基于信号处理的电气化铁路弓网接触压力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受电弓和接触网之间的接触压力波动已成为衡量接触网不平顺程度及弓网受流性能的重要指标。本文以接触压力信号为研究对象,采用现代信号处理中的各种谱分析方法对其进行深入地统计分析,从而尝试建立一种合适的接触网线谱来评价接触线的不平顺状态及衡量弓网系统的性能。
     本文以实测京广线及沪昆线接触压力数据(时速100km/h-200km/h)为研究对象,对其平稳性问题、时域分析、频域分析及时频域分析方面进行了研究,主要内容如下:
     (1)随机信号的平稳性判定是对其进行统计处理的重要前提。首先对信号平稳性检验领域中存在的各种方法进行了比较全面的综述;然后针对接触压力信号的平稳性问题,分别利用轮次检验,单位根检验,基于替代数据法、基于谱分析的平稳性检验方法对京广线与沪昆线的实测接触压力数据(采样频率为2个/米)进行了分析,综合各检验结果对其平稳性做了相应的判定:接触压力信号的平稳性是相对于观测尺度而言的,在较长的采样距离下(采样里程约1000m及以上),被测线路的动态接触压力波动可基本视为平稳随机过程;对于较短的采样距离下(采样里程500m以下),一些接触压力数据段出现明显的非平稳性。因此在对接触压力信号进行统计分析时,应选取合适的处理方法。另外本文提出接触压力信号非平稳度的概念,作为评价线路的参数设计、弓网匹配及接触线平顺状态等的参考指标。
     (2)利用时域分析技术求取了接触压力信号的各项时域指标,根据各指标的变化趋势,从时域角度分析了接触压力数据的统计特性,并借以简单评价弓网的受流状态以及接触线平顺状态。
     (3)利用小波分析理论和经验模式分解理论,结合接触压力数据本身特点,提出了识别其波长成分的方案。首先对接触压力信号进行经验模式分解,去除固有模态分量中的伪分量、低频分量及残差项,得到包含100m以下波长成分的接触压力信号;然后利用小波变换对该信号进行多层分解得到逼近信号及细节信号,实现信号中的长短波成分分离;最后对得到的逼近信号与细节信号分别进行频谱及时频谱分析。实验分析表明:本方案可以有效地识别接触压力信号中的固有波长以及瞬态突变波长成分;接触压力信号的细节信号时频谱可以作为评估弓网受流性能,识别及定位接触线病害的参考。
     (4)利用高阶统计量中的谱峭度方法对接触压力信号进行了统计分析,并与小波变换进行结合。实验分析表明:基于小波变换的谱峭度对接触压力信号中的非高斯非平稳成分有着很强的表征能力,可为评价接触线不平顺及弓网受流性能提供一种参考;另外提出利用小波变换谱峭度方法对接触压力信号进行平稳性检验的思路。
The fluctuation of the contact force has already been regarded as an index that evaluates the contact line unevenness degree and the current collection performance between the pantograph and the catenary. In recent years, constructing catenary spectrum has become a new idea to evaluate the overall dynamic performance of catenary and pantograph system. In the paper, the contact force signals are analyzed with the modern signal processing methods.
     For the stationarity of contact force and the statistics characteristic in time domain and frequency domain, the work is listed as follows:
     1) Testing the stationarity of the random signal is an important preprocessing step before studying its statistical feature. Firstly, the methods on testing the stationarity of the signals are fully summarized. Then based on the data of Beijing-Guangzhou line and Shanghai-Kunming line(two data points sampled per mile), the stationarity of contact force is analyzed by both using the methods in frequency domain, which compares the time-frequency spectrum similarity of the signal, such as surrogates-based test and spectrum-based test, and using the methods in time domain, such as the run test and a series of unit root tests. The testing results show that, whether the contact force signal can be considered as stationary, relatively to a given observation scale. From a longer observation scale (sample distance is over1000m), the contact force sections can be consider as stationary; from a small observation scale (sample distance is below500m), the dynamic contact force appears obvious non-stationary. At last, a non-stationarity index is proposed as a quantitative tool to assess the fluctuations of the contact force.
     2) The contact force is analyzed by the time domain indexes which are applied to initially evaluate the unevenness degree of the contact line and monitor the state of pantograph and contact lines.
     3) Based on wavelet transform theory and empirical mode decomposition, the contact force wavelength identification procedure is presented. As a result, the wavelength composition in normal sections and abnormal sections are identified and located. Firstly, the contact force is pretreated by using EMD and the signal concluding the wavelength ranging from lm to100m is obtained. Secondly, the pretreated contact force is decomposed into multilayer detail signals and approximation signals via the wavelet transform, then the long and short wavelength ingredients are separated. Lastly, the detail signals and the approximation signals are respectively analyzed in the frequency domain and time-frequency domain. The result implies that the combination of EMD and the wavelet transform could identify the natural wavelength and mutation wavelength effectively and accurately; the contact force detail signal time-frequency spectrum may be as a reference to evaluate the performance of the current collection and the contact line fault identified.
     4) Based on the data of Beijing-Guangzhou line and Shanghai-Kunming line, the spectral kurtosis based on wavelet transform are applied to the contact force signal processing. The results show that, the spectrum kurtosis based on wavelet transform has the ability of detecting the local mutation in the contact force, which may be as a reference to evaluate the current collection performance; the idea that testing the stationarity of the contact force via the spectral kurtosis based wavelet transform is proposed.
引文
[1]于万聚.高速电气化铁路接触网[M].成都:西南交通大学出版社,2005.
    [2]于万聚.高速接触网-受电弓系统动态受流性研究[J].铁道学报,1993,15(2):16-27.
    [3]藤井保和.高速铁路接触网的受流理论[J].铁道与电气技术,1991,(6).
    [4]谢建.电气化铁路接触网不平顺及功率谱研究[D].成都:西南交通大学,2010.
    [5]Mitsuo Aboshi. Precise measurement and estimation method for overhead contact line unevenness[J]. Electrical Engineering in Japan.2007,160 (2):77-85.
    [6]张卫华,沈志云.接触网动态研究[J].铁道学报,1991,13(4):26-33.
    [7]刘志刚,韩志伟.浅谈电气化铁路接触网线谱研究[J].电气化铁道,2011,(1):1-3.
    [8]张卫华,梅桂明,陈良麒.接触线弛度及表面不平顺对接触受流的影响分析[J].铁道学报,2000,22(6):50-54.
    [9]Kusumi. Characteristics of Contact Force Waveforms and Applications to Diagnosis of Overhead Line[J]. Quarterly Report of RTRI (Japan),2005,7:17-22.
    [10]Manabe K. High-speed contact performance of catenary pantograph system[J]. Japan Society Mechanical Engineering,1998,504:1843-1851.
    [11]藤井保和,易厚梅.新干线受流系统高速化的技术研究[J].电力牵引快报,1995,(10):20-25.
    [12]Mitsuo Aboshi, Katsushi Manabe. Analyses of contact force fluctuation between catenary and pantograph[J]. Quarterly Report of RTRI (Japan),2000,41 (4):182-187.
    [13]韩柱先,王国梁.刚性接触网的不平顺分析.铁道工程学报,2007,(4):61-64.
    [14]Satoshi Harada, Shunichi Kusumi. Monitoring of overhead contact line based on contact force[C]. The Institution of Engineering and Technology International Conference,2006, 188-193.
    [15]谢建.弓网耦合动力学模型仿真及接触网不平顺分析[J].电气化铁道,2009,(6):23-29.
    [16]苏文胜.滚动轴承振动信号处理及特征提取方法研究[D].大连:大连理工大学,2010.
    [17]Gustafsson.G.TallianT. Detection of damage in assembled rolling bearings. Trans of ASLE.1962,5:197-209.
    [18]MartinR.Angelo, BreKjaer. Vibration monitoring of machines. Maintenance Management international,1989,135-154.
    [19]Y.Kim Paul, Cowel. R.G. A review of rolling element bearing health monitoring. Proceeding of Machinery Vibration Monitoring and Analysis Meeting[C].1983,19-21.
    [20]李萌.旋转机械轴承故障的特征提取与模式识别方法研究[D].长春:吉林大学,2008.
    [21]李强.机械设备早期故障预示中的微弱信号检测技术研究[D].天津:天津大学,2006.
    [22]XIE Ming, Ding Kang. Correction for the Frequency, Amplitude and Phase in FFT of Harmonic Signal[J]. Mechanical System and Signal Processing,1996,10 (2):211-221.
    [23]Zbigneiew Leonowicz, Tadeusz Lobos, Jacek Rezmer. Advanced Spectrum Estimation Methods for Signal Analysis in Power Electronics[J]. IEEE Transactions on Industrial Electronics,2003,50 (3):514-519.
    [24]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计[J].电工技术学报,2008,23(6):109-113.
    [25]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [26]Zygarlicki J, Zygarlicka M, Mroczka J. A Reduced Prony's Method in Power-Quality Analysis-Parameters Selection[J]. IEEE Transactions on Power Delivery,2010,25 (2): 979-986.
    [27]陈宪麦.轨道不平顺时频域分析及预测方法的研究[D].北京:铁道科学研究院,2006.
    [28]单佩韦.时频分析系统及其应用[D].华东师范大学,2011.
    [29]赵凤展,杨仁刚.基于短时傅立叶变换的电压暂降扰动检测[J].中国电机工程学报,2007,27(10):28-34.
    [30]Francisco Jurado, Jose R Saenz. Comparison between discrete STFT and wavelets for the analysis of power quality events[J]. Electric Power Systems Research,2002,62 (3): 183-190.
    [31]P.Flandrin. Time-Frequency/Time-Scale Analysis[J]. San Diego:Academic Press,1999.
    [32]周林,夏雪,万蕴杰.基于小波变换的谐波测量方法综述[J].电工技术学报,200621(9):67-74.
    [33]Jaideva C, Goswami, Andrew K. Chan. Fundaments of Wavelets:Theory, Algorithms and Applications[M]. Canada:John Wiley&Sons, Inc.1999.
    [34]徐长发,李国宽.实用小波方法(第二版)[M].武汉:华中科技大学出版社,2004.
    [35]何岭松,李巍华.用Morlet小波进行包络检波分析[J].振动工程学报,2002,15(1):119-122.
    [36]N.E.Huang. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London,Series A,1998,454:903-995.
    [37]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-87.
    [38]Rilling, Flandrin P, Goncalves P. Empirical mode decomposition and its algorithms [C]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado, Italy,2003:1-5.
    [39]Z Wu, N.E.Huang. Ensemble Empirical Mode Decomposition-A Noise-Assisted Data Analysis Method [R]. Center for Ocean-Land-Atmosphere Studies,2005.
    [40]李天云,赵研,李楠.基于HHT的电能质量检测新方法[J].中国电机工程学报,2005,25(17):52-56.
    [41]黄奂,吴杰康.基于经验模态分解的电能质量扰动信号定位方法[J].电网技术,2010,34(5):41-45.
    [42]孙政,胡修林.高阶统计量方法及应用研究[J].计算机与数字工程,2003,(6):59-62.
    [43]黄绣坤.高阶谱及其在信号处理中的应用[J].铁道学报,1993,(1):103-110.
    [44]Zhou Yanbing, Liu Yibing. Higher Order Spectral Analysis for Vibration Signals of the Large Steam Turbine in Slow-Down Process. July,2011.
    [45]赵静,何正友,贾勇等.基于高阶累积量的暂态电能质量扰动分类研究[J].电网技术,2011,35(5):103-109.
    [46]M. Grasse, M. R. Frater, J. F. Arnold. Testing VBR video traffic for stationarity[J]. IEEE Transactions on Circuits and Systems for Video Technology,2000,3:448-457.
    [47]段鹏,张晓峒.基于OLS退势的单位根检验[J].系统工程理论与实践,2010,30(5):849-856.
    [48]Bart Hobijn. Generalizations of the KPSS-test for stationarity[J]. Statistica Neerlandica, 2004,58 (4):483-502.
    [49]Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, Y. Shin. Testing the null hypothesis of stationarity against the alternative of a unit root[J]. Journal of Econometrics,1992,54: 159-178.
    [50]Thomas Schreiber. Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions [J]. Physical review letters,1997,78(5):843-846.
    [51]Michael Jansson. Stationarity testing with covariates[J]. Econometric Theory,2004,20: 56-94.
    [52]高品贤.测试信号分析处理方法与程序[M].成都:西南交通大学,2004.
    [53]吕光明.对数据平稳性检验方法的比较研究[J].财经问题研究,2004,6:77-80.
    [54]黎实,彭作祥.泛函中心极限定理渐进性与具有GARCH误差项的金融时序单位根检验[J].数量经济技术经济研究,2006,10:79-90.
    [55]唐诚,陶敏.基于谱分析下的时间序列的平稳性检验[J].南京邮电大学报,2009,29(2):31-34.
    [56]Jun Xiao, Pierre Borgnat, Patrick Flandrin.Testing stationarity with time-frequency surro-gates [J]. Proc. EUSIPCO-07,2007,2020-2024.
    [57]D.M.Halliday, J.R.Rosenberg, A.Rigas. A periodogram-based test for weak stationarity and consistency between sections in time series[J]. Journal of Neuroscience Methods, 2009,180:138-146.
    [58]Fabio Busettia, A.M.Robert Taylorb. Tests of stationarity against a change in persistence [J]. Journal of Econometrics,2004,123:33-66.
    [59]Giuseppe Cavaliere. Testing stationarity under a permanent variance shift[J]. Economics Letters,2004,82:403-408.
    [60]珪烨.替代数据法及其应用[D].上海:华东师范大学,2011.
    [61]BORGANT P, FLANDRIN P. Stationarization via surrogate[J]. Journal of Statistics Mechanics:Theory and Experiments,2009 (1):1-13.
    [62]M. Bayram band R.G. Baraniuk. Multiple window time-varying spectrum estimation [J].Nonlinear and non-stationary signal process,2000,292-316.
    [63]HALLP, HEYDE C. Martingale Limit Theory and Its Application[M]. New York: Academic Press,1980.
    [64]何书元.应用时间序列分析[M].北京:北京大学出版社,2003.
    [65]Giuseppe Schlitzer. Testing the stationarity of economic time series:further Monte Carlo evidence[J]. Ricerche Economiche,1995,49:125-144.
    [66]Huiping Jiang, Henry L.Gray, Wayne A. Time-frequency analysis-G(A)-stationary processes [J].Computational Statistics and Data Analysis,2006,51:1997-2028.
    [67]Bart Hobijn, Philip Hans Franses, Marius Ooms. Generalizations of the KPSS test for stationarity[J]. Statistica Neerlandica,2004,58 (4):483-502.
    [68]吕光明.对数据平稳性检验方法的比较研究.财经问题研究,2004,(6):77-80.
    [69]李舜酩,李香莲.振动信号的现代分析技术与应用[M].北京:国防工业出版社,2008.
    [70]唐震,程玉胜.舰船辐射噪声的非高斯特性和非线性检验[J].青岛大学学报,2002,15(3):63-64.
    [71]Hinich MJ, Wilson G R. Detection of non-Gaussian signals in non-Gaussian noise using the bi-spectrum[J]. IEEE Trans, Signal Processing,38:1126-1131.
    [72]赵志宏,杨绍普,中永军.一种改进的EMD降噪方法[J].振动与冲击,2009,28(12):35-37.
    [73]P Flandrin, G Rilling, P Goncalve. Empirical mode decomposition as filter bank[J]. IEEE Signal Processing Letters,2004,11 (2):112-114.
    [74]Boudraa A O, Cexus J C, Saidi Z. EMD-Based Signal Noise Reduction[J]. International Journal of Signal Processing,2004,1 (1):33-37.
    [75]蔡艳平,李艾华,石林锁等.基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析.振动与冲击,2011,30(2):45-51.
    [76]苏文胜,王奉涛.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21.
    [77]J.Antoni. The spectral kurtosis:A useful tool for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing,2006, (20):282-307.
    [78]郭瑜,郑华文,高艳.基于谱峭度的滚动轴承包络分析.振动、测试与诊,2011,31(4):44-50.
    [79]陈刚.谱峭度及其在电力系统暂态信号处理中的应用研究[D].成都:西南交通大学,2012.
    [80]Vrabie V, Granjon P, Serviere C. Spectral kurtosis:from definition to application[C]. Italy: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,2003.
    [81]Antoni J. The Spectral Kurtosis:a Useful Tool for Characterizing Non-stationary Signals[J]. Mechanical Systems and Signal Processing,2004, (20):282-307.
    [82]沈金伟,石锁林.滚动轴承故障诊断的改进小波变换谱峭度方法[J].轴承,2010,(8):46-49.
    [83]石锁林,张亚洲,米文鹏.基于WVD的谱峭度法在轴承故障诊断中的应用[J].振动、测试与诊断,2011,31(1):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700