基于布里渊散射的分布式光纤传感系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以光纤中散射光为传感载体的分布式光纤传感器以其独特的优势,比如传感光纤质轻柔软、抗电磁干扰、分布式测量以及传感传输集于一身等,在传感领域内得到众多研究者的青睐。完全分布式光纤传感系统主要有两种,一种是基于拉曼散射,另一种是基于布里渊散射。其中基于拉曼散射的分布式传感系统已被研究成熟,基本商业化;由于基于布里渊散射的分布式传感系统能够同时测量温度和应变两大参数,所以相比较基于拉曼散射的分布式传感系统更有优势,但由于布里渊散射光检测的困难性,致使发展不够成熟,至今未大规模商业化。
     本文在深入研究布里渊散射机理的前提下,详细分析前人研究的过程及方法之后,针对布里渊散射光检测的特点,提出一套切实可行并且有别于前人方法的基于布里渊散射的分布式光纤温度应变传感系统方案,据此对该系统进行逐步研发,在该过程中进行一系列的实验验证和测试,并且考虑相关的算法和影响因素,采取一定的措施。该系统方案简单来说是采用DFB(分布式反馈)激光器发出窄线宽的连续光后经光电调制器外调制成脉冲光,之后采用EDFA(掺铒光纤放大器)进行放大,被放大的脉冲光作为入射光进入传感光纤以获得该光纤中的布里渊后向散射信号。该方式采用单端输入的方式来获得布里渊散射信号,这样便于该系统的安装使用;提出了采用同源外差干涉法来解调信号,该方法避免了一般干涉法对两束光强度相近的要求,简化了测试系统;另外采取一定措施来加强信号,以便于后续处理;同时应用电的方式来同时得到布里渊频移和强度的变化,这样就可以对温度和应变进行解调,实现对二者的同时测量。最后,进行了一系列的实验研究和系统测试及结果分析。具体地说,全文包括以下几个方面:
     第一章绪论,在概述中简单介绍一些基本知识,包括光纤的传输特性,普通单模光纤中散射光的分类以及各自的定义,两种主要光纤传感技术:光纤光栅传感技术和分布式光纤传感技术(其中又包括基于瑞利散射、基于拉曼散射以及基于布里渊散射),然后综述了基于布里渊散射光纤传感技术的研究现状和课题意义,最后介绍了本文所做的主要工作。
     第二章布里渊散射及其传感技术的理论基础,是研究课题的理论部分,从理论上分析布里渊散射的一系列特性。具体来说,本章详细介绍普通单模光纤中布里渊散射的分类以及各自产生的机理;并且分析其光谱的特性,包括布里渊频移的大小、谱图形状、强度分布等;最后阐述如何实现对传感光纤所受温度和应变的测量。
     第三章基于布里渊散射的分布式光纤传感系统,本毕业论文的两大核心内容之一,包括系统结构、系统方法、关键器件性能分析和使用、软件开发以及实验平台。在系统结构中,给出系统的总体介绍,描述信号的流程;在系统方法中,介绍了系统中所使用的四种独特方法,包括同源外差干涉解调布里渊信号的基本原理和独特优势;加强信号的两种方法,一是双脉冲法增强布里渊散射信号,另一个是加强外差干涉中的瑞利成份;电方法解调温度和应变的结构图、理论依据和计算方法;布里渊光强度的归一化计算方法以及系统性能指标分析;在关键器件性能分析和使用中,对系统中的主要器件进行较详细的介绍,包括性能指标,选定原则以及周围电路控制原理等;软件开发部分,就该系统的具体要求,叙述对数据采集卡的软件控制、数据流程以及平均计算过程等相关内容;在实验平台中给出整套系统的实物图片;最后作了一小结。
     第四章实验研究,包括掺铒光纤放大器的研究、入射光参数变化对后向散射光谱图影响的研究以及非线性现象的研究。具体来说,即针对本系统的要求,给出掺铒光纤放大器的实验研究;通过调整入射光的参数来研究光纤后向散射光与入射光的关系;若入射光参数合适的时候,光纤非线性现象的出现,通过大量实验来验证其规律性和相关因素的影响,最后剖析其产生的可能原因。
     第五章系统测试及结果分析,是本论文另一核心内容。在信号测试中,用频谱分析仪测试得到外差干涉的高频信号,用示波器得到表征沿光纤分布的散射光的特征信号;并且给出对普通单模光纤所受温度、应变的测试结构、过程以及结果。在以上的实验中得到频谱分析仪上波峰频率为10.8420GHz,与布里渊频移的理论值相符,示波器上的两路波形反映了沿光纤传输的后向散射光信息,在温度实验中得到的升温和降温的关系系数分别为1.0843 MHz/℃和1.0462 MHz/℃,该实验数据接近于前人报道的数据1.2MHz/℃,它们之间的差值主要是由于仪器误差,在应变实验中得到的室温下的关系系数为0.049MHz/με,与前人报道的数据一致,这些实验表明了整个系统的可行性和准确性。
     第六章总结与展望,对本论文进行总结,并且分析该系统存在的问题,指出针对该系统需继续进行的研究和试验,最后展望未来且预测该系统远大的应用前景。
Recently, the distributed fiber sensor based on scattering light has many merits, such as light and soft, resistance to electromagnetic interference, easy to carry out the distributed measurement, sensing and transmission in one fiber, and so on, so that it is pretty popular in sensing field. The absolute distributed fiber sensing system mainly has two kinds: one is based on Raman scattering and the other is based on Brillouin scattering. Thereinto, the distributed fiber sensing system based on Raman has been researched deeply and is basically commercial now; on the other hand, the distributed fiber sensing system based on Brillouin scattering can measure temperature and strain simultaneously so it is more attractive compared with that based on Raman scattering, but the detection of Brillouin scattering light is difficult so that its development is slow and has not been commercial up to today.
     In this dissertation, Brillouin scattering mechanism was researched deeply and the previous research process and method were analyzed in detail. After that, considering the characteristics of Brillouin scattering light detection, we proposed a feasible and novel scheme of distributed optical fiber temperature and strain sensing system based on Brillouin scattering. According to this scheme, the system was built step by step and the corresponding experiments and tests were done. In consideration of related calculation and influencing factors, the measurements had been taken. Simply speaking, our method is as following: narrow-linewidth continuous light from a distributed feedback laser (DFB-laser) is modulated into pulse light by the photoelectrical modulator. The pulse light is amplified by Er-doped fiber amplifier (EDFA). After that, it enters the sensing fiber and makes Brillouin backscattering light generate. There are several keys in our work. Firstly, the Brillouin scattering light is obtained through single-input which makes the system installation convenient. Secondly isogenous heterodyne interference is put forward in the first time to demodulate Brillouin backscattering signal which avoids the disadvantage of the general interference method demanding two component lights' intensity approach, and simplifies the testing system. Thirdly, the measurement has been taken to strengthen the signal in order to simplify the later signal process. Fourthly, the Brillouin frequency shift and intensity variance can be obtained at the same time by the electrical method. Thus the temperature and strain can be gotten simultaneously. Lastly, a series of experiment research and system testing result analysis are mode. Concretely, the main text includes the following aspects.
     In Ch1 introduction, summary introduces basal knowledge, including fiber's transmission characteristics, scattering light classification in single-mode fiber and their definitions, two kinds fiber sensing technologies (Fiber grating sensing technology and distributed fiber sensing technology which includes those based on Rayleigh scattering, based on Raman scattering and based on Brillouin scattering). Then, fiber sensing technology based on Brillouin scattering research status quo and subject signification is displayed. Lastly, the main task in this dissertation is introduced simply.
     In Ch2 theory basis of Brillouin scattering and its sensing technology which is theoretical part of the research object, the Brillouin scattering characteristics are analyzed in theory. The category of the Brillouin scattering and their generation principles are introduced. And the spectrum characteristics which include the Brillouin frequency shift, spectrum shape, and intensity distribution, are analyzed. Lastly, it is described how to measure temperature and strain suffered by the sensing fiber.
     In Ch3 distributed fiber sensing system based on Brillouin scattering is one of the dissertation's two cores, including system structure, system methods, key components performance analysis and usage, software development and experiment platform. Firstly, in system structure, the system is introduced on the whole and the signal flow is described. Secondly, in system methods, four special methods in the system are introduced, including the basal principle and advantages of the isogenous heterodyne interference used to detect the Brillouin signal, the methods to strengthen the signal, which are double-pulse strengthening Brilliouin scattering signal and making Rayleigh component in heterodyne interference strengthening, the demodulation of temperature and strain by the electrical way including its structure, theory basis and calculation method, the normalization of the Brillouin intensity and system performance index analysis. Thirdly, in key components performance analysis and usage, the main devices in this system are displayed in detail, including performance index, selection principle and circuit controller principle, and so on. Fourthly, in software development, according to the demands of this system, it depicts the software control to the digitizer, data flow, averaging process, and so on. Fifthly, in experiment platform, the picture of the whole system is shown. Lastly, the conclusion is given.
     In Ch4 experiment research, which includes research on Er-doped fiber amplifier (EDFA), research on the influence of incidence light parameters to backscattering light spectrum, and research on nonlinear phenomenon. Concretely speaking, the experimental research of the EDFA is done and the relationship between backscattering light and incidence light is gotten through adjusting the parameters of the incidence light. When parameters of incidence light are suitable, the fiber nonlinearity phenomenon occurs. The corresponding experiments are done to look for its rule and influencing factors. The possible reasons are given based on the above experiments.
     In Ch5 system testing and result analysis, is the other core in this dissertation. In signal testing, the high frequency signal of heterodyne interference is seen from the spectrum analyzer, the signal along the sensing fiber is gotten from the oscilloscope, and the temperature and strain testing experiments for single-mode fiber are done, which results are good. The peak frequency from the spectrum analyzer is 10.8420GHz, which is consistent with the theoretical value of Brillouin frequency shift. The two signal waveforms from the oscilloscope have the information of the backscattering light along the optical fiber. The temperature coefficients in the temperature elevation and reduction process are separately 1.0843 MHz/℃and 1.0462 MHz/℃, which are near to the data in the previous article which is 1.2MHz/℃and the little difference is caused by the apparatus error. The strain coefficient under room temperature is 0.049 MHz /με, which is consistent with thedata in the previous article. The above data indicate the system's feasibility and veracity. In the calculation, the spatial resolution, light pulse power and signal to noise ratio are calculated.
     In Ch6 conclusion and prospect, the whole conclusion is given. The author analyzes the issues of this system and points out the research and experiment which should be gone on for this system in the future. In the end, the author prospects the future and forecasts the application foreground of the system.
引文
[1]Pinnow D.A,Rich T.C,Ostermayer F.W and Dimomenico M.Fundamental optical attenuation limits in the liquid and glassy state with application to fiber waveguide materials [J].Applied Physics Letters,1973,22:527-529.
    [2]Dakin J.P,Pratt D.J.Fiber-optic distributed temperature measurement:A comparative study of techniques[J].IEEE Digest,1986,74(10):1-4.
    [3]A.H.Hartog,M.P.Gold.On the theory of backscattering in single-mode optical fiber[J].Journal of Lightwave Technology,1984,LT-2(2):76-82.
    [4]M.Nakazawa.Rayleigh backscattering theory for single-mode optical fibers[J].Journal Optical Society of America,1983,73(9):1175-1180.
    [5]Wang zhi,Ren Guobin,Lou Shuqin,Jian Shuisheng.Loss properties due to Rayleigh scattering in different types of fiber[J].Optics Express,2003,11(1):39-47.
    [6]Vladimir A.Andreev,Vladimir A.Burdin,Alexander V.Troshin.Analysis of spectral characteristics of Rayleigh scattering parameters for different types of single-mode fibers[C].Proc.of SPIE,the International Society for Opticla Engineering,2005,6277:627708.1-627708.10.
    [7]Partha P.Baneriee.Nonlinear optics-theory,numerical modeling,and application[M].U.S.A.:Marcel Dekker,Inc.2004.
    [8]E.J.Woodbury,W.K.Ng.Ruby laser operation in the near IR[C].Proc.IRE (Correspondence),1962,50:2367.
    [9]R.W.Hellwarth.Theory of stimulated Raman scattering[J].Physical Review Letters,1963,130(5):1850-1852.
    [10]N.Bloembergen.The stimulated Raman effect[J].American Journal of Physics,1967,35(11):989-1023.
    [11]Robert W.Boyd.Nonlinear optics[M].CA:Academic Press,Inc.1992.
    [12]C.W.Davis.光纤传感器技术手册[M].北京:电子工业出版社,1987.
    [13]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [14]廖延彪,黎敏.光纤传感器的今日与发展[J].传感器世界,2004,10(2):6-12.
    [15]K.O.Hill,Y.Fuji,D.C.Jonson and B.S.Kawasaki.Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Applied Physics Letters, 1978, 32(15): 647-649.
    [16] G. Meltz, W. W. Morey and H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics Letters, 1989,14: 823-825.
    [17] R. Kashyap. Fiber Bragg Gratings [M]. London: Academic Press, 1999.
    [18] A. D. Kersey, M. A. Davis, H. J. Patrick et al. Fiber grating sensors [J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
    [19] W. W. Morey, G. A. Ball, H. Singh. Applications of fibre grating sensors [C]. Proc. of SPIE, 1996, 2839: 2-7.
    [20] A. D. Kersey, M. A. Davis, T. A. Berkoff et al. Progress towards the development of practical fibre Bragg grating instrumentation systems [C]. Proc. of SPIE, 1996, 2839:40-63.
    [21] P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, M.Bugaud. Applications of Bragg grating sensors in Europe [C]. Proceedings of the 12th International Conference on Optical Fibre Sensors, Williamsburg, USA, 1997:4-19.
    [22] A. Othonos, K. Kalli. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing [M]. Boston, London: Artech House Books, 1999.
    [23] D. K. W.Lam, B. K. Garside. Characterization of single-mode optical fiber filters [J]. Applied Optics, 1981,20:440-445.
    [24] A. Othonos, X. Lee. Novel and improved methods of writing fiber Bragg gratings with phase-masks [J]. IEEE Photonics Technology Letters, 1995,7: 1183-1185.
    [25] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides [J]. Optics Letters, 1987, 12: 847-849.
    
    [26] G. P. Brady, K. Kalli, D. J. Webb et al. Extended range, coherence tuned, dual wavelength interferometry using a superfluorescent fibre source and chirped fiber Bragg grating [J]. Optics Communication, 1997, 134: 341-346.
    [27] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. Long-period fiber grating as band-rejection filters [J]. Journal of Lightwave Technology, 1996, 14: 58-65.
    [28] B. J. Eggleton, P. A. Krug, L. Poladian, et al. Long periodic superstructure Bragg gratings in optical fibers [J]. Electronics Letters, 1994, 30(19): 1620-1622.
    [29]A.Othonos,X.Lee,R.M.Measure.Superimposed multiple Bragg gratings[J].Electronics Letters,1994,30:1972-1973.
    [30]R.Zengerle,O.Leminger.Phase-shifted Bragg grating filters with improved transmission characteristics[J].Journal of Lightwave Technology,1995,13:2354-2358.
    [31]R.Kashyap,A.Swanton,D.J.Armes.Simple technique for apodising chirped and unchirped fibre Bragg gratings[J].Electronics Letters,1996,32:1226-1228.
    [32]B.Malo,S.Theriault,D.C.Johnson,et al.Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask[J].Electronics Letters,1995,31:223-225.
    [33]J.Albert,K.O.Hill,B.Malo,et al.Apodisation of the spectral response of fibre Bragg gratings using a phase-mask with variable diffraction efficiency[J].Electronics Letters,1995,1:222-223.
    [34]K.Sugden,L.zhang,J.A.R.Williams,et al.Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings[J].IEEE Journal of Lightwave Technology,1997,15:1424-1432.
    [35]李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用.北京:科学出版社,2005.
    [36]J.Mora,J.L.Cruz,M.V.Andres,et al.Simple high-resolution wavelength monitor based on a fiber Bragg grating[J].Applied Optics,2004,43(4):744-749.
    [37]A.Cusano,A.Cutolo,J.Nasser,et al.Antonio dynamic strain measurement by fibre Bragg grating sensors[J].Sensors and Actuators A:Physical,2004,110(1):276-81.
    [38]C.Song,S.K.Lee,S.H.Jeong,et al.Absolute strain measurements made with fiber Bragg grating sensors[J].Applied Optics,2004,43(6):1337-1341.
    [39]R.M.Measures.Structural monitoring with fiber optic technology[M].USA:Academic Press,2001.
    [40]靳伟,廖延彪,张志鹏,等.导波光学传感器:原理与技术.北京:科学出版社,1998.
    [41]Barnoski K.M.,Rourke M.D.,Jensen S.M.,et al.Optical time domain reflectometer[J].Applied Optics,1977,16(9):2375-2379.
    [42]Barnoski M.K.,Jensen S.M.Fiber waveguides:a novel technique for investigating attenuation characteristics[J].Applied Optics,1976,15(9):2112-2115.
    [43]Aoyama K,Nakagawa K,Itoh T.Optical time domain reflectometry in a single-mode fiber[J]. IEEE Journal of Quantum Electronics,1981,QE-17(6):862-868.
    [44]Rogers A.J.Polarization-optical time-domain reflectometry[J].Electronics Letters,1980,16(13):489-490.
    [45]Rogers A.J.Polarization-optical time-domain reflectometry:a new technique for the measurement of field distributions[J],Applied Optics,1981,20(6):1060-1074.
    [46]Jose M.L.H et al.Handbook of optical fiber sensing technology[M].New York:John Wiley & Sons,2002.
    [47]Wait P C,Newson T P.Landau Placzek ratio applied to distributed fibre sensing[J].Optics Communications,1996,122:141-146.
    [48]Rossi P,el al.New method for detecting cracks in concrete using fiber optics[J].Materials and Structures,Research and Testing(RILEM),1989,22:437-442.
    [49]Wanser K H,Voss K.F.Crack detection using multimode fiber optical time domain Reflectometry[C].Proc.SPIE,1994a,2294:43-52.
    [50]Leung C.K.Y,Elvin N,Olson N,et al.A novel distributed optical crack sensor for concrete structures[J].Engineering Fracture Mechanics,2000,65:133-148.
    [51]Leung C.K.Y.Fiber optic sensors in concrete:the future?[J].NDT & E International,2001,34:85-94.
    [52]江毅,Leung K.Y.光纤裂缝传感器中裂缝宽度与光纤损耗关系分析[J].北京理工大学学报,2003,23(4):492-495.
    [53]Liu H W,et al.Study on fiber-optic sensors for concrete Dam monitoring[C].Proc.5th East Asia-Pacific Conf.On Structural Engineering and Construction.Gold Coast,Queensland,1995.
    [54]MacLean A,Moran C,Johnstone W,et al.Detection of hydrocarbon fuel spills using a distributed fibre optic sensor[J].Sensors and Actuators A,2003,109(1-2):60-67.
    [55]Dakin J.P,Pratt D.J,Bibby G.W,et al.Distributed optical fibre Raman temperature sensor using a semiconductor Light source and detector[J].Electronics Letters,1985,21(13):569-570.
    [56]王玮,周邦全,张在宜,等.分布式光纤拉曼光子温度传感器系统的测量精度[J].光学学报,1999,19(1):100-105.
    [57]刘建胜,李铮,张其善.光纤完全分布式温度传感系统研究进展[J].电子科技导报,1999,(3):10-13.
    [58]Sensor Highway Documents,Sensor Highway Ltd.,1996.
    [59]Zhang Zaixuan,Liu Tianfu,Chen Xiaozu.Laser Raman spectrum of optical fiber and the measurement of temperature field space[C].Proc.SPIE,1994,2321:186-190.
    [60]蔡德所,何薪基,蔡顺德,等.大型三维混凝土结构温度场的光纤监测技术[J].三峡大学学报,2005,27(2):97-100.
    [61]蔡顺德,望燕慧,蔡德所.DTS在三峡工程混凝土温度场监测中的应用[J].水利水电科技进展,2005,25(4):30-32,35.
    [62]程光煦等.拉曼布里渊散射[M].北京:科学出版社,2001.
    [63]Ippen E.P,Stolen R.H.Stimulated Brillouin scattering in optical fibers[J].Applied Physics Letters,1972,21(11):539-541.
    [64]Rich T.C,Pinnow D.A.Evaluation of fiber optical waveguides using Brillouin spectroscopy [J].Applied Optics,1974,13(6):1376-1378.
    [65]Rowell N.L,Thomas P.J,vanDriel H.M,et al.Brillouin spectrum of single-mode optical fibers[J].Applied Physics Letters,1979,34(2):139-141.
    [66]Shibata N,Waaris R.G,Braun R.P.Brillouin-gain spectra for single-mode fibers having pure-silica,G_eO_2-doped,and P_2O_5-doped cores[J].Optics Letters,1987,12(4):269-271.
    [67]Shibata N,Okamoto K,Azuma Y.Longitudinal acoustic modes and Brillouin-gain spectra for G_eO_2-doped-core single-mode fibers[J].Journal of the Optical Society of America B,1989,6(6):1167-1174.
    [68]Culverhouse D,Farahi F,Pannell C.N,et al.Stimulated Brillouin scattering:A means to realise tunable microwave generator or distributed temperature sensor[J].Electronics Letters,1989,25(14):915-916.
    [69]Culverhouse D,Farahi F,Pannell C.N,et al.Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors[J].Electronics Letters,1989,25(14):913-915.
    [70]Horiguchi T,Tateda M.Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave [J]. Optical Letters, 1989,14(8): 408-410.
    [71] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory [J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176.
    [72] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers [J]. IEEE Photonics Technology Letters, 1989,1(5): 107-108.
    [73] Kurashima T, Horiguchi T, Tateda M. Thermal effects of Brillouin gain spectra in single-mode fibers [J]. Photonics Technology Letters, 1990,2(10):718-720.
    [74] Kurashima T, Horiguchi T, Tateda M. Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers [J]. Applied Optics, 1990, 29(15): 2219-2222.
    [75] Horiguchi T, Kurashima T, Koyamada Y. Measurement of temperature and strain distribution by Brillouin frequency shift in silica optical fibers [C]. Proc. of SP IE, 1992, 1797: 2-13.
    [76] Horiguchi T, Kurashima T, Tateda M. Brillouin characterization of fiber strain in bent slot-type optical-fiber cables [J]. Journal of Lightwave Technology, 1992, 10 (9): 1196-1201.
    [77] Bao X, Webb D. J, Jackson D. A. Characteristics of Brillouin gain based distributed temperature sensors [J]. Electronics Letters, 1993,29(17): 1543-1544.
    [78] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.
    [79] Naruse H, Tateda M, Ohno H, et al. Linear strain distribution dependence of the Brillouin gain spectrum [R]. IEEE, WC4,2002, 309-312.
    [80] Kurashima T, Horiguchi T, Izumita H, et al. Brillouin optical-fiber time domain reflectometry [J]. IEICE Transactions on Communications, 1993, E76-B (4): 382-390.
    [81] Bao X, Webb D. J, Jackson D.A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber [J]. Optics Letters, 1993, 18(7): 552-554.
    [82] Nikles M, Thevenaz L, Robert P. A. Brillouin gain spectrum characterization in single-mode optical fibers [J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.
    [83] Bao X, Brown A, et al. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor [J]. Journal of lightwave technology, 2001, 19(11): 1698-1704.
    [84] Thevenaz L, Nikle M, Fellay A, et al. Truly distributed strain and temperature sensing using embedded optical fibers [C]. Proc. of SPIE, 1998, 3330: 301-314.
    [85] Brown A, Demerchant M, Bao X, et al. Strain monitoring of the Rollinsford bridge using distributed sensing [C]. Proc. of SPIE, 2000,4087: 1149-1156.
    [86] Bao X, Demerchant M, Brown A, et al. Strain measurement of the steel beam with the distributed Brillouin scattering sensor [C]. Proc. of SPIE, 2001,4337: 223-233.
    [87] Chhoa C. Y, Bao X, Bremner T. W, et al. Strain measurement in concrete structure using distributed fiber optic sensing based on Brillouin scattering with single mode fibers embedded in glass fiber reinforcing vinyl ester rod and bonded to steel reinforcing bars [C]. Proc. of SPIB, 2001,4337: 466-476.
    [88] Zou L, Bao X, Wan Y, et al. Centimeter spatial resolution of distributed optical fiber sensor for structural healthy monitoring [C]. Proc. of SPIE, 2004, 5579: 1-10.
    [89] Zou L, Bao X, Ravet F, et al. Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure [J]. Applied Optics, 2006, 45(14): 3372-3377.
    [90] Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber [J]. Optics Letters, 1993, 18(3): 185-187.
    [91] Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers [J]. Journal of Lightwave Technology, 1994, 12(5): 730-736.
    [92] Shimizu K., Horiguchi T, Koyamada Y. Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter [J]. Optics Letters, 1992, 17(18): 1307-1309.
    [93] Shimizu K, Horiguchi T, Koyamada Y. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback [J]. Optics Letters, 1996, 21(22): 1824-1826.
    [94] Shimizu K, Sakai Y, Horiguchi T, et al. Continuous-wave frequency synthesis of a laser diode based on discrete-time negative frequency feedback: II theory [J]. Journal of Quantum Electronics,1996,32(4):620-627.
    [95]Li Z.X,Takeuchi N.Optical fiber strain distribution measurement by a Brillouin frequency shift technique[C].IEEE imtc'94,1994:1501-1502.
    [96]DiTeSt光纤测量系统.http://www.sites-china.com.cn/UpFile/File63.pdf.
    [97]Brugett S.J,Light R.L,Ruffin P.B,et al.Distributed strain measurements in precision-wound optical fibers using Brillouin optical time domain reflectometry[C].Proc.of SPIE,1998,3330:164-173.
    [98]Ohno H,Naruse H,Kihara M,et al.Industrial applications of the BOTDR optical fiber strain sensor[J].Optical Fiber Technology,2001,7:45-64.
    [99]Naruse H.Distributed fiber optic sensors using Brillouin scattering and their application[C]5th Optical Fiber Measurement Conference,1999:100-105.
    [100]Yasur N,Naruse H,Masuda J,et al.Concrete pipe strain measurement using optical fiber sensor[J].IEICE Transactions on Electronics,2000,E83-C(3):468-474
    [101]张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究[J].工程地质学报,2004,12(4):422-426.
    [102]施斌,徐洪钟,张丹,等.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报,2004,23(3):493-499.
    [103]宋牟平,范胜利,陈好,等.基于光相干外差检测的布里渊散射DOFS的研究[J].光子学报,2005,34(2):233-236.
    [104]胡晓东,胡小唐,陈津平.基于布里渊增益的单端分布式光纤传感技术[J].光电子激光,2000,11(1):86-88.
    [105]宋牟平,章献民.34km传感长度的布里渊光时域反射计的设计与实现[J].仪器仪表学报,2005,26(11):1155-1158.
    [106]Brown A,Bao X,Demerchant M,et al.Analysis of the precision of a Brillouin scattering based distributed strain sensor[J].Proc.of SPIE,1999,3670:359-365.
    [107]Wait P.C,Newson T.P.Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin line width[J].Optics Communication,1995,117:142-146.
    [108]Smith J,Brown A,Demerchant M,et al.Pulse width dependence of the Brillouin loss spectrum[J].Optics Communications,1999,168:393-398.
    [109]Aydin Y,Jean-Marc D,Jean T.Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers[J].Journal of Lightwave Technology,2002,20(8):1425-1432.
    [110]Bao X,Wan Y,Zou L,et al.The effect of optical phase on the Brillouin spectrum in the distributed sensor system.Proc.of SPIE,2005,5855:543-546.
    [111]Liu D,Song M,Zhang X.Polarization insensitive coherent detection for Brillouin scattering spectrum in BOTDR[J].Optics Communications,2005:1-5.
    [112]Fellay A,Thevenaz L,Facchini M,et al.Distributed sensing using stimulated Brillouin scattering:towards ultimate resolution[C].12th International Conterence on Optical fiber sensors,OSA Tech.Dig.Series,1997,16:324-327.
    [113]Bao X,Webb D.J,Jackson D.A.Temperature non-uniformity in distributed temperature sensors[J].Electronics Letters,1993,29(11):976-978.
    [114]Ravet F,Bao X,Chen L.Effect of pulsewidth on strain measurement accuracy in Brillouin scattering based fibre optic sensors[C].Proc of SPIE,2004,5579:187-194.
    [115]刘迪仁,宋牟平,章献民,等.应变梯度对布里渊光时域反射计测量精度的影响[J].光学学报,2005,25(4):501-505.
    [116]Cho S.B,Kim Y.G.,Pulsewidth dependence of Brillouin frequency in single mode optical fibers[J].Optical Express,2005,13(23):9472-9479.
    [117]Bao X,Brown A,Demerchant M,et al.Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short(<10ns) pulses[J].Optics Letters,1999,24(8):510-512.
    [118]Lecoeuche V,Webb D.J,Pannell C.N,et al.Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time[J].Optics Letters,2000,25(3):156-158.
    [119]Afshar S,Ferrier G.A,Bao X.Impact of EOM extinction Ratio on the Brillouin Frequency measurement of Distributed fiber optic sensors[C].Proc.of SPIE,2003,5260:519-522.
    [120]Bao X,Yu Q,Kalosha V.P,et al.Influence of transient phonon relaxation on the Brillouin loss spectrum of nanosecond pulses[J].Optics Letters,2006,31(7):888-890.
    [121]Afshar S,Chen L,Bao X.CW pre-injection of pump-probe Brillouin sensors for high spatial and strain (temperature) resolutions [C]. Proc. of SPIE, 2005, 5855: 567-570.
    [122] Demerchant M, Brown A, Bao X, et al. Automated system for distributed sensing [C]. Proc. of SPIE, 1998,3330:315-322.
    [123] Brown A. W, Demerchant M. D, Bao X, et al. Advances in distributed sensing using Brillouin scattering [C]. Proc. of SPIE, 1998, 3330: 294-300.
    [124] Brown A, Demerchant M, Bao X, et al. Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method [J]. Journal of Lightwave Technology, 1999,17(7): 1179-1183.
    [125] Demerchant M, Brown A, Bremner T. W. Signal processing for a high-spatial-resolution distributed sensor [J]. Optical Engineering, 2000,39(6): 1632-1635.
    [126] Graham A. F, Shahraam A. V, Bao X, et al. A new fitting method for spectral characterization of Brillouin-based distributed sensors [C]. Proc. of SPIE, 2003, 5260: 512-514.
    [127] Yu Q, Bao X, Ravet F, et al. Simple method to identify the spatial location better than the pulse length with high strain accuracy [J]. Optics Letters, 2005, 30 (7): 2215-2217.
    [128] Ravet F, Bao X, Zou L, et al. Accurate strain detection and localization with the distributed Brillouin sensor based on a phenomenological signal processing approach [C]. Proc. of SPIE, 2006,6176:61761C(1-9).
    [129] Bao X, Yu Q, Ravet P, et al. A simple method to identify the spatial location complication due to the transient phonon relaxation on the Brillouin loss spectrum [C]. Proc. of SPIE, 2006, 6167:616715(1-8).
    [130] Parker T. R, Farhadiroushan M, Handerek V. A, et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers [J]. Optics Letters, 1997,22(11): 787-789.
    [131] Parker T. R, Farhadiroushan M, Handerek V. A, et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter [J]. IEEE Photonics Technology Letters, 1997, 9(7): 979-981.
    [132] Parker T. P, Farhadiroushan M, Feced R, et al. Simultaneous distributed measurement of strain and temperature form noise-initiated Brillouin scattering in optical fibers [J]. IEEE Journal of Quantum Electronics, 1998,34 (4): 645-659.
    [133] Smith J, Brown A, Demerchant M. Simultaneous strain and temperature measurement using a Brillouin scattering based distributed sensor [C]. Proc. of SP IE, 1999, 3670: 366-372.
    [134] Bao X, Smith J, Brown A. Temperature and strain measurement using the power, line-width, shape and frequency shift of the Brillouin loss spectrum [C]. Proc. of SPIE, 2002, 4920: 311-322.
    [135] Bao X, Huang C, Zeng X, et al. Simultaneous strain and temperature monitoring of the composite cure with a Brillouin-scattering-based distributed sensor [J]. Optical Engineering, 2002,41(7): 1496-1501.
    [136] Yu Q, Bao X, Chen L. Simultaneous strain and temperature measurement in PM fibers using Brillouin frequency, power and bandwidth [C]. Proc. of SPIE, 2004, 5391: 301-307.
    [137] Lee C. C, Chiang P, W, Chi S. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift [J]. IEEE Photonics Technology Letters, 2001,13 (10): 1094-1096.
    [138] Bernini R, Minardo A, Zeni L. A reconstruction technique for stimulated Brillouin Scattering fiber-optic sensors for simultaneous measurement of temperature and strain [C]. IEEE, 2002, 31.4: 1006-1011.
    [139] Tandy W. G, Richard A. M. High resolution stimulated Brillouin gain spectrometer [J]. Review of Scientific Instrumments, 1994,65(1): 34-41.
    [140] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique [J]. IEEE Photonics Technology Letters, 2002, 14(2): 179-181.
    [141] Hotate K, Leng S. O. S. A correlation-based continuous-wave technique for measurement of dynamic strain along an optical fiber using Brillouin scattering with fully distributed ability [R]. Optical Fiber Sensors Conference Technical Digest, 2002, 15th (6-10): 615-618.
    
    [142] Kishida K, Zhang H, Li C. H, et al. Diagnostic of corrosion based thinning in steam pipelines by means of Neubrescope high precision optical fiber sensing system [C]. Proceedings of the 5th International Workshop on Structural Health Monitoring, Stanford University, Stanford, USA, 2005: 1363-1370.
    [143]Kishida K,Li C.H,Nishiguchi K.Pulse pre-pump method for cm-order spatial resolution of BOTDA[C].Proc.of SPIE,2005,5855:559-562.
    [144]Kishida K,Li C.H.Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system[C].Structural Health Monitoring and Intelligent Infrastructure,London:Taylor&Francis group,2006:471-477.
    [145]Bernini R,Minardo A,Zeni L.Distributed fiber-optic frequency-domain Brillouin sensing [J].Sensors and Actuators A,Physical,2005,123-4:337-342.
    [146]Bernini R,Minardo A,Zeni L,et al.An accurate high-resolution technique for distributed sensing based on frequency-domain Brillouin scattering[J].Photonics Technology letters,2006,18(1):280-282.
    [147]P.C.Wait,A.H.Hartog.Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal[J].IEEE Photonics Technology Letters.2001,13(5):508-510.
    [148]H.H.Kee,G.P.Lees,T.P.Newson.An all-fiber system for simultaneous interrogation of distributed strain and temperature sensing using spontaneous Brillouin scattering[J]Optics Letters,2000,25(10):695-697.
    [149]杨志,李永倩,何玉军,等.分布式光纤布里渊散射温度传感实验系统[J].光子学报,2003,32(1):14-17.
    [150]程淑玲,刘义霞,黄岚,等.BOTDR在光缆生产工艺中的应用[J].光通信研究,2002:112:40-43.
    [151]徐洪钟,施斌,张丹,等.基于小波分析的BOTDR光纤传感器信号处理方法[J].光电子·激光,2003,14(7):737-740.
    [152]邱卫卫,隋青美,张贵涛,等.基于小波变换的BOTDR光纤温度传感系统去噪声研究[J].激光与光电子学进展,2004,41(1 1):26-29.
    [153]Y.T.Cho,M.Alahbabi,M.J.Gunning,T.P.Newson.50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification,[J].Optics Letters.2003,28(18):1651-1653.
    [154]Mohamed N Alahbabi,Yuh T Cho,and Trevor P Newson.100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter[J].Journal Measurement Science and Technology, 2004, 15: 1544-1547.
    [155] X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson. Experimental and theoretical studies on a distributed temperature sensor based on Billouin scattering [J]. Journal of Lightwave Technology, 1995, 13(7): 1340-1348.
    [156] D. Culverhouse, F. Farahi, D. A. Jackson. Optical carrier generation using stimulated Brillouin scattering [P]. EP0479925, 1990.
    [157] M Nikles, L. Thevenaz, P. A. Robert. Simple distributed fiber sensor based on Brillouin gain spectrum analysis [J]. Optics Letters, 1996, 21(10): 758-760.
    [158] Minardo A., Bernini R., Zeni L. A Simple Technique for Reducing Pump Depletion in Long-Range Distributed Brillouin Fiber Sensors [J]. Sensors Journal, IEEE, 2009,9(6): 633 -634.
    [159] Soto M.A., Bolognini G., Di Pasquale F. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding [J]. Photonics Technology Letters, IEEE, 2009, 21(7): 450-452.
    [160] Minardo A., Bernini R., Zeni L. Brillouin Optical Frequency-Domain Single-Ended Distributed Fiber Sensor [J]. Sensors Journal, IEEE, 2009,9(3): 221 - 222.
    [161] T. Horiguchi, K. Shimizu, T. Kurashima, et.al. Development of a distributed sensing technology using Brillouin scattering [J]. Journal of Lightwave Technology. 1995, 13: 1296-1302.
    [162] I. L. Fabelinski. Molecular Scattering of Light [M]. New York: Plenum Press, 1968.
    [163] Raymond Y. Chiao. Brillouin Scattering and Coherent Phonon Generation [D]. Massachusetts, USA: Massachusetts Institute of Technology, 1965.
    [164] N. M. Kroll, P. L. Kelly. Temporal and spatial gain in stimulated light scattering [J]. Physical Review A4, 1971:763-776.
    [165] Toshio Kurashima, Ysuneo Horiguchi, et al. Strain and temperature characteristics of Brillouin spectra in optical fiber for distributed sensing techniques [C]. ECOC"98[C], Madrid Spain, 1998: 20-24.
    [166] Seok-Beom Cho, Young-Gyu Kim et al. Pulse width dependence of Brillouin frequency in single mode optical fibers [J]. Optics Express, 2005, 13(23): 9472-9479.
    [167] Y. Koyamada, Y. Sakairi, N. Takeuchi, S. Adachi. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry [J]. IEEE Photonics Technology Letters, 2007,19(23): 1910-1912.
    [168] Seok-Beom Cho, Jung-Ju Lee. Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor [J]. Optics Express, 2004, 12(18): 4339-4346.
    [169] L. D. Landau and G. Placzed. Structure of the undisplaced line of scattering [J]. Physik Z. Sowjetunion 5,1934: 172.
    [170] N. P. Bansal and R. H. Doremus. Handbook of Glass Properties [M]. USA: Academic Press Inc. 1986.
    [171] Govind Agrawal. Fiber-optic communication systems [M]. New York: John Wiley & Sons, 1997.
    [172] Leonid Kazovsky, Sergio Benedetto, Alan Willner. Optical fiber communication systems [M]. Boston: Artech House, 1996.
    [173] Dennis Derickson. Fiber optic test and measurement [M]. Upper Saddle River, N.J.: Prentice Hall PTR, 1998.
    [174] Andre Girard. Review of WDM testing issues [M]. Vanier, Quebec, Canada: EXFO Electro-Optical Engineering, Inc., 1999.
    [175] P. C. Becker, N. A. Olsson, J. R. Simpson. Erbium-doped fiber communication systems [M]. Boston: Artech House, 1996.
    [176] Norio Kashima. Passive optical components for optical fiber transmission [M]. Boston: Artech House, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700