhang X. Negative acoustic index metamaterial[J]. Physical Review B.2011,83(21):214304.
    [118] Liu X N, Hu G K, Huang G L, Sun C T. An elastic metamaterial withsimultaneously negative mass density and bulk modulus[J]. Applied PhysicsLetters.2011,98(25):251907-3.
    [119] Garcia-chocano V M, Gracia-salgado R, Torrent D, Cervera F, Sanchez-dehesa J.Quasi-two-dimensional acoustic metamaterial with negative bulk modulus[J].Physical Review B.2012,85(18):184102.
    [120] Liang Z, Li J. Extreme acoustic metamaterial by coiling up space[J]. PhysicalReview Letters.2012,108(11):114301.
    [121] Christensen J, De A F. Anisotropic Metamaterials for Full Control of AcousticWaves[J]. Physical Review Letters.2012,108(12):124301.
    [122] Liu X N, Hu G K, Huang G L, Sun C T. An elastic metamaterial withsimultaneously negative mass density and bulk modulus[J]. Applied PhysicsLetters.2011,98(25):251907.
    [123] Naify C J, Chang C M, Mcknight G, Nutt S. Transmission loss and dynamicresponse of membrane-type locally resonant acoustic metamaterials[J]. Journalof Applied Physics.2010,108:114905.
    [124] Naify C J, Chang C M, Mcknight G, Scheulen F, Nutt S. Membrane-typemetamaterials: Transmission loss of multi-celled arrays[J]. Journal of AppliedPhysics.2011,109(10):104902-104909.
    [125] Naify C J, Chang C M, Mcknight G, Nutt S. Transmission loss ofmembrane-type acoustic metamaterials with coaxial ring masses[J]. Journal ofApplied Physics.2011,110(12):124903-124908.
    [126] Mead D J. Wave propagation in continuous periodic structures: Researchcontributions from Southampton,1964-1995[J]. Journal of Sound and Vibration.1996,190(3):495-524.
    [127] Phani A S, Woodhouse J, Fleck N A. Wave propagation in two-dimensionalperiodic lattices[J]. Journal of the Acoustical Society of America.2006,119(4):1995-2005.
    [128] Gonella S, Ruzzene M. Analysis of in-plane wave propagation in hexagonal andre-entrant lattices[J]. Journal of Sound and Vibration.2008,312(1-2):125-139.
    [129] Lee S, Vlahopoulos N, Wass A M. Analysis of wave propagation in a thincomposite cylinder with periodic axial and ring stiffeners using periodicstructure theory[J]. Journal of Sound and Vibration.2010,329:3304-3318.
    [130] Xin F X, Lu T J. Analytical modeling of fluid loaded orthogonally rib-stiffenedsandwich structures: Sound transmission[J]. Journal of the Mechanics andPhysics of Solids.2010,58(9):1374-1396.
    [131] Legault J, Mejdi A, Atalla N. Vibro-acoustic response of orthogonally stiffenedpanels: The effects of finite dimensions[J]. Journal of Sound and Vibration.2011,330(24):5928-5948.
    [132] Leamy M J. Exact wave-based Bloch analysis procedure for investigating wavepropagation in two-dimensional periodic lattices[J]. Journal of Sound andVibration.2012,331(7):1580-1596.
    [133] Cremer L, Heckl M. Structure-borne sound: structural vibrations and soundradiation at audio frequencies[M]. Berlin; New York: Springer-Verlag,1988.
    [134] Ungar E E. Steady-State Responses of One-Dimensional Periodic FlexuralSystems[J]. Journal of the Acoustical Society of America.1966,39:887-894.
    [135] Heckl M A. Investigations on the vibrations of grillages and other simple beamstructures[J]. Journal of the Acoustical Society of America.1964,36(7):1335-1343.
    [136] Mead D J, Wilby E G. The random vibrations of a multi-supported heavilydamped beam[J]. The Shock and Vibration Bulletin.1966,35(3):45-55.
    [137] Mead D J. Free wave propagation in periodically supported, infinite beams[J].Journal of Sound and Vibration.1970,11(2):181-197.
    [138] Mead D J, Pujara K K. Space-harmonic analysis of periodically supportedbeams: response to convected random loading[J]. Journal of Sound andVibration.1971,14(4):525-541.
    [139] Mead D J. Vibration response and wave propagation in periodic structures[J].Journal of Engineering for Industry.1971:783-792.
    [140] Mead D J. A general theory of harmonic wave propagation in linear periodicsystems with multiple coupling[J]. Journal of Sound and Vibration.1973,27(2):235-260.
    [141] Mead D J. Wave propagation and natural modes in periodic systems: I.Mono-coupled systems[J]. Journal of Sound and Vibration.1975,40(1):1-18.
    [142] Mead D J. Wave propagation and natural modes in periodic systems: II.Multi-coupled systems, with and without damping[J]. Journal of Sound andVibration.1975,40(1):19-39.
    [143] Mead D J, Mallik A K. An approximate method of predicting the response ofperiodically supported beams subjected to random convected loading[J]. Journalof Sound and Vibration.1976,47(4):457-471.
    [144] Mead D J, Mallik A K. An approximate theory for the sound radiated from aperiodic line-supported plate[J]. Journal of Sound and Vibration.1978,61(3):315-326.
    [145] Mead D J, Parthan S. Free wave propagation in two-dimensional periodicplates[J]. Journal of Sound and Vibration.1979,64(3):325-348.
    [146] Mead D J, Markus S. Coupled flexural-longitudinal wave motion in a periodicbeam[J]. Journal of Sound and Vibration.1983,90(1):1-24.
    [147] Mead D J, Lee S M. Receptance methods and the dynamics of disorderedone-dimensional lattices[J]. Journal of Sound and Vibration.1984,92(3):427-445.
    [148] Mead D J, Bardell N S. Free vibration of a thin cylindrical shell with discreteaxial stiffeners[J]. Journal of Sound and Vibration.1986,111(2):229-250.
    [149] Mead D J. A new method of analyzing wave propagation in periodic structures:Applications to periodic timoshenko beams and stiffened plates[J]. Journal ofSound and Vibration.1986,104(1):9-27.
    [150] Mead D J, Bardell N S. Free vibration of a thin cylindrical shell with periodiccircumferential stiffeners[J]. Journal of Sound and Vibration.1987,115(3):499-520.
    [151] Mead D J, Zhu D C, Bardell N S. Free vibration of an orthogonally stiffened flatplate[J]. Journal of Sound and Vibration.1988,127(1):19-48.
    [152] Mead D J. Plates with regular stiffening in acoustic media: Vibration andradiation[J]. Journal of the Acoustical Society of America.1990,88(1):391-401.
    [153] Mead D J. Waves and Modes in Finite Beams: Application of the Phase-ClosurePrinciple[J]. Journal of Sound and Vibration.1994,171(5):695-702.
    [154] Mead D J, White R G, Zhang X M. Power Transmission in a PeriodicallySupported Infinite Beam Excited at a Single Point[J]. Journal of Sound andVibration.1994,169(4):558-561.
    [155] Mace B R. Periodically stiffened fluid-loaded plates, I: Response to convectedharmonic pressure and free wave propagation[J]. Journal of Sound and Vibration.1980,73(4):473-486.
    [156] Mace B R. Periodically stiffened fluid-loaded plates, II: Response to line andpoint forces[J]. Journal of Sound and Vibration.1980,73(4):487-504.
    [157] Mace B R. Sound radiation from a plate reinforced by two sets of parallelstiffeners[J]. Journal of Sound and Vibration.1980,71(3):435-441.
    [158] Mace B R. Sound radiation from fluid loaded orthogonally stiffened plates[J].Journal of Sound and Vibration.1981,79(3):439-452.
    [159] Langley R S. On the modal density and energy flow characteristics of periodicstructures[J]. Journal of Sound and Vibration.1994,172(4):491-511.
    [160] Langley R S. A note on the force boundary conditions for two-dimensionalperiodic structures with corner freedoms[J]. Journal of Sound and Vibration.1993,167(2):377-381.
    [161] Langley R S. Power transmission in a one-dimensional periodic structuresubjected to single-point excitation[J]. Journal of Sound and Vibration.1995,185(3):552-558.
    [162] Langley R S. Wave transmission through one-dimensional near periodicstructures: Optimum and random disorder[J]. Journal of Sound and Vibration.1995,188(5):717-743.
    [163] Langley R S. On the forced response of one-dimensional periodic structures:vibration localization by damping[J]. Journal of Sound and Vibration.1994,178(3):411-428.
    [164] Gupta S G. Propagation of flexural waves in doubly-periodic structures[J].Journal of Sound and Vibration.1972,20(1):39-49.
    [165] Gupta S G. Natural frequencies of periodic skin-stringer structures using a waveapproach,[J]. Journal of Sound and Vibration.1971,16(4):567-580.
    [166] Gupta S G. Natural flexural waves and the normal modes ofperiodically-supported beams and plates[J]. Journal of Sound and Vibration.1970,13(1):89-101.
    [167] Orris R M, Petyt M. A finite element study of harmonic wave propagation inperiodic structures[J]. Journal of Sound and Vibration.1974,33(2):223-236.
    [168] Lin Y K, Mcdaniel T J. Dynamics of beam-type periodic structures[J]. Journal ofEngineering for Industry.1969,91(4):1133-1141.
    [169] Petyt M. Introduction to finite element vibration analysis[M]. New York:Cambridge University Press,1990.
    [170] Signorelli J, Von Flotow A H. Wave propagation, power flow, and resonance in atruss beam[J]. Journal of Sound and Vibration.1988,126(1):127-144.
    [171] Langley R S, Bardell N S, Ruivo H M. The response of two-dimensionalperiodic structures to harmonic point loading: A theoretical and experimentalstudy of a beam grillage[J]. Journal of Sound and Vibration.1997,207(4):521-535.
    [172] Langley R S. The response of two-dimensional periodic structures to impulsivepoint loading[J]. Journal of Sound and Vibration.1997,201(2):235-253.
    [173] Langley R S. The response of two-dimensional periodic structures to pointharmonic forcing[J]. Journal of Sound and Vibration.1996,197(4):447-469.
    [174] Ruzzene M, Scarpa F, Soranna F. Wave beaming effects in two-dimensionalcellular structures[J]. Smart Materials and Structures.2003,12(3):363-372.
    [175] Bardell N S, Mead D J. Free vibration of an orthogonally stiffened cylindricalshell, part I: Discrete line simple supports[J]. Journal of Sound and Vibration.1989,134(1):29-54.
    [176] Bardell N S, Mead D J. Free vibration of an orthogonally stiffened cylindricalshell, part II: Discrete general stiffeners[J]. Journal of Sound and Vibration.1989,134(1):55-72.
    [177] Kohrs T, Petersson B A. Wave propagation in light weight profiles withtruss-like cores: Wavenumber content, forced response and influence ofperiodicity perturbations[J]. Journal of Sound and Vibration.2007,304:691-721.
    [178] Kohrs T, Petersson B A. Wave beaming and wave propagation in light weightplates with truss-like cores[J]. Journal of Sound and Vibration.2009,321:137-165.
    [179] Duhamel D, Mace B R, Brennan M J. Finite element analysis of the vibrationsof waveguides and periodic structures[J]. Journal of Sound and Vibration.2006,294(1-2):205-220.
    [180] Mead D J. The forced vibration of one-dimensional multi-coupled periodicstructures: An application to finite element analysis[J]. Journal of Sound andVibration.2009,319:282-304.
    [181] Mace B R, Duhamel D, Brennan M J, Hinke L. Finite element prediction ofwave motion in structural waveguides[J]. Journal of the Acoustical Society ofAmerica.2005,117(5):2835-2843.
    [182] Mencik J M, Ichchou M N. Wave finite elements in guided elastodynamics withinternal fluid[J]. International Journal of Solids and Structures.2007,44:2148-2167.
    [183] Mace B R, Manconi E. Modelling wave propagation in two-dimensionalstructures using finite element analysis[J]. Journal of Sound and Vibration.2008,318:884-902.
    [184] Manconi E, Mace B R. Wave characterization of cylindrical and curved panelsusing a finite element method[J]. The Journal of the Acoustical Society ofAmerica.2009,125(1):154-163.
    [185] Waki Y, Mace B R, Brennan M J. Numerical issues concerning the wave andfinite element method for free and forced vibrations of waveguides[J]. Journal ofSound and Vibration.2009,327:92-108.
    [186] Waki Y, Mace B R, Brennan M J. Free and forced vibrations of a tyre using awave/finite element approach[J]. Journal of Sound and Vibration.2009,323(3-5):737-756.
    [187] Kohrs T, Petersson B A. Forced response of light weight plates with truss-likecores[J]. Journal of Sound and Vibration.2009,325(1-2):252-265.
    [188] Renno J M, Mace B R. On the forced response of waveguides using the waveand finite element method[J]. Journal of Sound and Vibration.2010,329(26):5474-5488.
    [189] Mencik J M. On the low-and mid-frequency forced response of elasticstructures using wave finite elements with one-dimensional propagation[J].Computers and Structures.2010,88(11-12):674-689.
    [190] Renno J M, Mace B R. Calculating the forced response of two-dimensionalhomogeneous media using the wave and finite element method[J]. Journal ofSound and Vibration.2011,330(24):5913-5927.
    [191] Lee J H, Kim J. Analysis of sound transmission through periodically stiffenedpanels by space-harmonic expansion method[J]. Journal of Sound and Vibration.2002,251(2):349-366.
    [192] Legault J, Atalla N. Numerical and experimental investigation of the effect ofstructural links on the sound transmission of a lightweight double panelstructure[J]. Journal of Sound and Vibration.2009,324(3-5):712-732.
    [193] Legault J, Atalla N. Sound transmission through a double panel structureperiodically coupled with vibration insulators[J]. Journal of Sound and Vibration.2010,329(15):3082-3100.
    [194] Liu Y, Yu D, Li L, Zhao H, Wen J, Wen X. Design guidelines for flexural waveattenuation of slender beams with local resonators[J]. Physics Letters A.2007,362(5-6):344-347.
    [195] Oudich M, Senesi M, Assouar M B, Ruzenne M, Sun J H, Vincent B, Hou Z, WuT T. Experimental evidence of locally resonant sonic band gap intwo-dimensional phononic stubbed plates[J]. Physical Review B.2011,84(16):165136.
    [196] Li L, Chen T, Wu J, Wang X, Wang Z. Hybrid method for analyzing the torsionalvibration of one-dimensional phononic-band-gap shafts[J]. Japanese Journal ofApplied Physics.2012,51:052001.
    [197] Assouar M B, Oudich M. Enlargement of a locally resonant sonic band gap byusing double-sides stubbed phononic plates[J]. Applied Physics Letters.2012,100(12):123506-4.
    [198] Den Hartog J P. Mechanical Vibrations[M].4th ed. New York: McGraw-Hill,1956.
    [199]刘耀宗,郁殿龙,赵宏刚,温熙森.被动式动力吸振技术研究进展[J].机械工程学报.2007,43(3):14-21.
    [200] Frahm H. Device for damping vibrations of bodies: U.S. Patent[P].1909.3575-3580.
    [201] Mead D J. Passive Vibration Control[M]. West Sussex: John Wiley&Sons,2000.
    [202] Brennan M J. Control of flexural waves on a beam using a tunable vibrationneutraliser[J]. Journal of Sound and Vibration.1998,222(3):389-407.
    [203] Thompson D J. A continuous damped vibration absorber to reduce broad-bandwave propagation in beams[J]. Journal of Sound and Vibration.2008,311(3-5):824-842.
    [204] Gao Y, Brennan M J, Sui F. Control of flexural waves on a beam usingdistributed vibration neutralisers[J]. Journal of Sound and Vibration.2011,330(12):2758-2771.
    [205] Lee U. Spectral Element Method in Structural Dynamics[M]. Singapore: JohnWiley&Sons,2009.
    [206] Asiri S, Baz A, Pines D. Periodic struts for gearbox support system[J]. Journal ofVibration and Control.2005,11:709-721.
    [207] Solaroli G, Gu Z, Baz A, Ruzzene M. Wave propagation in periodic stiffenedshells: Spectral finite element modeling and experiments[J]. Journal of Vibrationand Control.2003,9(9):1057-1081.
    [208] El-khatib H M, Mace B R, Brennan M J. Suppression of bending waves in abeam using a tuned vibration absorber[J]. Journal of Sound and Vibration.2005,288(4-5):1157-1175.
    [209] Sigalas M M, Economou E N. Elastic waves in plates with periodically placedinclusions[J]. Journal of Applied Physics.1994,75(6):2845-2850.
    [210] Fahy F, Gardonio P. Sound and Structural Vibration: Radiation, Transmissionand Response[M].2nd ed. Oxford: Academic Press,2007.
    [211] Graff K F. Wave Motion in Elastic Solids[M]. London: Oxford University Press,1975.
    [212] Romeo F, Luongo A. Invariant representation of propagation properties forbi-coupled periodic structures[J]. Journal of Sound and Vibration.2002,257(5):869-886.
    [213] Zwillinger D. Standard Mathematical Tables and Formulae[M].31st ed. NewYork: CRC Press,2003.
    [214] Harris C M, Piersol A G. Shock And Vibration Handbook[M].5th ed. New York:McGraw-Hill,2002.
    [215] Brennan M J. Characteristics of a wideband vibration neutralizer[J]. NoiseControl Engineering Journal.1997,45(5):201-207.
    [216] El-khatib H M, Mace B R, Brennan M J. Suppression of bending waves in abeam using a tuned vibration absorber[J]. Journal of Sound and Vibration.2005,288(4-5):1157-1175.
    [217] Jacquot R G, Foster J E. Optimal cantilever dynamic vibration absorbers[J].Journal of Engineering for Industry.1977,99(1):138-141.
    [218] Strasberg M, Feit D. Vibration damping of large structures induced by attachedsmall resonant structures[J]. Journal of the Acoustical Society of America.1996,99(1):335-344.
    [219] Xiao Y, Wen J, Wen X. Longitudinal wave band gaps in metamaterial-basedelastic rods containing multi-degree-of-freedom resonators[J]. New Journal ofPhysics.2012,14:033042.
    [220] Anderson P W. Absence of diffusion in certain random lattices[J]. PhysicalReview.1958,109(5):1492.
    [221] Bendiksen O O. Localization phenomena in structural dynamics[J]. Chaos,Solitons&Fractals.2000,11(10):1621-1660.
    [222] Pierre C. Mode localization and eigenvalue loci veering phenomena indisordered structures[J]. Journal of Sound and Vibration.1988,126(3):485-502.
    [223] Bendiksen O O. Mode localization phenomena in large space structures[J].AIAA journal.1987,25(9):1241-1248.
    [224] Hodges C H. Confinement of vibration by structural irregularity[J]. Journal ofSound and Vibration.1982,82(3):411-424.
    [225] Nishida E, Koopmann G H. A method for designing and fabricating broadbandvibration absorbers for structural noise control[J]. Journal of Vibration andAcoustics.2007,129(4):397-405.
    [226] Carcaterra A, Akay A, Bernardini C. Trapping of vibration energy into a set ofresonators: Theory and application to aerospace structures[J]. MechanicalSystems and Signal Processing.2012,26:1-14.
    [227]马大猷,沈豪.声学手册[M].北京:科学出版社,2004.
    [228]黄其柏.工程噪声控制学[M].武汉:华中科技大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700