光纤CO气体传感器的理论建模及设计实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通风不良或密闭的环境中对易燃易爆和有毒有害气体的监测对保障人身健康和安全具有非常重要的意义,在此类场合中一般采用技术比较成熟的电式气体传感器,但电式气体传感器在使用过程中会有产生电火花并引发爆炸的可能,而且此类气体传感器往往存在容易老化和中毒的缺点。由于光纤传感器采用光而不是电作为信息载体,所以不存在产生电火花的安全隐患问题。正是因为光纤气体传感器具有安全方面的独特优点,而且适宜在各种恶劣的环境条件下工作,所以光纤气体传感器的研究和开发逐渐成为目前气体传感器研究的热点。本文主要针对一氧化碳(CO)气体,对光纤气体传感器的理论、建模和设计实现进行研究。
     首先,基于气体分子吸收光谱理论和比尔-朗伯定律,分析了差分吸收型气体传感器的数学模型和基于窄带光源的谐波检测光纤气体传感器的数学模型,在此基础上提出了基于谐波检测的光纤气体传感器的数学模型的改进方法,即基于差分后谐波检测的光纤气体检测模型。此外,还对基于窄带光源的谐波检测光纤气体传感器进行了仿真研究。基于差分后谐波检测的光纤气体检测模型利用参考光路与检测光路光强的差分消去基波分量,对差分后的信号再进行二次谐波检测得出气体浓度。使用该方法提高了系统检出二次谐波分量的能力,同时有效地提高了系统的分辨率。
     根据上述理论分析,设计开发了基于差分后谐波检测的光纤传感器系统。在传感器光路系统设计中,提出了一种基于串联自聚焦透镜组的透射式气室。对基于串联自聚焦透镜组的透射式气室的数学模型进行了分析,并完成了气室结构的设计与开发。对于一般的基于自聚焦透镜组的透射式气室,通过增加吸收光程来获得更高灵敏度。但在对传感器尺寸有限定的场合不能任意加长气室,在这种情况下,可以将多对自聚焦透镜组串联使用,即采用基于串联自聚焦透镜组的透射式气室的结构。采用这种结构的气室可以实现在不增加气室长度的情况下使吸收光程增长。
     根据光电微弱信号检测的原理以及差分后谐波检测的光纤气体检测模型,完成了光电微弱信号检测电路系统设计。设计实现了基于差分后谐波检测的微弱信号处理电路、前置放大电路、差分电路、调制电路和光源温度控制电路及电流驱动电路等。
     最后对传感器样机进行了系统实验研究,实验结果表明基于差分后谐波检测原理和串联自聚焦透镜组的透射式气室结构的光纤气体传感器具有良好的检测效果。
Electronical gas sensors are advanced, but this type of sensors have some shortcomings such as causing explosion, sensitive material poisoning. Since optical fiber gas sensors adopt optic as information carrier, this type of sensor has special advantage in security. And this type of sensor is fit for working in bad conditions. Therefore research and development of optical fiber sensor is gradually become the highlight of gas sensors’research. Optical fiber gas sensors are studied systematically in this dissertation, which include theoretical modeling, developing and testing of prototypes.
     Based on Principle of absorption spectrum and Beer-Lambert law, mathematical model of gas sensor based on difference absorption was analyzed. And harmonic detection mathematical model of optical fiber gas sensor based on narrowband optical source was analyzed. Then improved harmonic detection mathematical model of optical fiber gas sensor was presented. We call this model as difference-harmonic-detection model. Simulation research on harmonic detection optical fiber gas sensor based on narrowband optical source was processed. Using the difference between referenced light intensity to metrical light intensity, we can counteract the fundamental wave component. Detecting 2nd harmonic of difference signal, we can obtain the gas concentration. By using this method, system’s ability of detecting 2nd harmonic component is improved, and system’s resolving power is increased too.
     According to analysis above, structure of difference-harmonic-detection optical fiber sensor system was designed. In optical design, we present a method that using cascaded GRIN Lens couples to compose a gas cell. Mathematical model of transmission type of gas cell that based on cascaded GRIN Lens couples was analyzed. And structure of gas cell is designed and developed. If the other condition is fixed, with increasing of optical path length, sensor’s sensitivity is enhanced. For transmission gas cell based on GRIN lens, the same method is usually adopted. However, for some of sensors, the formal size is limited. Especially, the length is limited. To shorten sensor’s size and length, and enhance sensor’s sensitivity, a method that using cascaded GRIN Lens couples to compose a gas cell is presented. With this method, the optical path length is increased and the detection sensitivity of the gas cell is greatly increased.
     According to principle of Photoelectricity Weak Signal Detection and mathematical model of difference-harmonic-detection optical fiber sensor, the system of Photoelectricity Weak Signal Detection is designed. The circuit of Photoelectricity Weak Signal Detection, preamplifier circuit, difference circuit, modulation circuit, optical source thermal control and current drive circuit etc. are designed.
     At last, based on the research above, the prototype of an optical fiber gas sensor is developed. Experimental results show that optical fiber gas sensor based on difference- harmonic-detection and structure of cascaded GRIN Lens couple has good detection effects.
引文
[1]孙圣和,王廷云,徐影.光纤测量与传感技术第二版[M].哈尔滨:哈尔滨工业大学出版社,2002
    [2]赵振彬.光纤气体检测技术在潜艇中的应用展望[J].舰船科学技术,2002,24(S1):35-37
    [3]何圣静,陈彪.新型传感器[M].北京:兵器工业出版社,1993
    [4]吴玉锋,田彦文,韩元山,翟玉春.气体传感器研究进展和发展方向[J].计算机测量与控制,2003,11(10):731-734
    [5]马戎,周王民,陈明.气体传感器的研究及发展方向[J].航空计测技术,2004,24(4):1-4
    [6] BAER R L, FLORY C A, TOM MOYM. STW chemical sensors [C]. Proc. IEEE Ultrasonics Symp. Tucson, AZ, 1992: 293
    [7] Lundstrom I, Shivaraman M S, Svensson C, et al. Hydrogen sensitive MOS field-effect transistor [J], Appl Phys Lett, 1975, (26): 5557
    [8] Arbab A, Spetz A, Lundstrom I. Gas sensors for high temperature based on metal-oxide-silicon carbide (MOSiC) device [J]. Sens Actuat B, 1993, (15/16): 19-23
    [9]高波,刘嵩,朱维东等.一种实用可靠的氢气检测器[J].电子技术,1995,7:21-22
    [10] Kan R, Liu W, Zhang Y, et al. Large scale gas leakage monitoring whit tunalble diode laser absorption spectroscopy [J]. Chinese Optics letters, 2006, vol. 4:116-118
    [11] Eva S. Norris and Síle G. Nic Chormaic. Development of a portable carbon monoxide optical sensor based on an extended cavity diode laser at 1564 nm. Proceedings of SPIE Vol. 4876 (2003): 923-929
    [12] M A. Butler. Micromirror optical-fiber hydrogen sensor [J]. Sensors and Actuators B, 1984, vo1. 22: 155-163
    [13] A. Mandelis, J. A. Garcia. Pd/ PVDF Thin Film Hydrogen Sensor Based on Laser-amplitude Modulated Optical-transmittance: Dependence on H2 Concentration Device Physics [J]. Sensors and Actuators B, 1998, vol.49: 258-267
    [14] A. Bearzotti, et al. Integrated optic sensor for the detection of H2 concentrations [J]. Sensors and Actuators B: Chemical, 1992, vo1. B7 nl-3: 685-688
    [15] Joel Villatoro, Antonio Díez, JoséL. Cruz, and Miguel V. Andrés. In-Line HighlySensitive Hydrogen Sensor Based on Palladium-Coated Single-Mode Tapered Fibers [J]. IEEE SENSORS JOURNAL, August 2003. 2003, vol. 3(4): 533-537
    [16] Boonsong Sutapun, et al. Pd-coated elastooptic fiber optic Bragggrating sensors for multiplexed hydrogen sensing [J]. Sensors and Actuators B: Chemical, 1999,vo1.60: 27-34
    [17] J.S. Zeakes, K.A. Murphy, and A. Elshabini-Riad. Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor. R.O. Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS '94 Conference Proceedings. IEEE, Volume: 2, 31 Oct.-3 Nov. 1994, vol.2: 235 - 236
    [18] X. Bévenot, A. Trouillet, C. Veillas, et al. Hydrogen leak detection using an optical fibre sensor for aerospace applications [J]. Sensors and Actuators B, 2000,vol. 67: 57-67
    [19] Jiming Sa, Youping Chen, Gang Zhang and Zude Zhou. Study on Transmission Optical Fiber Hydrogen Sensor [A]. Proceedings of 6th World Congress on Intelligent Control and Automation (WCICA’06) [C]. Dalian. 21-23 June 2006. Dalian: IEEE, 2006, v6: 5046-5048
    [20] David Galbarra1, Francisco J Arregui1, Ignacio R Matias et al. Ammonia ptical fiber sensor based on self-assembled zirconia thin films [J]. SMART MATERIALS AND STRUCTURES, 2005,14: 739–744
    [21]周继明,江世明.传感技术与应用[M].长沙:中南大学出版社,2005
    [22]王玉田,郑龙江,候培国等.光电子学与光纤传感器技术[M].北京:国防工业出版社,2003
    [23]安毓英,曾小东.光学传感与测量[M].北京:电子工业出版社,2001
    [24]魏永广,刘存.现代传感技术[M].东北大学出版社, 2001
    [25]李少慧,宁雅农等译.光纤传感器[M].华中理工大学出版社, 1997
    [26]张志鹏,W. A. Gambling.光纤传感器原理[M].中国计量出版社, 1991
    [27]郭凤珍,于长泰.光纤传感技术与应用[M].浙江大学出版社, 1992
    [28]孙雨男,王茜蒨,伍剑,杨爱英.光纤技术-理论基础与应用[M].北京:北京理工大学出版社,2006
    [29]李文植.光纤传感器的发展及其应用综述[J].科技创业周,2005,7:153-154
    [30]廖延彪,黎敏.光纤传感器的今日与发展[J].传感器世界,2004,2:6-12
    [31]何慧灵,赵春梅,陈丹,等.光纤传感器现状[J].激光与光电子学进展,2004,41(3):39-41,38
    [32]廖延彪.光纤光学[M].北京:清华大学出版社, 2000
    [33] C.D. Singh, Yutaka Shibata, Masami Ogita. A theoretical study of tapered, porous clad optical fibers for detection of gases [J]. Sensors andActuators B, 2003, 92:44–48
    [34] W. Jin, G. Stewart, M Wilkinson et al, Compensation for Surface contamination in a D-fiber evanescent wave methane sensor [J]. Journal of lightwave technology, 13(6), 1995:1177-1183
    [35]冯金垣,陈先红,孙登奎等.光纤气体传感机理研究[J].华南理工大学学报(自然科学版),2001,29(3):26-29
    [36]郭铁梁.光纤气体传感技术及其应用[J].煤矿机械,2004,4:122-124
    [37]李瑛,杨集,冯士维.光纤气体传感器研究进展[J].传感器世界,2005,1:6-10
    [38]靳伟,廖延彪,张志鹏等.导波光学传感器:原理与技术[M].北京:科学出版社,1998, 254-285
    [39]张景超,刘瑾,王玉田,杨海马.新型光纤CO气体传感器的研究[J].光电子·激光2004,15(4):428-431
    [40] G. Stewart, B. Culshaw, W. Johnstone, G. Whitenett, et al. Optical fibre sensors and networks for environmental monitoring [J]. Management of Environmental Quality, 2003,14: 181-190
    [41]喻洪波,廖延彪,靳伟,何海律.光纤化的气体传感技术[J].激光与红外,2002,32(3):193-196
    [42]刘文琦,牛德芳.透射式光纤气体传感器的研究[J].仪表技术与传感器1998,1:4-6
    [43] R. Bohm, A. stephani, et al. intracavity absorption spectroscopy with a Nd3+ - doped fiber laser [J]. Optics letters, 1993, 18(22): 1954-1957
    [44]靳伟,阮双琛,等.光纤传感技术新进展[M].北京:科学出版社,2005, 116-137
    [45] K T V Grattan, B T Meggitt. Optical Fiber Sensor Technology [M]. vol. 1 and vol.4, Chapman & Hall, 1995
    [46] M Campbell (eds). Sensor systems for environmental monitoring [M]. Vols. 1&2, Blackie Academic & professional, 1997
    [47] Inaba H, Kobayasi T, Hirama M, et al. Optical-fiber network system for air -pollution monitoring over a wide area by optical absorption method [J]. Electronics Letters, 1979, 23: 749-751
    [48] Chan K, Ito H, Inaba H. Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP Light-emitting diode in 1.33um region [J]. Appl Phys Lett, 1983, 43(7): 634-637
    [49] Chan K, H Ito, H Inaba. 10km-long Fiber-optic remote sensing of CH4 Gas by near infrared absorption [J]. Applied Physics, 1985, B 38: 11-15
    [50] H. Tai. Long distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers [J], IEEE Photonics Technology Letters, 1992, 4(7) 804-807
    [51] Weldon V, et al. Methane and carbon dioxide sensing using a DFB laser diode operating at 1. 64um [J], Electronics Letters, 1993, 29(6): 560-561
    [52] Weldon V, et al. H2S and CO2 gas sensing using a 1.57 DFB laser diode [A], proceedings 2nd European conference on optical chemical sensors and biosensors, Florence. Italy, 1994, 26: 19-21
    [53] Jin W, Stewart G, Culshaw B, et al. Absorption measurement of methane gas using a broad light source and interferometric signal processing [J]. Optics Letters, 1993, 18 (16): 1364-1366
    [54]王明华,徐端钧,周永秋,等.普通化学第五版[M].北京:高等教育出版社,2002
    [55]王明宗,何欣翔,孙殿卿.实用红外光谱学第二版[M].北京:石油工业出版社,1990
    [56]徐志超.应用光谱学[M].华东师范大学出版社,1989
    [57]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005
    [58]白长城,张海兴,方湖宝.红外物理[M].北京:电子工业出版社,1989
    [59]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004
    [60]陈扬骎,杨晓华.激光光谱测量技术[M].上海:华东师范大学出版社,2005
    [61]王玉田,刘瑾,张景超,等.基于谐波检测技术的光纤甲烷气体传感器的研究[J].测控技术,2003,22(11):19-21,27
    [62]陈桂明等.应用MATLAB建模与仿真[M].北京:科学出版社,2001
    [63] Joanna Maria Di Lorio. A Sensor to Measure Gas Temperature, CO and H2O Concentrations using a 1.58um Diode Laser. Thesis for degree of Master, University of Toronto, 2002
    [64] http://www.cfa.harvard.edu/HITRAN/docs.html
    [65] http://www.cfa.harvard.edu/HITRAN/hitrandata04
    [66]陈永甫.红外辐射红外器件与典型应用[M].北京:电阻工业出版社,2004
    [67]王惠文.光纤传感技术与应用[M].北京:国防工业出版社,2001
    [68]谭久彬,张杰.自聚焦透镜在传感应用中的研究进展[J].光电子·激光,2001,12(9):984-988
    [69]高晋占.微弱信号检测[M].北京:清华大学出版社,2004
    [70]曾庆勇.微弱信号检测第二版[M].杭州:浙江大学出版社,1994
    [71] Burr-Brown Corporation. OPA129 Ultra-Low Bias Current Difet OPERATIONAL AMPLIFIER data manual
    [72]王福昌,鲁昆生.锁相技术[M].武汉:华中科技大学出版社,1997
    [73]陈志华,赵淳生.移相器的一种简单实现方法[J].电子工程师,2002,28(10):61-62
    [74] Fairchild Semiconductor Corporation. CD4046BC Micropower Phase-Locked Loop data manual. http:// www.fairchildsemi.com
    [75]常青,赵永林,孙凤池.一种高精度锁定放大电路[J].电子与自动化,1999,4:46
    [76] Analog Devices, Inc. Balanced Modulator/Demodulator AD630 data manual. http://www.analog.com
    [77]孟开元,李绍敏.多功能运算变换电路研究与应用西安石油学院学报(自然科学版)[J].2001,16(3):47-49
    [78]韦静,张浩.LTC1923在DWDM激光器温控电路中的应用[J].现代电子技术,2003,7:75-77,81
    [79]候立周,强锡富,孙晓明.一种高精度半导体激光器温控调频系统[J].光学精密工程,1999,7(3):28-32
    [80]刘东波.光纤气体传感中稳频光源驱动控制系统的研究:[硕士学位论文].保存地点:华中科技大学图书馆,2006
    [81]张冈,刘东波,陈幼平,撒继铭.光纤传感器中光源的驱动与控制[J].仪表技术与传感器,2006,5:45-46,60
    [82]撒继铭,陈幼平,张冈,周祖德.半导体激光器数字温度控制系统的设计[J].自动化仪表,2007,28(1): 23-25
    [83]于海生,潘松峰,于培仁,等.微型计算机控制技术[M].北京:清华大学出版社,1999
    [84] Lawrence A. Johnson. ILX APPLICATION NOTE: Controlling Temperatures of Diode Laser Thermoelectrically. ILX Lightwave Corporation, 2003
    [85]张娜.半导体激光器恒温控制理论与应用[J].吉林大学学报(理学版).2002,40 (3): 284-287
    [86]陈梁,刘春霞.大功率激光二极管的精密恒温制冷系统[J].激光与红外,1999,29 (4):249-252
    [87]沙占友,王彦朋,杜之涛.NTC热敏电阻的线性化及其应用[J].自动化仪表,2004,25(9):28-30
    [88]蔡兵.几种简单的传感器非线性校正技术[J].长江大学学报(自然科学版),2004,1(3):59-61
    [89]范铠.传感器软件非线性校正方法综述[J].上海计量测试,2004,2:8-12
    [90] S. Tian, Y. Zhao, H. Wei, et al. Nonlinear correction of sensors based on neural network model [J]. Optics and Precision Engineering, 2006,14(5): 896-902
    [91]阚保强,张安堂,王建业,杜洁.传感器信号非线性的软件补偿[J].空军工程大学学报(自然科学版),2005,6(2):25-27
    [92]蔡兵,蔡从保,王汉忠,方国家.常温H2S传感器的线性化研究[J].襄樊学院学报,2001,22(5):61-64
    [93] ZHANG Gang, CHEN Youping, CAO Huimin. Design of an embedded optical fiber micro-displacementmeasurement system [A]. Proc. of SPIE, 2006, Vol. 6150: 61501M-1~5
    [94]潘新民,王燕芳.微型计算机与传感器技术[M].北京:人民邮电出版社,1987
    [95] TAIB M N, NARAYANASWAMY R. Multichannel calibration technique for optical-fibre chemical sensor using artificial neural network [J]. Sensors and Actuators B (Chemical), 1997, 39 (1/ 3): 365 -370
    [96] DEMPSEY G L, ALT N J, OLSON B A, et al. Control sensor linearization using artificial neural networks [J]. Analog Integrated Circuits and Signal Processing, 1997,13 (3): 321-322
    [97] ATTARI M, BOUDJEMA F, HENICHE M. An artificial neural network to linearize a G (tungsten vs. tungsten 26 % rhenium) thermocouple characteristic in the range of zero to 2000 degrees C [A]. Proceedings of the IEEE International Symposium on Industrial Electronics[C]. New York: IEEE Press, 1995,1: 176-180
    [98]朱庆保,最佳拟合与神经网络相结合实现传感器特性线性化控制理论与应用[J].控制理论与应用,2003,20(1):66-69
    [99]朱庆保,智能检测仪器非线性误差神经网络校正研究[J].仪器仪表学报,2000,21(5):516-518,530
    [100] Analog Devices, Inc. ADuC841/ADuC842/ADuC843 MicroConverter 12-Bit ADCs and DACs with Embedded High Speed 62-kB Flash MCU data manual. http://www.analog.com
    [101] http://www.tektronix.com. WaveStar Software User Manual. Tektronix Inc., 2002
    [102]李科杰,新编传感器技术手册[M].北京:国防工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700