滚动轴承振动信号处理及特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承是各种旋转机械中应用最广泛的一种通用部件,其运行状态往往直接影响整台机器的性能,对滚动轴承的状态监测和故障诊断具有重要的现实意义和经济价值。本文以滚动轴承为研究对象,从故障轴承振动信号的特征入手,针对滚动轴承诊断中的关键技术:解调、降噪和特征参数提取问题,应用现代信号处理技术,对滚动轴承的状态监测与故障诊断技术开展了一系列的研究工作。论文的主要工作内容如下:
     1.在分析滚动轴承振动机理的基础上,总结了滚动轴承局部损伤类故障振动信号具有周期性冲击和幅值调制的特征,指出滚动轴承故障诊断的关键问题是解调、降噪和特征参数提取。只要解决好这三个问题,就能实现滚动轴承故障的准确诊断。
     2.提出了基于EMD降噪和谱峭度法的滚动轴承故障诊断方法。总结了基于经验模式分解(EMD)的降噪方法有两种:基于阈值处理和基于滤波处理的EMD降噪方法。基于阈值处理方法中,借鉴了小波阈值降噪的思想;基于滤波处理方法中,针对故障轴承振动信号特点,提出了两个降噪准则。以仿真轴承故障信号为例,比较了两种方法的降噪性能,指出基于滤波处理的EMD降噪方法更适合作为滚动轴承信号预处理手段。针对共振解调中带通滤波器参数难以确定的问题,引入了谱峭度理论,根据谱峭度值最大处的频带确定共振频带。将EMD降噪和谱峭度理论相结合,提出了一种基于EMD降噪和谱峭度法的滚动轴承故障诊断方法,并以工程实际信号进行分析验证。
     3.提出了一种基于最优Morlet小波滤波器和自相关增强算法的滚动轴承故障自动诊断方法。为了消除干扰振动的频率成分,首先将实测轴承信号通过一个由Morlet小波确定的带通滤波器,该滤波器参数由遗传算法优化得到,讨论了遗传算法优化问题中的目标函数和约束条件。经过最优Morlet小波滤波后,信噪比得到显著提高。为了进一步减少残余的带内噪声,突出周期性冲击特征,提出了一种自相关增强算法,并将其用于Morlet小波滤波后的信号。在得到的自相关增强包络功率谱中,只有简单的几根谱线存在,有故障时对应故障特征频率,无故障时对应轴的转频,这对于操作者识别轴承故障类型非常容易,本方法可以几乎以自动的方式执行,仿真和试验结果验证了该方法非常适合滚动轴承的诊断。
     4.提出了一种基于双树复小波域隐Markov树模型的滚动轴承故障信号的降噪方法。针对传统离散小波变换具有平移敏感性和复小波变换不能完美重构的缺陷,提出采用双树复小波变换处理滚动轴承信号的方法。针对传统小波降噪方法没有考虑小波系数间相关性和非高斯性而造成降噪效果不够理想的问题,引入小波域隐Markov树模型的降噪思想。将双树复小波变换和小波域隐Markov树模型相结合,提出一种更有优势的降噪方法。根据双树复小波变换系数的实部和虚部是同时考虑还是分开考虑的原则,提出两种基于双树复小波域隐Markov树模型降噪方法,并比较它们与传统方法的性能,指出同时考虑实部和虚部的方法效果更好,并将该方法用于实际滚动轴承故障诊断进行验证。
     5.提出了一种基于小波包样本熵的滚动轴承故障诊断和预测方法。将信息论中的样本熵引入到机械故障诊断领域,讨论了样本熵的性能和计算参数的选择,指出无论在抗噪性、对样本长度的要求、还是反映系统的本质上,样本熵都比近似熵具有更好的性能。根据小波包分解子带能量越大故障信息越明显的特点,提出小波包样本熵的概念,较好地区分了轴承故障类型。接着将小波包样本熵用于滚动轴承故障趋势预测中,计算全寿命周期轴承试验台数据的小波包样本熵,利用EMD提取其中趋势,可以较好地预测滚动轴承的运行状态,比RMS值和峭度值更早地预报了故障的发展,说明小波包样本熵可以作为一种较好的轴承监测预报工具。
     6.开发了基于LabView和Matlab混合编程的滚动轴承振动信号分析系统。介绍了系统开发环境和总体结构设计,讨论了各个模块的实现方法,并通过实际信号进行功能演示,验证了本系统的方便快捷和有效性。
Rolling element bearing is one of the most widely used parts in a varity of rotating machinery, whose running state often directly affects the performance of the whole machine, so the condition monitoring and fault diagnosis of rolling bearing has important practical significance and economic value. In this paper, rolling bearing is the research object. Starting with the characteristic of faulty bearing signal, aiming at the key technologies in bearing fault diagnosis, i.e., demodulation, denoising and feature extraction, and applying modern signal processing techniques, a series of studies on the condition monitoring and fault diagnosis of rolling bearing are carried out. The main works of this dissertation are listed as follows:
     1. Based on the analysis of rolling bearing vibration mechanism, the vibration signal characteristics of the bearing with local damage are summarized as cyclical shock and amplitude modulation. Then the key issues of rolling bearing fault diagnosis are summarized as demodulation, denoising and feature parameter extraction. Only these three issues are well solved, rolling bearing fault can be accurately diagnosed.
     2. A bearing fault diagnosis method based on EMD (empirical mode decomposition) denoising and spectral kurtosis is proposed. EMD denoising is summarized as two methods, i.e., threshold-based processing and filter-based processing. In threshold-based method, wavelet threshold-denoising is referenced; in filter-based method, two criterions are put forward according to the characteristic of faulty bearing vibration signal. Taking a simulated signal of faulty bearing as an example, the performance of the two methods is compared. As a result, filter-based EMD denoising method is more suitable to be a preprocessing means for bearing signal. In view of the difficulty to determine the band-pass filter parameters of resonance demodulation, the theory of spectral kurtosis is introduced. The frequency band with largest spectral kurtosis value is confirmed as the resonance frequency band. Combining EMD denoising and spectral kurtosis theory, a rolling bearing fault diagnosis method is presented, which is verified by practical engineering signal.
     3. Based on optimal Morlet wavelet filter and autocorrelation enhancement algorithm, an automatic diagnosis method of rolling bearing fault is proposed. To eliminate the frequency associated with interferential vibrations, the bearing signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are optimized by genetic algorithm. The objective function and constraints are also discussed. Using the optimal Morlet wavelet filter, the SNR is improved significantly. To further reduce the residual in-band noise and highlight the periodic impact characteristic, an autocorrelation enhancement algorithm is proposed, which is then used to the filtered signal. In the enhanced autocorrelation envelope power spectrum, only several single spectrum lines would be left, which is corresponding to bearing fault frequency for a defective bearing or to shaft rotational frequency for normal bearing. It is very simple for operator to identify the bearing fault type. The proposed method can be conducted in an almost automatic way. The results from simulated and practical experiments prove the method is very effective for bearing faults diagnosis.
     4. A denoise method based on hidden Markov tree (HMT) model in dual tree complex wavelet domain is proposed. In view of the drawback of discrete wavelet transform with shift sensitivity and complex wavelet transform without perfect reconstruction, dual tree complex wavelet transform (DTCWT) is adopted to process the bearing signal. In view of the unfavorable effect of traditional wavelet denoise without considering the correlation between wavelet coefficients and the non-Gaussian nature of these coefficients, a denoise ideal of wavelet domain HMT model is introduced. Combining DTCWT and wavelet domain HMT model, a more advantage method is raised. According to the principle that the real and imaginary parts of DTCWT coefficients are considered simultaneously or separately, two kinds of denoise method based on dual tree complex wavelet domain hidden Markov tree model are proposed. Their performance are compared with traditional methods and indicated the simultaneously considered one is better. This method is then used in practical rolling bearing fault diagnosis to verify its efficiency.
     5. A rolling bearing fault diagnosis and prognosis method based on wavelet packet sample entropy is proposed. Sample entropy (SE) in information theory is introduced into the field of mechanical fault diagnosis. Its performance and the choice of calculation parameters are discussed, which indicated that SE has better performance than approximate entropy in term of anti-noise, sample length requirement, or reflecting the system nature. Since the greater the sub-band energy of wavelet packet decomposition is, the more obvious the fault information is, wavelet packet sample entropy (WPSE) is proposed, which can distinguish well bearing fault type. Then WPSE is applied to bearing fault trend prediction. Calculating the WPSE of life cycle bearing test rig data and using EMD to extract tendency, the bearing running states can be well predicted. WPSE can forecast earlier fault development fault than RMS and kurtosis, which indicate WPSE is a good bearing monitoring and forecasting tool.
     6. Based on LabView and Matlab software, an analysis system of rolling bearing vibration signal is developed. The system development environment and overall structure design are introduced. Then the implement method of each module is discussed. Through the function demo for actual signal, the convience and efficience of the system is verified.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [2]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [3]黄文虎,夏松波,刘瑞岩,等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [4]徐敏,黄邵毅.设备故障诊断手册--机械设备状态检测和故障诊断[M].西安:西安交通大学出版社,1998.
    [5]丁玉兰,石来德.机械设备故障诊断技术[M].上海:上海科学技术文献出版社,1994.
    [6]程道来,吴茜,吕庭彦,等.国内电站故障诊断系统的现状及发展方向[J].动力工程,1999,19(1):53-57.
    [7]高毅龙.数据挖掘及其在工程诊断中的应用[D].西安:西安交通大学,2000.
    [8]何正嘉,黄昭毅.机械故障诊断案例选编[M].西安:西安交通大学出版社,1991.
    [9]梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1995.
    [10]N. A. Tandon, A. B. Choudhury. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999,32 (8):469-480.
    [11]Martin R. Detection of ball bearing malfunctions [J]. Instruments and Control Systems, 1970, (12):79-82.
    [12]Harting D R. Demodulated resonance analysis systems [P]. U. S. Patent 3,842,663. Oct.22, 1974.
    [13]陈长征,胡立新,周勃,等.设备振动分析与故障诊断技术[M].北京:科学出版社,2007.
    [14]杨国安.机械设备故障诊断实用技术[M].北京:中国石化出版社,2007.
    [15]Monk R. Vibration measurement gives early warning of mechanical faults[J]. Process Engineering,1972, (12):135-137.
    [16]唐德尧.共振解调技术在机械故障诊断中的应用和发展[J].设备管理和维修,1991,11:22-24.
    [17]张家凡.振动信号的包络解调分析方法研究及应用[D].武汉:武汉理工大学,2008.
    [18]Randall R B. Hilbert transform techniques in machine diagnostics[C]. In:IFToMM International Conference on Rotor dynamics, Tokyo,1986,409-420.
    [19]马波,魏强,徐春林,等.基于Hilbert变换的包络分析及其在滚动轴承故障诊断中的应用[J].北京化工大学学报,2004,31(6):95-97.
    [20]朱利民,钟秉林,黄仁.齿轮故障振动信号检波解调分析中的混频效应[J].振动工程学报,1999,12(3):331-337.
    [21]何岭松,杨叔子.包络检波的数字滤波算法[J].振动工程学报,1997,10(3):362-367.
    [22]丁康,谢明,张彼德,等.复解析带通滤波器及其在解调分析中的应用[J].振动工程学报,2000,13(3):385-392.
    [23]张帆,丁康.广义检波解调分析的三种算法及其局限性研究[J].振动工程学 报,2002,15(2):243-248.
    [24]Teager H M. Some observations on oral air flow during phonation[J]. IEEE Transactions on Accoustics, Speech, and Signal Processing,1980,28(5):599-601.
    [25]M. Petros, F. K. James, F. Q. Thomas. On amplitude and frequency demodulation using energy operator[J]. IEEE Transactions on Signal Processing,1993,41(4):1532-1550.
    [26]P. Alexandros, M. Petros. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation [J]. Signal Processing,1994,37(1):95-120.
    [27]武和雷,朱善安,林瑞仲,等.基于能量算子解调法的滚动轴承故障诊断[J].农业机械学报,2003,34(1):118-120.
    [28]刘红星,陈涛,屈梁生,等.能量算子解调方法及其在机械信号解调中的应用[J].机械工程学报,1998,34(5):85-90.
    [29]程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118.
    [30]雷文平,韩捷,孙俊杰,等.小波—能量算子解调法的滚动轴承故障诊断[J].武汉理工大学学报,2008,30(5):128-131.
    [31]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [32]丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(2):13-20.
    [33]朱利民,钟秉林,黄仁.齿轮故障振动信号检波解调分析中的混频效应[J].振动工程学报,1999,12(3):331-337.
    [34]何景元,吴雅,皮钧,等.一种包络细化的新方法及其在故障诊断中的应用[J].华中理工大学学报,1993,21(5):91-99.
    [35]丁康,王延春.传动箱齿轮和轴故障的振动诊断方法的研究[J].振动与冲击,1994,10(2):235-240.
    [36]马晓建,陈瑞琪,吴文英.机械故障诊断中常用解调方法的比较及应用[J].东华大学学报(自然科学版),2001,27(5):105-108.
    [37]杜秋华,杨署年.细化包络分析在滚动轴承缺陷诊断中的应用[J].轴承,2004,(3):31-34.
    [38]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(2):125-134.
    [39]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999.
    [40]李力,屈梁生.循环统计量方法在滚动轴承故障诊断中的应用[J].振动、测试与诊断,2003,23(2):116-120.
    [41]Antonladis I, Glossiotis G. Cyclostationary analysis of rolling-element bearing vibration signals[J]. Journal of Sound and Vibration,2001,248(5):829-845.
    [42]Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis of cyclostationary machine[J].Mechanical Systems and Signal Processing,2001,15(5):945-962.
    [43]秦恺,陈进,姜鸣等.一种滚动轴承故障特征提取的新方法——谱相关密度[J].振动与冲击,2001,20(01):34-37.
    [44]姜鸣,陈进.循环自相关函数的解调性能分析[J].上海交通大学学报,2002,36(06):799-802.
    [45]丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用[J].振动工程学报,2005,18(03):304-308.
    [46]丁康,孔正国,李巍华.振动调频信号的循环平稳解调原理与实现方法[J].振动与冲击,2006,25(01):5-9.
    [47]李力,屈梁生.二阶循环统计量在机械故障诊断中的应用[J].西安交通大学学报,2002,36(09):943-946.
    [48]贾民平,杨建文.滚动轴承振动的周期平稳性分析及故障诊断[J].机械工程学报,2007,43(1):144-146.
    [49]J. Antonia, F. Bonnardot, A. Raad. Cyclostationary modeling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing,2004,18(6):1285-1314.
    [50]N.E.Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of Longdon, Series A,1998,454:903-995.
    [51]胥永刚,何正嘉,王太勇.基于经验模式分解的包络解调技术及其应用[J].西安交通大学学报,2004,38(11):1169-1172.
    [52]于德介,程军圣,杨宇.机械故障诊断的Hi1bert-Huang变换方法[M].北京:科学出版社,2006.
    [53]邓拥军,王伟,钱成春,等.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):257-263.
    [54]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003,13(10):1054-1059.
    [55]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995:17-28.
    [56]张中民,卢文祥,杨叔子,等.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报,1998,11(1):65-69.
    [57]Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets[J].NDT & E international,2002,35(3):197-205.
    [58]林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断分析[J].机械工程学报,2000,36(12):95-100.
    [59]Sun Q, Tang Y. Singularity analysis using continuous wavelet transform for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2002,16(6):1025-1041.
    [60]史东锋,鲍明,屈梁生.小波包络分析在滚动轴承诊断中的应用[J].中国机械工程,2000,11(12):1382-1385.
    [61]何晓霞,沈玉娣,张西宁.连续小波变换在滚动轴承故障诊断中的应用[J].机械科学与技术,2001,20(4):571-574.
    [62]程军圣,于德介,邓乾旺,等.时间—小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击 2004,23(2):33-36.
    [63]程军圣,于德介,杨宇,等.尺度—小波能量谱在滚动轴承故障诊断中的应用[J].振动工程学报,2004,17(1):82-85.
    [64]Wang W J, McFadden P D. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing,1995,9(5):497-507.
    [65]H. Qiu, J. Lee, J.Lin, G. Yu, Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006, (289):1066-1090.
    [66]N. G. Nikolaou, I. A. Antoniadis. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet[J]. Mechanical Systems and Signal Processing,2002,16(4):677-694.
    [67]I.S. Bozchalooi, M.Liang. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals[J]. Mechanical Systems and Signal Processing,2008, (22):915-933.
    [68]刘献栋,杨绍普,等.基于奇异值分解的突变信息检测新方法及其应用[J].机械工程学报,2002,38(6):102-105.
    [69]吕志民,张武军,徐金梧等。基于奇异谱的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,1999,35(3):85-88.
    [70]何田,刘献栋,李其汉.噪声背景小下检测突变信息的奇异值分解技术[J].振动工程学报,2006,19(3):399-403.
    [71]张可南,路杨,鞋里阳,等.基于SVD方法的弱故障特征提取方法[J].机床与液压,2006,10:214-216.
    [72]赵艳菊.强噪声背景下机械设备微弱信号的提取与检测技术研究[D].天津:天津大学,2008.
    [73]王太勇,王正英,胥永刚,等.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96-98.]
    [74]李峰,张英堂,王宁,等.基于小波和奇异谱降噪理论的轴承故障诊断研究[J].轴承,2003,7:30-33.
    [75]崔屹.图像处理与分析——数学形态学方法及应用[M].北京:科学出版社,2000.
    [76]郭景峰,申光宪,郑绳楦,等.数学形态学在数字滤波中的应用研究[J].机械工程学报,2002,38(10):144-147.
    [77]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法[J].电力系统自动化,2002,26(7):13-17.
    [78]杜秋华,杨曙年.形态滤波在滚动轴承缺陷诊断中的应用[J].轴承,2005(6):27-31.
    [79]章立军,阳建宏,徐金梧,等.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56-59.
    [80]Hao Rujiang, Chu Fulei. Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings[J]. Journal of Sound and Vibration,2009, 滚动轴承故障信号处理中的若干关键技术研究320(4-5):1164-1177.
    [81]Nikolaou N G, Antoniadis I A. Application of morphological operators as envelope extractors for impulsive-type periodic signals[J]. Mechanical Systems and Signal Processing,2003,17(6):1147-1162.
    [82]胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130.
    [83]章立军,徐金梧,阳建宏,等.自适应多尺度形态学分析及其在轴承故障诊断中的应用[J].北京科技大学学报,2008,30(4):441-445.
    [84]张全明,刘会金.基于广义形态滤波的电力系统采样信号处理[J].电力自动化设备,2006,26(10):45-48.
    [85]Flandrin P., G. Rilling, P. Goncalves. Empirical mode decomposition as a filter bank[J]. Signal Processing Letters, IEEE,2004,11(2):112-114.
    [86]杨建文,贾民平,许飞云,等.基于经验模式分解的旋转机械振动信号降噪处理[J].中国工程科学,2005,7(8):66-69.
    [87]Boudraa A.0., J. C. Cexus. EMD-based signal filtering[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56(6):2196-2202.
    [88]Huang N. E. A new view of nonlinear waves:The Hilbert spectrum[J]. Annual Review ofFluid Mechanics,1999,31:417-457.
    [89]邓禹.适于轴承故障诊断模型与降噪方法的研究[D].成都:电子科技大学,2008.
    [90]Mallat S, Hwang W L. Singularity detection and processing with wavelet [J]. IEEE Transaction Information Theory,1992,38(2):617-643.
    [91]唐英,孙巧.滚动轴承振动信号的小波奇异性故障检测研究[J].振动工程学报,2002,15(1):111-113.
    [92]Xu Yan-sun. Wavelet transform domain filters:a specially selective noise filtration technique[J]. IEEE Trans Image Processing,1994,3(6):747-758.
    [93]李富才,何正嘉,陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报,2005,18(2):145-148.
    [94]曾庆虎,邱静,刘冠军,等.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118.
    [95]Donoho D L. De-noising by soft-thresholding [J]. IEEE Transaction on Information Theory, 1995,41(3):613-627.
    [96]Donoho D L, Johnstone I M. Adapting to unkown smoothness by wavelet shrinkage[J]. Journal of the American Statiscal Association,1995,90(432):1200-1224.
    [97]徐金梧,徐科.小波变换在滚动轴承故障诊断中的应用[J].机械工程学报,1997,33(4):50-55.
    [98]Cai T T, Silverman B W. Incorporating information on neighboring coefficients into wavelet estimation[J]. The Indian Journal of Statistics,2001,63(2):127-148.
    [99]张志刚,周晓军,宫燃,等.小波域局部Laplace模型降噪算法及其在机械故障诊断中应用[J].机械工程学报,2009,45(9):52-57.
    [100]Chen Z X, Xu J W, Yang D B. New method of extracting weak failure information in gearbox by complex wavelet denoising[J]. Chinese Journal of Mechanical Engineering,2008, 21(4):87-91.
    [101]陶新民,徐晶,杜宝祥,等.基于小波域隐马尔可夫模型故障诊断方法[J].振动与冲击,2009,28(4):33-37.
    [102]Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Transactions on Signal Processing,1998,46(4):886-902.
    [103]Kingsbury N G. The Dual-tree complex wavelet transform:A new technique for shift variance and directional filter[C], In Proc,8th IEEE DSP workshop, Bryce Canyon UT, USA, paper, no.86, August,1998.
    [104]Kingsbury N G. Image processing with complex wavelets[J]. Phil. Trans. Roy. Soc. 1999,357(9):2543-2560.
    [105]Sweldens W. The lifting scheme:a custom-desigan construction of biorhogonal wavelets [J]. Appl Comput Harmon Anal,1996,3 (2):186-200.
    [106]Sweldens W. The lifting scheme:a construction of second generation wavelets[J]. SIAM J Math Anal,1997,29(2):511-546.
    [107]段晨东,何正嘉.第二代小波降噪及其在故障诊断系统中的应用[J].小型微型计算机系统,2004,25(7):1341-1343.
    [108]胡桥,何正嘉,张周锁,等.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22.
    [109]Mariantonia C, Laura B M, Luigia P. Multiwavelet analysis and signal processing[J]. IEEE Transaction on Circuits and Systems:II Analog and Digital Signal Processing, 1998,45 (8):970-987.
    [110]Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression [J]. Proc SPIE,1998,3391:96-107.
    [111]Khadem S E, Rezace M. Development of vibration signature analysis using multiwavelet systems[J]. Journal of Sound and Vibration,2003,261:613-633.
    [112]袁静,何正嘉,王晓东,等.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用[J].机械工程学报,2009,45(4):155-160.
    [113]Wang Xiaodong, Zi Yanyang, He Zhengjia. Multiwavelet construction via an adaptive symmetric lifting scheme and its applications for rotating machinery fault diagnosis [J]. Measurement Science and Technology,2009,20(4):1-17.
    [114]陈进.信号处理在机械设备故障诊断中的应用.振动与冲击,1999,18(3):91-93.
    [115]Gustafsson 0. G. Tallian T. Detection of damage in assembled rolling bearings. Trans. of ASLE.1962,5:197-209.
    [116]Wheeler P.G. Bearing analysis equipment keeps downtime down. Plant Engineering. 1968, (25):87-89.
    [117]Martin R. Angelo and Brel Kjaer. Vibration monitoring of machines. Maintenance management international, Jul 1989,135-154.
    [118]Y.Kim Paul and Cowe I.R. G. A review of rolling element bearing health monitoring. Proceeding of Machinery Vibration Monitoring and Analysis Meeting[C], April 19-21,1983.
    [119]Ronald W.Jacobs. Detection of mechanical faults in rotary blowers. Proceeding of Machinery Vibration Monitoring and Analysis Meeting[C]. April 19-21,1983.
    [120]毛怀东,陈家骥.滚动轴承故障诊断参数的研究,第三届全国机械设备故障诊断学术会议论文集[C],1991年5月28日-31日,529-597.
    [121]何正嘉,等.大型机械设备变工况非平稳动态分析与监测诊断关键技术[J].中国机械工程,1999,10(9):978-981.
    [122]杨国安,周世刚.一种适用于机械非平稳故障信号的分析方法[J].信号处理,2001,7(3):287-290.
    [123]唐贵基,张穆勇,吕路勇.基于分段线性分类器的滚动轴承的故障识别[J].轴承,2007,10:31-34.
    [124]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-87.
    [125]刘天雄,郑明刚,陈兆能,等.AR模型和分形几何在设备状态监测中的应用研究[J].机械强度,2001,23(1):61-65.
    [126]李健宝,彭涛.基于AR模型和KFDA的滚动轴承故障诊断.华中科技大学学报(自然科学版)[J],37(S1):213-216.
    [127]陆爽,张子达,李萌.基于径向基函数神经网络的滚动轴承故障模式的识别[J].中国工程科学,2004,6(2):56-60.
    [128]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335.
    [129]张文明,李莉,申焱华,等.滚动轴承故障诊断中的分形[J].北京科技大学学报,1996,18(3):215-219.
    [130]吕志民,徐金梧,翟绪生.分形维数及其在滚动轴承故障诊断中的应用[J].机械工程学报,1999,35(2):88-91.
    [131]周昌雄,陈迅,马国军.基于关联维数与BP神经网络的滚动轴承故障诊断[J].轴承,2003,9:32-34.
    [132]李萌.旋转机械轴承故障的特征提取与模式识别方法研究[D].长春:吉林大学,2008.
    [133]王静,邓军,王斌.滚动轴承故障分形诊断中的信号处理[J].机床与液压,2009,37(1):173-174.
    [134]吕勇,李友荣,肖涵,等.基于加权相空间重构降噪及样本熵的齿轮故障分类[J].振动工程学 报,2009,22(5):462-466.
    [135]杨世锡,汪慰军.柯尔莫哥洛夫熵及其在故障诊断中的应用[J].机械科学与技术,2000,19(1):6-8.
    [136]陶新民,孙丽华,杜宝祥,等.基于小波方差谱熵的轴承故障诊断方法[J].振动与冲击,2009,28(3):18-22.
    [137]胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用[J].振动与冲击,2006,25(4):38-40.
    [138]曾庆虎,邱静,刘冠军,等.小波相关特征尺度熵在滚动轴承故障诊断中的应用[J].国防科技大学学报,2007,29(6):102-105.
    [139]李兵,张培林,米双山,等.基于EMD与GA-SVM的轴承故障诊断[J].机械强度,2010:32(3):358-362.
    [140]徐增丙,轩建平,史铁林,等.基于小波灰度矩向量与连续马尔可夫模型的轴承故障诊断[J].中国机械工程,2008,19(15):1858-1862.
    [141]周川,伍星,刘畅,等.基于EMD和模糊C均值聚类的滚动轴承故障诊断[J].昆明理工大学学报(理工版),2009,34(6):34-39.
    [142]蒋静,郑国彦,李志农.滚动轴承故障诊断中的Volterra核-HMM识别方法[J].煤矿机械,2010,31(6):230-232.
    [143]Ho D, Randall R B. Optimisation of bearing diagnositic techniques using simulated and actual bearing fault signals[J]. Mechanical Systems and Signal Processing,2000, 14(5):763-788.
    [144]丁康,陈健林,苏向荣.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报,2003,16(1):1-10.
    [145]何岭松,李巍华.用Morlet小波进行包络检波分析[J].振动工程学报,2002,15(1):119-122.
    [146]胡晓依,何庆复,王华胜,等.基于STFT的振动信号解调方法及其在轴承故障检测中的应用[J].振动与冲击,2008,27(2):82-86.
    [147]石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39.
    [148]Huang N. E., Shen Z., Long S. R., A new view of nonlinear water waves:the Hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [149]Huang N E. A new view of earthquake ground motion data:The Hilbert spectrum analysis[C]. Proc. International Workshop on Annual Commemoration of Chi-Chi Earthquake,2000(11):64-75.
    [150]Yue Huanyin, Guo Huadong, Han Chunming, et al, A SAR interferogram filter based on the empirical mode decomposition method [J]. Geoscience and Remote Sensing Symposium, 2001(5):2061-2063.
    [151]马孝江,王凤利,蔡悦等,局域波时频分析在转子系统早期故障诊断中的应用研究[J].中国电机工程学报,2004,24(3):161-164.
    [152]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [153]盖强.局域波时频分析的理论研究与应用[D].大连:大连理工大学.2001.
    [154]王珍.基于局域波分析的柴油机故障诊断方法的研究及应用[D].大连:大连理工大学,2002.
    [155]李强.机械设备早期故障预示中的微弱信号检测技术研究[D].天津:天津大学,2006.
    [156]钟佑明,秦树人,汤宝平.Hilbert-Huang 变换中的理论研究[J].振动和冲击,2002,21(4): 13-17.
    [157]赵志宏,杨绍普,申永军.一种改进的EMD降噪方法[J].振动与冲击,2009,28(12):35-37,62.
    [158]Boudraa A O, Cexus J C, Saidi Z. EMD-Based Signal Noise Reduction[J]. International Journal of Signal Processing,2004,1(1):33-37.
    [159]P Flandrin, G Rilling, P Goncalves. Empirical mode decomposition as a filter bank [J].IEEE Signal Processing Letters,2004,11(2):112-114.
    [160]杨建文,贾民平,许飞云,等.基于经验模式分解的旋转机械振动信号降噪处理[J].中国工程科学,2005,7(8):66-69.
    [161]林京.经验模式分解的滤波器特性及其在故障检测中的应用[J].洛阳理工学院学报(自然科学版),2008,18(1):5-8.
    [162]B Liu, S Riemenschneider, Y Xu. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing, 2006, (20):718-734.
    [163]S Tang, H Ma, L Su. Filter principles of Hilbert-Huang transform and its application in time series analysis[C]. ICSP2006,(4):16-20.
    [164]胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120.
    [165]Yuh-Tay Sheen. A complex filter for vibration signal demodulation in bearing defect diagnosis[J]. Journal of Sound and Vibration,2004,276:105-119.
    [166]R. F. Dwyer. Detection of non-Gaussian signals by frequency domain kurtosis estimation[C]. International Conference On Acoustics, Speech, and Signal Processing, Boston,1983:607-610.
    [167]J. Antoni. The spectral kurtosis:A useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing,2006, (20):282-307.
    [168]J. Antoni, R. B. Randall. The spectral kurtosis:Application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing,2006, (20):308-331.
    [169]J. Antoni. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing,2007, (21):108-124
    [170]Sawhlhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis [J]. Mechanical Systems and Signal Processing,2007,21:2616-2633.
    [171]McFadden P D, Smith J D. Vibration monitoring of rolling element bearings by the high frequency resonance technique—a review[J]. Tribology International,1984,17(1): 3-10.
    [172]W. He, Z.N. Jiang, K Feng, Bearing fault detection based on optimal wavelet filter and sparse code shrinkage[J]. Measurement,2009, (42):1092-1102.
    [173]J. Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis[J]. NDT & E International,2001, (34):25-30.
    [174]R. B. Randall. Frequency analysis (3rd edn)[M], Bruel&Kjaer(1987).
    [175]R. L. Eshleman. Comments on rolling element bearing analysis[J]. Vibrations, 1997,13(2):11-17.
    [176]X Chiementin, F Bolaers, JP Dron. Early Detection of Fatigue Damage on Rolling Element Bearings Using Adapted Wavelet[J]. Journal of Vibration and Acoustics,2007(129): 495-506.
    [177]P. Tse, Y. H. Peng, R. Yam. Wavelet analysis and envelop detection for rolling element bearing fault diagnosis—their effectiveness and flexibility[J]. Journal of Vibration and Acoustics,2001, (123):303-310.
    [178]C. T. Yiakopoulos, I.A. Antoniadis. Wavelet based demodulation of vibration signals generated by defects in rolling element bearings[J]. Shock and Vibration,2002, (9) 293-306.
    [179]Yuh-Tay Sheen, Chun-Kai Hung. Constructing a wavelet-based envelope function for vibration signal analysis[J]. Mechanical Systems and Signal Processing,2004, (18): 119-126.
    [180]J. Altmann, J. Mathew. Multiple band-pass autoregressive demodulation for rolling element bearing fault diagnosis [J]. Mechanical Systems and Signal Processing,2001, (15):963-977.
    [181]J. Lin, L. Qu. Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration,2000, (234):135-148.
    [182]W. X. Yang, JB Hull, MD Seymour. A contribution to the applicability of complex wavelet analysis of ultrasonic signals[J]. NDT & E International,2004, (37):497-504.
    [183]D. E. Goldberg. Genetic Algorithms in Search, Optimisation, and Machine Learning[M]. Addison Wesley, Reading, MA (1989).
    [184]Peter W. Tse, Wen-xian Yang, H. Y. Tam, Machine fault diagnosis through an effective exact wavelet analysis, Journal of Sound and Vibration 277 (2004) 1005-1024
    [185]S. Mallat. A wavelet tour of signal processing[M]. Academic Press, New York (1998).
    [186]Z. K. Peng, F. L. Chu. Application of the wavelet transform in machine condition monitoring and fault diagnosis:a review with bibliography[J]. Mechanical Systems and Signal Processing,2004, (18):199-221.
    [187]张永祥,李军,孙云岭,等.基于遗传算法和峰度最佳的滚动轴承故障诊断[J].振动与冲击,2007,26(8):122-124.
    [188]L. B. Jack, A. K. Nandi. Genetic algorithms for feature selection in machine condition monitoring with vibration signals[J]. IEE Proceedings of Vision, Image and Signal Processing,2000, (147):205-212.
    [189]H. X. Chen, Patrick S. K. Chua, G. H. Lim. Adaptive wavelet transform for vibration signal modeling and application in fault diagnosis of water hydraulic motor[J]. Mechanical Systems and Signal Processing,2006, (20):2022-2045.
    [190]B. Samanta, K. R. Al-Balushi, S. A. Al-Araimi. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection [J]. Engineering Applications of Artificial Intelligence,2003, (16):657-665.
    [191]J. Raf iee, P. W. Tse, A. Harif i, et al. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis [J]. Expert Systems with Applications, 2009, (36):4862-4875.
    [192]G. Y. Luo, D. Osypiw, M. Irle. Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement [J]. Journal of Sound and Vibration,2000, (236):413-430.
    [193]Jie Liu, Wilson Wang, Farid Golnaraghi. An extended wavelet spectrum for bearing fault diagnostics[J]. IEEE Transactions on instrumentation and measurement,2008, (57): 2801-2812.
    [194]J. Rafiee, P. W. Tse. Use of autocorrelation of wavelet coefficients for fault diagnosis[J]. Mechanical Systems and Signal Processing,2009, (23):1554-1572.
    [195], Case Western Reserve University bearing data center.
    [196]曾庆虎,邱静,刘冠军,等.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118.
    [197]陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204.
    [198]Wang Y X, He Z J, Zi Y Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform[J]. Mechanical systems and signal processing,2010,24(1):119-137.
    [199]潘泉,张磊,孟晋丽,等.小波滤波方法及应用著[M].北京,清华大学出版社,2005.
    [200]Li Z, He Z J, Zi Y Y, et al. Customized wavelet denoising using intra-and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration,2008,313 (1):342-359.
    [201]桂林,武小悦.隐马尔可夫树模型在机械状态诊断中的应用[J].机械工程学报,2007,43(1):219-224.
    [202]Coifman R R, Donoho D L. Translation-Invariant de-noising[M]. Tech. Rep., Dept. Statistics, Stanford Univ.,1995, to be published in Wavelets and Statistics. A. Antoniadis, ed. Berlin:Springer Verlag.
    [203]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.
    [204]石宏理,胡波.双树复小波变换及其应用综述[J].信息与电子工程,2006,5(3):229-234.
    [205]Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform [J]. IEEE Signal Processing Magazine,2005,22(6):123-151.
    [206]Selesnick I.W. Hilbert transform pairs of wavelet bases[J]. IEEE Signal Processing Letters,2001,8(6):170-173.
    [207]Kingsbury N G. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals[J]. Appl. Comp. Harmonic Anal.2000,10(3):234-253.
    [208]Ozkaramanli H., Yu R. On the phase condition and its solution for Hilbert transform pairs of wavelet bases [J]. IEEE Trans on Signal Processing,2003,51(12):3293-3294.
    [209]Yu R., Ozkaramanli H. Hilbert transform pairs of orthogonal wavelet bases:Necessary and sufficient condition[J]. IEEE Trans on Signal Processing,2005,53(12):4723-4725.
    [210]Romberg J K, Choi H, Baraniuk R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models [J]. IEEE Transactions on Image Processing,2001, 10(7):1055-1068.
    [211]J.Huang, D.Mumford. Statistics of natural images and models[C]. Proceedings of CVPR, 1999:541-547.
    [212]S.Sanjay-Gopal, T. Hebert. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm[J]. IEEE Transactions on Image Processing,1998,7(7):1014-1028.
    [213]Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE,1989,77(2):257-286.
    [214]谢锦辉.隐Markov模型(HMM)及其在语音处理中的应用.武汉:华中理工大学出版社,1995.
    [215]和卫星,陈晓平,邵珺婷.基于样本熵的睡眠脑电分期[J].江苏大学学报(自然科学版),2009,30(5):501-504.
    [216]Qiao Hu, Zhengjia He, Zhousuo Zhang, Yanyang Zi. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble [J]. Mechanical Systems and Signal Processing,2007,21:688-705.
    [217]王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180.
    [218]王彬.熵与信息[M].西安:西北工业大学出版社,1994.
    [219]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [220]Pincus S. M. Approximate entropy (ApEn) as a complexity measure[J]. Chaos.1995,5(1): 110-117.
    [221]Pincus S M. Approximate entropy as a measurement of system complexity [J]. Proc Natl Acad Sci USA,1991,88 (6):2297-2301.
    [222]Richman J S,Moorman R J.Physiological time-series analysis using approximate entropyand sample entropy[J].Am J Physiol Heart Circ Physio1.2000 Jun;278(6):H2039-2049.
    [223]葛家怡,周鹏,赵欣,等.睡眠脑电时间序列的非线性样本熵研究[J].电子器件,2008,31(3):972-975.
    [224]高强,李良敏,孟庆丰,等.EMD趋势分析方法及其应用研究[J].振动与冲击,2007,26(8):98-100,130.
    [225]邓拥军,王伟,钱成春.EMD方法及Hilbert变换中的边界问题处理[J].科学通报,2001,46(3):257-263.
    [226]程军圣,于德介.Hilbert-Huang变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-44.
    [227]J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services (2007).'Bearing Data Set', IMS, University of Cincinnati. NASA Ames Prognostics Data Repository, [http://ti.arc.nasa.gov/project/prognostic-data-repository], NASA Ames, Moffett Field, CA, USA.
    [228]Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals [J]. Physical Review E,2005,71:021906.
    [229]毕虎,律方成,李燕青,等.LabView中访问数据库的几种不同方法[J].微计算机信息.2006,22(1):131-134.
    [230]裴锋,汪翠英,李资荣.基于LabView的虚拟仪器算法解决方案[J].自动化仪表,2005,26(8):63-65.
    [231]杨乐平,李海涛,赵勇,等.LabVIEW高级程序设计[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700