基于吸收光谱法的光纤气体传感器及传感网络
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网(IOT:Internet of Things)是目前研究的热门领域之一,而光纤传感网络是物联网的一个重要部分。在环境保护和现代化工业生产中,人们都急需一种可监测多点气体浓度信息的传感网络。光纤型气体传感设备和方案因其抗干扰性强、本质安全、基于光通信技术、易于组网、智能化监测等显著特点而成为当今国内外传感领域研究的主要对向。虽然科研人员已经对光纤单点气体传感器研究了多年,取得了一定的成果,但是仍然存在一些问题;另一方面,如何利用单点传感器构成一个光纤传感网络正成为当前热点之一。
     本文针对吸收光谱法的光纤气体传感器进行了深入的研究。首先是对于单耦合器光纤环结构的气体传感器进行了研究,分析了测量理论并搭建了实验系统;随后对利用增益钳制EDFA(Erbium-Doped Fiber Amplifier)的光纤腔衰荡气体传感器进行了研究,在理论和实验两方面探究增益钳制EDFA性能的基础上,实际搭建了一种基于增益钳制EDFA的光纤腔衰荡气体传感器;第三,对于基于波分复用的多点光纤气体传感网络进行了深入研究,分析了耦合器网络、EDFA补偿型耦合器网络、波分复用器网络、DLOB(Dual-Loop Optical Buffer)网络等不同组网方式下的网络性能,包括损耗及信噪比等问题,理论分析了波分复用型传感网络的测量原理和最大可监测点数,并搭建实验系统进行验证;最后对于DLOB和基于码分多址的光纤气体传感网络的若干关键问题进行了深入研究,对于DLOB的环长与信号包速率长度关系、信号包的编码方案、U波段的光开关等问题进行了研究。
     本文主要研究内容与所取得的创新性成果为:
     1.提出了一种1665nm基于单耦合器光纤环的甲烷传感器结构,分析了该传感器的性能:包括1665nm系统中使用1550nm耦合器的最佳分光比与信号光环行圈数的关系;与传统的吸收光谱法相比,该传感器将气室的有效吸收长度增加了4倍。利用该传感器实际测量了两组甲烷气体样品,其测量结果误差小于2.5%。
     2.光纤腔衰荡型传感器是一种常见的传感器结构,但其损耗较大、信号衰荡次数较少、衰荡时间短;虽然加入光放大器可以补偿衰荡损耗,但光放大器是一种非线性放大器件,具有增益饱和特性,将严重影响检测精度。为解决此问题,提出了一种基于增益钳制EDFA的光纤腔衰荡气体传感器新结构。理论分析获得了增益钳制EDFA的线性放大范围以及对应的输入功率阂值,并进一步导出了消光比与归一化输入光功率的关系。这些理论成果,在实际搭建的基于增益钳制放大器的传感器中得到了验证。实验表明,该增益钳制结构能够将EDFA归一化增益的线性范围从0.02扩大到约0.55、传感器衰荡时间从63.82 ns增加为2.90 us,测量误差从±0.70降为±0.0054 dB。利用该传感器实际测定了乙炔在1534.100nm的吸收峰,与光谱仪测量得到的结果吻合较好;对1.03%的乙炔样品的测量结果表明检测误差小于3.5%。
     3.对四种不同组网方式的光纤传感网络进行了分析比较,包括系统损耗、信噪比等性能。提出了一种波分复用型光纤乙炔传感网络,该网络利用密集波分复用器将宽谱光源分束为不同波长的窄带信号光,并利用不同的波长来区分不同传感点的位置,其系统损耗、串扰、信噪比恶化等都远远小于其他三种组网方式。在深入分析这种网络测量原理的基础上,得到了适用于该网络的谱线展宽形式的Beer-Lambert定律,分析得知该方案最大可监测18个传感点。最后实际搭建了一个3点的波分复用型光纤乙炔传感网络,各点的测量误差均小于1.8%。
     4.提出了一种适用于波分复用型乙炔传感网络的半导体光放大器SOA(Semiconductor Optical Amplifier)级联EDFA的新型宽谱光源,可有效地覆盖乙炔气体在1510-1540nm内的吸收峰。分析得到了该宽谱光源的理论输出光谱,与光谱仪的实际测量结果吻合较好。该宽谱光源兼具SOA的谱宽宽、平坦度好和EDFA的功率高等优点。
     5.提出了一种基于全光缓存器(DLOB)和码分多址(CDMA: Code Division Multiple Access)的光纤气体传感网络。该传感网络的优点在于:利用DLOB的双波长多圈缓存特性,将脉冲光信号在DLOB中多次循环通过气室,极大地增加了有效气体吸收长度;同时利用不同编码来区分传感点的位置。对这种传感网络的若干关键技术问题进行了研究:分析提出了一种适合该网络的编码方案;推导了码字长度(一个用户码字的比特数)、信号速率与DLOB光纤环长度的关系;对半导体光放大器(SOA)和光子晶体光纤(PCF:Photonic Crystal Fiber)在U波段的增益和相位调制特性进行了分析,并实验得到了PCF损耗值、非线性系数等参数。这些关键技术的解决,对本方案的进一步研究有重要的指导意义。
The Internet of Things (IOT) is one of the most popular research areas, and the fiber optics sensing network is one key aspect of the IOT. Intrinsic safe, reliable, and real-time gas sensing networks are badly needed both in environment protections and industrial production processes. Fiber optics gas sensing methods and devoices are the main research interests because of their incomparable advantages, such as, anti-interference and intrinsic safe, easy to make use of the state-of-art optical communication technologies, easy to build up networks, smart and multi-parameters monitoring. On one hand, the fiber optics gas sensors are maturing and commercializing through all these years'intensive research and they however could be improved. On the other hand, the fiber optics sensing networks are under mass investigations and attracting more interests of scientists within labs, institutes and research centers.
     In this doctoral thesis, fiber optics gas sensors and sensing networks were studies thoroughly. First of all, a single coupler fiber optics methane sensor was theoretically analyzed and then actually built up. After that an Erbium-Doped Fiber Amplifier (EDFA) gain-clamped Fiber Loop Ring-down Spectroscopy (FLRDS) sensor was put forward after theoretically and experimentally researches on the gain-clamped EDFA performances. Thirdly, a fiber optics gas sensing network based on Dense Wavelength Division Multiplexing (DWDM) was proposed and investigated. The network losses as well as the Signal Noise Ratios (SNR) of four different networks were studied, the maximum sensing points of the DWDM network and the detecting theory was discussed, and a DWDM network was actually established. Finally, a sensing network based on Code Division Multiplexing Access (CDMA) and Dual-loop Optical Buffers (DLOB) was proposed. Several key problems of that network, the signal packet coding method, the restrict conditions of the DLOB loops'lengths, U-band optical Cross-phase Modulation (XPM) and optical switches were deliberated respectively.
     The main research achievements and creative outcomes are presented as following,
     1. A fiber loop gas sensor configuration with a single coupler was proposed and used for methane detection at 1665 nm. The sensor performances were studied, the measurement theory as well as the relationship between the best split ratio of the coupler and the signal travelled loops were obtained. Two gas samples were tested by the sensor, and the gas gap was lengthened for 4 times while the measurement errors were within 2.5%.
     2. Considering that the traditional FLRDS approaches have drawbacks like big round-trip losses because of couplers used, short ring-down times with small numbers of signal round-trips, and also the shortcoming of reduced sensitivity in case of adding amplifiers directly into the fiber loop, a new type of configuration with gain-clamped EDFA FLRDS gas sensor was proposed. The detailed EDFA gain-clamp theory was analyzed; the gain and the extinction ratio of the gain-clamped EDFA with respect to normalized input power were given. A FLRDS sensor based on a gain-clamped EDFA was practically built up. The round-trip loss was largely cut down from 6.836 to 0.394 dB, while the ring-down time lengthened from 63.82 ns to 2.90μs and the measurement errors from±0.70 to±0.0054 dB comparing to the former sensor setup. Finally, the acetylene absorption line at 1534.100 nm was obtained with the sensor and has a good agreement with the spectrum from the Optical Spectrum Analyzer (OSA), and A 1.03% acetylene gas sample was measured with errors less than 3.5%.
     3. After comparing the system attenuations and SNRs of four different optical fiber sensing networks, a novel acetylene gas sensing network which has much smaller system attenuation and cross-talk based on wavelength division multiplexers was brought forward. The system take advantages of DWDMs to part broad-band light into different narrow-band signal lights and assign them to corresponding sensors while utilize narrow-band signal lights' wavelengths to mark different probes. The measuring method and theory was obtained and given, the maximal probe numbers of the network was also calculated as 18 for acetylene. A three-probe sensing network was set up and its measurement errors are no more than 1.8%.
     4. A new broad band light source using cascaded SOA and EDFA for the DWDM gas sensing network was suggested, which is broad enough to cover the 1510-1540 nm absorption branches of acetylene. The formulary results of the output spectrum have good agreements with the experiment outcomes. The superiority of this light source is that it has a very good flatness as the SOAs while also a very broad Half Maximum Full Width (HMFW) and large output optical powers as EDFAs.
     5. A proposal of fiber optics gas sensing network based on DLOBs and CDMA was put forward. This kind of fiber sensing networks has excellence basically for two reasons. One is that the network takes advantages of the multi-wavelength multi-loop buffering capabilities of the DLOBs, the optical signal or packages could be "trapped" in and travel through the DLOBs which contain gas cells for dozens of times, hence the gas gaps were largely extended. The other is that the sensors were marked by codes and the probe number of the network can be much bigger than other methods by a proper coding method. Several key problems on this network were under investigated:1st a suitable coded method for this network configuration was given, and 2nd the five restrictive equations of the signal package length, the signal rate, and the loop lengths were obtained. Moreover, the gain and phase modulation properties at U-band of the SOA and Photonic Crystal Fiber (PCF) were both theoretically and experimentally discussed, their possibilities as U-band XPM devoices were also investigated. All these works on the key problems laid a solid basis for the future research and analysis.
引文
[1]Robert Spielhagen, Kirstin Werner, Steffen S(?)rensen, et al, Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water, Science,2011:331 (6016),450-453,
    [2]中国城市空气质量信息发布亟待完善,www.ipe.org.cn,北京,2011年1月19日,
    [3]去年我国煤炭生产百万吨死亡率降到1以下,新华网,北京,2010年1月19日,
    [4]中国煤矿事故起数死亡数大幅下降百万吨死亡率仍过高,新华网,南昌,2009年9月5日,
    [5]安全监管总局召开上半年安全生产形势新闻发布会,中国安全监管总局网站.2010年7月23,
    [6]W Jin, G Stewart, M Wilkinson, Compensation for Surface Contamination in a D-fiber evanesecent wave methane sensor, Journal of Lightwave Technology,1995,13(6):1177-1183,
    [7]C Singh, Yutaka Shibata, Masami Ogita, A theoretical study of tapered, porous clad optical fibers for detection of gases, Sensors and Actuators B,2003,92(1-2):44-48,
    [8]Eiji Toba, Fiber optic fluorosensor for oxygen measurement, IMTC/99. Proceedings of the 16th IEEE,1999,3:1426-1430,
    [9]Shuangshou Yang, Chongqing Wu, Zhengyong Li, et al, Temperature-effect measurement of Fresnel reflection by polarization optical time domain reflectometry (POTDR),2008 ICOIT, Proceedings of the SPIE, Volume 7157,2008:71570N-71570N-8,
    [10]Xiaoyi Bao, Optical Fiber Sensors Based on Brillouin Scattering, Optics & Photonics News,2009,20(9):40-46,
    [11]John Vetelino, Aravind Reghu, Introduction to Sensors, Taylor & Francis Group: CRC Press,2010:21,
    [12]蔡哗,葛忠华,陈银飞,金属氧化物半导体气敏传感器的研究和开发进展,化工生产与技术,1997,14(2):29-34,
    [13]吴玉锋,田彦文,韩元山等,气体传感器研究进展和发展方向,计算机测量与控制,2003,11(10):731-734,
    [14]冯良东,李冬,周仲柏,稳态法联合检测C02和02的全固态电化学传感器研究,淮阴工学院学报,2002,11(5):26-29,
    [15]陈威,王常珍,李光强,等,固体电解质室温定氢的传感性研究,东北大学学报(自然科学版),1995,16(4):376-379,
    [16]宋晓辉海中天,接触燃烧式气敏传感器的研制,计量技术,2007,19(8):76-78,
    [17]越方禹,韩蕴,黄俊,高分子膜及其在光纤气体传感器中的应用,传感器技术,2003,22(8):1-4,
    [18]关登琴,新型烟尘在线监测仪的研制[学位论文],北京交通大学图书馆,华北电力大学,12-14,
    [19]W Zeller, L Naehle, P Fuchs, et al, DFB Lasers Between 760 nm and 16μm for Sensing Applications. Sensors,2010,10(4):2492-2510,
    [20]L Rothman, D Jacquemart, A Barbe, et. al. The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc.Radiat. Transfer,2005,96:139-204,
    [21]H Inaba, T Kobayasi, M Hirama, et al, Optical-Fiber Network System for Air-Pollution Monitoring over a Wide Area by Optical Absorption Method, Electronics Letters,1979,15(23): 749-751,
    [22]K Chan, H Ito, H Inaba, Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33um,Appl. Phys. Lett.,1983,42(7):634-636,
    [23]K Chan, H Ito, H Inaba, Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link, Applied Optics,1984,23(19):3415-3420,
    [24]K Chan, H Ito, H Inaba, et al, 10km-Long Fiber-Optic Remote Sensing of CH4 Gas by Near Infrared Absorption, Applied Physics B,1985,38(1):11-15,
    [25]J Dakin, C Wade, D Pinchbeck, et al, A Novel Optical Fiber Methane Sensor, J. Opt. Sensors, 1987,2:261-267,
    [26]O'Keefe, D Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum.,1988,59(12):2544-2555,
    [27]H Tai, K Yamamoto, S Osawa, et al, Remote detection of methane using a 1.65 μm diode laser in combination with optical fibers, Proceedings of the Seventh Optical Fiber Sensors Conference, Sydney,1990:51-54,
    [28]V Weldon, H2S and CO2 gas sensing using a 1.57 DFB laser diode, proceedings 2nd European conference on optical chemical sensors and bio sensors, Florence. Italy,1994,26:19-21,
    [29]J Wojtas, Z Bielecki, J Mikolajczyk, et al. Optoelectronic Sensor for NOx Detection, Progress In Electromagnetics Research Symposium 2009, Beijing, China 2009:1035-1039,
    [30]初凤红,蔡海文,瞿荣辉等,基于U形塑料光纤的氧气传感器,中国激光,2008,35(8):1220-1223,
    [31]张景超,刘瑾,王玉田等,新型光纤CO气体传感器的研究,光电子·激光,2004,15(4):428-431,
    [32]彭勇,于清旭,基于可调谐光纤激光器C2H2气体光声光谱检测,光谱学与光谱分析,2009,29(8):2030-2033,
    [33]丁晖,梁建奇,熊志辉,等,基于差分光谱吸收技术的双光纤光栅乙炔测量系统,光学学报,2009,29(2):548-551,
    [34]Jin W, Stewart G, Culshaw B. Absorption Measurement of Methane Gas with a Broadband Light Source and Interferometric Signal Processing. Optics Letters,1993,18(6):1364-1366,
    [35]B. Culshaw, G. Stewart, F. Dong, et al, Fibre Optic Techniques for Remote Spectroscopic Methane Detection-from Concept to System Realisation. Sensors and Actuators B,1998,51(1-3): 25-37,
    [36]W Jin, Performance analysis of a timedivision-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feedback laser. Appl. Opt.,1999,38(25):5290-5297,
    [37]Miha Zavrsnik, G Stewart, Coherence Addressing of quasi-distributed absorption sensors by the FMCW method. Joural of Lightwave Technology,2000,18(1):57-65,
    [38]Miha Zavrsnik and George Stewart, Theoretical analysis of a quasi-distributed optical sensor system using FMCW for application to trace gas measurement. Sens. Actuators, B,2000,71: 31-35,
    [39]G Stewart, K Atherton, H Yu, et al. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements, Meas. Sci. Tech.,2001,12(7):843-849,
    [40]G Stewart, H Yu, G Whitenett, et al, A Mode-Locked Fibre Laser System for Multi-Point Intra-Cavity Gas Spectroscopy. OFS 15, USA 2002, WA3,
    [41]Yan Zhang, W Jin, H Yu, et al, Novel intracavity sensing network based on mode-locked fiber laser, IEEE Photonics Technology Letters,2002,14(9):1336-1338,
    [42]Paul Chambers, Ed Austin, John Dakin, Theoretical analysis of a methane gas detection system using the complementary source modulation method of correlation spectroscopy, Measurement Science and Technology,2004,15(8):1629-1636,
    [43]Crawford Massie, George Stewart, George McGregor, et al, Design of a portable optical sensor for methane gas detection, Sensors and Actuators B,2006,113(2):830-836,
    [44]A Cubillas, M Silva-Lopez, J Lazaro, et al, Methane detection at 1670-nm band using a hollow-core photonic band gap fiber and a multi line algorithm, Opt. Express,2007,15(26): 17570-17576,
    [45]N Gayraud, L Kornaszewski, J Stone, et al, Mid-infrared gas sensing using a photonic band gap fiber, Appl. Opt.,2008,47(9):1269-1277,
    [46]Seong-Soo Kim, Nicola Menegazzo, Christina Young, et al, Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors, Applied Spectroscopy,2009,63(3):331-337,
    [47]Haiyi Sun, Fei He, Zenghui Zhou, et al, Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, Optical Express,2007,32(11):1536-1538,
    [48]Peter Tarsa, Aislyn Wist, Paul Rabinowitz, et al, single-cell detection by cavity ring-down spectroscopy, Applied Physics Lett.,2004,85(19):4523-4525,
    [49]Fei Ye, Li Qian, Bing Qi, Multi point Chemical Gas Sensing Using Frequency-Shifted Interferometry, Journal of Lightwave Technology,2009,27(23):5356-5364,
    [50]Cedric Boulart, Matthew Mowlem, Douglas Connelly, et al, A novel, low-cost, high performance dissolved methane sensor for aqueous environments, Optics Express,2008,16(17): 12607-12617,
    [51]Lilian Joly, Claude Robert, Bertrand Parvitte, et al, Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth's atmosphere, Applied Optics,2008, 47(9):1206-1214,
    [52]Matthew Parsons, IhorSydoryk, Alan Lim, et al, Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy, Applied Optics,2011,50(4):A90-A99,
    [53]郭栓运,差分光谱光纤气体传感器的基本原理,应用光学,1989,6:28-31,
    [54]董小鹏,H Edwards, J Dakin,采用tm光纤光源的甲烷气体相关光谱检测,中国激光,1994,21(10):789-794,
    [55]刘文琦,牛德芳,光纤甲烷气体传感器的研究,仪表技术与传感器,1999(1):35-36,
    [56]叶险峰,汤伟中,CH4气体光纤传感器的研究,半导体光电,2000,21(3):218-220,
    [57]王玉田,郭增军,王莉田,差分吸收式光纤甲烷气体传感器的研究,光电子激光,2001,12(7):675-678,
    [58]付松年,苏立国,吴重庆等,相关光谱法在光纤气体传感中的应用,光谱学与光谱分析,2002,22(16):912-915,
    [59]王玉田,李晓听,刘占伟等.甲烷气体多点光纤传感系统的研究,光电工程,2004,31(6):21-23,
    [60]阚瑞峰,刘文清,张玉钧等,可调谐二极管激光吸收光谱法监测环境空气中甲烷的浓度变化,中国激光,2005,32(9):1217-1220,
    [61]吴重庆,王智,余贶琭等,北京交通大学,一种基于光纤缓存器的多点光纤瓦斯传感系统,中国:申请号:200710176033.1,公开日2008.03.12,
    [62]付华,陈宝石,孙红鸽,基于波分复用技术的光纤甲烷传感系统研究,传感技术学报,2007,20(12):2549-2552,
    [63]贾大功,刘琨,井文才等,基于环腔光纤激光器的气体检测方法,中国激光,2009,36(9):2384-2387,
    [64]许荣荣,刘德明,曹锋等,光纤瓦斯多点传感系统的设计,2010,39(4):686-689,
    [65]张记龙,王鹏,王志斌等,基于空分复用的矿井瓦斯浓度光纤检测网络研究,光谱学与光谱分析,2010,30(6):1722-1726,
    [66]赵燕杰,王昌,刘统玉等,基于光谱吸收的光纤甲烷监测系统在瓦斯抽采中的应用,光谱学与光谱分析,2010,30(10):2857-2860,
    [67]孙佩刚,王琳国,王弘业等.无线传感器网络链路层组确认机制的研究与实现,电子与信息学报,2008,30(9):2267-2270,
    [68]G Whitenett, G Stewart, H Yu, et al. J. Investigation of a Tuneable Mode- Locked Fiber Laser for Application to Multipoint Gas Spectroscopy. J. Lightwave Technol.,2004,22(3):813-819,
    [69]付华,陈宝石,光纤甲烷传感复用系统的研究,大气与环境科学学报,2008,3(1):52-56,
    [70]Kuanglu Yu, Chongqing Wu, Zhi Wang, et al, Investigation of a Multi-Point Acetylene Sensing System Employing Dense Wavelength Division Multiplexers, OSA Optics & Photonics Congress, June 2010, Karlsruhe, Germany,
    [71]余贶碌,吴重庆,郭旋等,基于波分复用的多点光纤乙炔传感网络,光学学报,2011,31(5):即将发表,
    [72]H Ho, W Jin, M Demokan, Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy, Electron. Lett.,2000,36(14):1191-1193,
    [73]Kuanglu Yu, Chongqing Wu, Zhi Wang, et al, Optical Fiber Methane Sensor Based on Double Loop Optical Buffer, Journal of Beijing Jiaotong University,2009,33(3):78-82,
    [74]彭鹏,吴重庆,田昌勇等.双波长数据包并行缓存,光学学报,2008,28(5):835-839,
    [75]A Egorov, M Egorov, Yu Tsareva, et al, Study of the integrated-optical concentration sensor for gaseous substances, Las. Phys.,2007,17(1):50-53,
    [76]W Demtrofer, Laser Spectroscopy Basic Concepts and Instrument. Springer Verlag, New York, 1981,376-436,
    [77]H Smith and J Marshall, Method for Obtaining Long Optical Paths, JOSA.1940,30(8): 338-342,
    [78]J White, Long Optical Paths of Large Aperture, JOSA,1942,32(5):285-288,
    [79]D Herriott, H Kogelnik, R Kompfner. Off-axis paths in spherical mirror interferometers, Appl. Opt.,1964,3(4):523-526,
    [80]http://www.ess.uci.edu/-cmclinden/link/xx/node67.html,
    [81]H Edner, A Sunesson, S Svanberg, et al, Differential optical absorption spectroscopy system used for atmospheric mercury monitoring, Appl. Opt.,1986,25(3):403-409,
    [82]A Galais, G Fortunato, P Chavel, Gas concentration measurement by spectral correlation: rejection of interferent species,Appl. Opt.,1985,24(14):2127-2134,
    [83]D Hastie, G Mackay, T Iguchi, et al., Tunable diode laser systems for measuring trace gases in tropospheric air, Environ. Sci. Technol.,1983,17 (8):352A-364A,
    [84]J. Koenig, Application of Fourier Transform Infrared Spectroscopy to Chemical Systems, Applied Spectroscopy,1975,29(4):293-308,
    [85]D Anderson, J Frisch, C Masser, Mirror reflectometer based on optical cavity decay time, Appl. Opt.,1984,23(8):1238-1245,
    [86]Manish Gupta, Hong Jiao, Anthony O'Keefe, Cavity-enhanced spectroscopy in optical fibers, Optics Letters,2002,27(21):1878-1880,
    [87]Peter Tarsa, Diane Brzozowski, Paul Rabinowitz, et al, cavity ring-down strain gauge, Optics Letters,2004,29(12):1339-1341,
    [88]H Tiedje, S DeMille, L MacArthur, et al, Cavity ring-down spectroscopy of transient O2-O2 dimers, Can.J.Phys.,2001,47(3):773-781,
    [89]B Culshaw, W Johnstone, A Mcleart, et al, Large Scale Multiplexing a Point Sensor for Methane Gas Detection, OFS 15, USA 2002, WA4,
    [90]P Pfeiffer, P Meyrueis, D Patillon, et al, Limiting Sensitivity of a Differential Absorption spectrometer with direct detection in the 2v3 and v2+v3 vibration bands, IEEE Trans. Instrum. Meas.,2004,53(1):45-50,
    [91]吴希军,王玉田,赵兴涛等,空芯光子带隙光纤在甲烷检测中的应用,激光与红外,2010,40(4):410-413,
    [92]王书涛,车仁生,王玉田等,光纤甲烷气体传感器的研究,仪器仪表学报,2006,27(10): 1276-1278,
    [93]Kathryn Atherton, George Stewart and Brian Culshaw, Cavity Ring-Down in a Fibre Amplifier Loop and Combination with Wavelength Modulation Spectroscopy, OFS 15, USA 2002, FB5,
    [94]Kuanglu Yu, Chongqing Wu, Zhi Wang; Optical Methane Sensor Based on a Fiber Loop at1665 nm, IEEE Sensors Journal,2010,10(3):728-731,
    [95]Kuanglu Yu, Chongqing Wu, Zhi Wang, et al, Methane Sensor Using an Optical Fiber Ring-Down System at 1665nm, International Conference on Optical Communications and Networks (ICOCN2009),2009, Beijing, China, P2A-6,
    [96]A. Pratt, K. Fujii, and Y Ozeki, Gain control in L-band EDFAs by monitoring backward traveling C-band ASE, IEEE Photon. Technol. Lett.,2000,12(8):983-985,
    [97]伍浩成,EDFA增益控制及平坦技术研究,2002,12(4):215-224,
    [98]Y Xiao, X Liu, D Liu, et al, A novel compensating light injection configuration for gain-clamped EDFAs, IEEE Photon. Technol. Lett,2000,12(7):789-791,
    [99]Scong Ko, Myong Kim, Dong Kim, et al, Gain control in erbium-doped fibre amplifiers by tuning centre wavelength of a fibre Bragg grating constituting resonant cavity, Electron, lett., 1998,10(34):990-991,
    [100]李亚捷,吴重庆,王拥军等.基于半导体光放大器的光控器件中控制光的性能分析,物理学报,2007,56(2):952-957,
    [101]Yajie Li, Chongqing Wu, Songnian Fu, et al, Power Equalization for SOA-Based Dual-Loop Optical Buffer by Optical Control Pulse Optimization, IEEE J. Quantum Electron.,2007,43(6): 508-516,
    [102]A Saleh, R Jopson, J Evankow, et al, Modeling of gain in EDFA, IEEE Photonics Technology Letters,1990,2(10):714-717,
    [103]高延军,张文华,掺铒光纤损耗谱分析,广播与电视技术,2003,30(6):81-82,
    [104]Telecommunication Standardization Sector of International Telecommunication Unit, ITU-T Rec. G.692. Transmission media characteristics-Characteristics of optical components and sub-systems,1998,10,
    [105]吴重庆,基于SOA环形腔激光器的理论分析,北京交通大学学报,2008,32(6):1-8,
    [106]赵爽,全光触发器及其应用的研究,北京交通大学博士学位论文,北京交通大学图书馆,36,
    [107]吴重庆,光通信导论,清华大学出版社,2008年1月,18-20,
    [108]A Pazarloglou, R Stoleru, R Gutierrez-Osuna. High-resolution speech signal reconstruction in Wireless Sensor Networks, Proc. IEEE Workshop on Information Retrieval in Sensor Networks (ISRN2009),2009. Las Vegas, NV, USA 2009:1,
    [109]D Raymond, R Marchany, M Brownfield, et al. Effects of Denial-of-Sleep Attacks on Wireless Sensor Network MAC Protocols, IEEE Trans. Veh. Technol.,2009,58(1):367-380,
    [110]刘彩苹,李仁发,刘喜苹.无线传感器网络分布式均值查询聚集算法研究,通信学报,2008,29(11):24-30,
    [111]程龙,陈灿峰,马建.无线传感器网络中多移动sink的选择策略,通信学报,2008,29(11):12-18,
    [112]曾凡仔,孙正章,罗娟等.无线传感器网络的节点定位方法,通信学报,2008,29(11):62-66,
    [113]孙佩刚,王琳国,王弘业等.无线传感器网络链路层组确认机制的研究与实现,电子与信息学报,2008,30(9):2267-2270,
    [114]W Jin, Y Xu, M Demokan, et al. Investigation of interferometric noise in fiber-optic gas sensors with use of wavelength modulation spectroscopy, Appl. Opt.,1997,36:7239-7246,
    [115]Yongjun Wang, Chongqing Wu, Xiangjun Xin, et al, Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers, Chin.Phys.B,2010,19(9):09421,
    [116]Yongjun Wang, Chongqing Wu, Zhi Wang, et al. Investigation on Characteristics and the Improving Method of Double Loop Optical Buffer, Chinese. Phy. Lett.,2009,26(4):044211,
    [117]K. Uehara, Alternate intensity modulation of a dualwavelength He-Ne laser for differential absorption measurements, Appl. Phys. B,1985,38:37-40,
    [118]孙秀平,张喜和,王达成等,基于LED光源痕量二氧化氮气体的检测,光谱学与光谱分析,2009,29(6):1672-1674,
    [119]吴涛,赵卫雄,李劲松,基于LED的非相干宽带腔增强吸收光谱技术,光谱学与光谱分析,2008,28(11):2469-2472,
    [120]戎慧,SLD光源测控系统的设计[学位论文],北京交通大学图书馆,中北大学,
    [121]宫兆涛,舒晓武,牟旭等,光纤陀螺用SLD光源全数字控制系统,仪器仪表学报,2005,(26)7:689-714,
    [122]周雷,单级双程双向泵浦C+L波段ASE宽带光源[学位论文],北京交通大学图书馆,天津大学,49,
    [123]Amy Cheung, Walter Johnstone and David Moodie, Gas detection based on optical correlation spectroscopy using a single light source, Meas. Sci. Technol,2006,17(5):1107-1112,
    [124]Aiming Liu, Chongqing Wu, Yandong Gong, et al. Dual-Loop Optical Buffer (DLOB) Based on a 3×3 Collinear Fiber Couple. IEEE Photonics Technol. Lett.,2004,16(9):2129-2131,
    [125]Songnian Fu, Ping Shum, Li-ren Zhang, et al. Design of SOA-Based Dual-Loop Optical Buffer With a 3 × 3 Collinear Coupler: Guideline and Optimizations,J. Lightwave Technol,2006, 24(7):2768-2778,
    [126]Changyong Tian, Chongqing Wu, Zhengyong Li, et al, Dual-wavelength Packets Buffering in Dual Loop Optical Buffer, IEEE Photonics Technol. Lett.,2008,20(8):578-580,
    [127]吴重庆,光通信导论,清华大学出版社,2008年1月,258,
    [128]Niloy Dutta, Qiang Wang, Semiconductor Optical Amplifiers, World Scientific Publishing Co. Pte. Ltd,2006,122,
    [129]陈伟根,云玉新,潘翀,变压器油中溶解气体的红外吸收特性理论分析,中国电机工程学报,2008,28(16),148-153,
    [130]Songnian Fu, Ping Shum, Guo Ning, et al. Theoretical investigation of dual-wavelength packet signal storage with SOA-based dual loop optical buffer, Optics Communications,2007, 279(2):255-261,
    [131]Changyong Tian, Chongqing Wu, Zhengyong Li, et al, Multichannel data packets buffered in dual loop optical buffer, Electronics Letters,2009,45(12):640-642,
    [132]李亚捷,吴重庆,王拥军等.基于半导体光放大器的环路型全光缓存器中功率均衡的新方法,光学学报,2006,26(10):1469-1473,
    [133]李亚捷,吴重庆,王拥军等.基于半导体光放大器的干涉型器件中不协调性的分析,半导体学报,2006,27(10):1851-1856,
    [134]张立军,吴重庆,李亚捷.基于双半导体光放大器的读/写分别控制的新型全光缓存器,光学学报,2007,27(11):1945-1949,
    [135]Songnian Fu, Ping Shum, Nam Quoc Ngo, et al, An Enhanced SOA-Based Double-Loop Optical Buffer for Storage of Variable-Length Packet, J. Lightwave Technol,2008,26(4): 425-431,
    [136]Changyong Tian, Chongqing Wu, Guangna Sun, et al. Dual wavelength signals buffered in DLOB and its improvement by power equalization, APOC 2008. Hanzhou: SPIE Proceedings Vol.7136:713617,
    [137]Stefan Diez, Reinhold Ludwig, and H,ans-Georg Weber, High-speed all-optical signal processing by switching devices based on semiconductor optical amplifiers, Lasers and Electro-Optics Society Annual Meeting,1998, Orlando:401-402,
    [138]吴重庆,光通信导论,北京:清华大学出版社,2008.261-263,
    [139]A. Bilenca, R. Alizon, V. Mikhelashhvili, Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-Inp quantum-dash semiconductor optical amplifiers operating at 1550nm, Photonics Technology Letters,2003,15 (4):563-565,
    [140]C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, All-optical wavelength conversion at bit rate above lOGb/s using semiconductor optical amplifiers, Journal of Selected Topics in Quantum Electronics,1997,3 (5):1168-1180,
    [141]Atsushi Matsumoto, Kohsuke Nishimura and Katsuyuki Utaka, Operation design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation, Journal of Quantum Electronics,2006,42 (3): 313-323,
    [142]Milan L. Masanovic, Vikrant Lal, Erik J. Skogen, Cross-phase modulation efficiency in offset quantum-well and centered quantum-well semiconductor optical amplifiers, Photonics Technology Letters,2005,17 (11):2364-2366,
    [143]J. S. Lee, H. J. Song, W. B. Kim, All-optical harmonic frequency upconversion of radio over fiber signal using cross-phase modulation in semiconductor optical amplifier, Electronics Letters,2004,40 (19):1211-1213,
    [144]Zhihong Li, Yi Dong, Jinyu Mo, Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier, Photonics Technology Letters,2004,16(7):1685-1687,
    [145]Yanhua Hong, Paul S. Spencer and K. Alan Shore, Wide-band polarization-free wavelength conversion based on four-wave mixing in semiconductor optical amplifiers, Journal of Quantum Electronics,2004,40(2):152-156,
    [146]H Dorren, M Hill, Y Liu, et al, Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods, Journal of Lightwave Technology,2003,21(1):2-12,
    [147]Jing Xu; Xinliang Zhang; Jesper Mork, Investigation of Patterning Effects in Ultrafast SOA-Based Optical Switches, IEEE Journal of Quantum Electronics,2010,46(1):78-94,
    [148]M Spyropoulou, N Pleros, A Miliou, SOA-MZI-Based Nonlinear Optical Signal Processing: A Frequency Domain Transfer Function for Wavelength Conversion, Clock Recovery, and Packet Envelope Detection, IEEE Journal of Quantum Electronics,2011,47(1):40-49,
    [149]H Minh, Z Ghassemlooy, N Pang, Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer, IEEE Communications Letters,2008,12(4):316-318,
    [150]吴重庆,光通信导论,北京:清华大学出版社,2008.247,
    [151]Huali Gao, Chongqing Wu, Yajie Li, Dong Ni. Measurement of Linewidth Enhancement Factor of SOA using fiber Sagnac Ring.Optoelectronics Letters,2006,2 (2):0142-0144,
    [152]Yajie Li, Chongqing Wu, P. Shum, Songnian Fu. A Precise Measurement Method for Linewidth Enhancement Factor of SOA by Sagnac Interferometer when Considering XGM. Asia-Pacific Optical Communications conference 2006,2006,6351:635129-1-635129-5,
    [153]疏达,基于增益透明SOA的全光缓存器的研究[学位论文],北京交通大学图书馆,北京交通大学,2009:15,
    [154]J. Knight, T. Birks, P. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett,1996,21(19):1547-1549,
    [155]P. Petropoulos, K. Frampton, D. Richardson, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express,2003,11(26):3568-3573,
    [156]Limei Zhang, Zhi Wang, Kuanglu Yu, and Chongqing Wu, Evolution of Beat Signal in a Nonlinear PCF Considering the Stability of the Light Source, PIERS Proceedings, Beijing, China, 2009:1313-1316,
    [157]Shuqin Lou, Hong Fang, Honglei Li, et al, Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber, Chinese Optics Letters,2008,6(11):821-823,
    [158]Stephane Randoux, Guillaume Beck, Francois Anquez, et al, Grating-Free and Bragg-Grating-Based Raman Lasers Made With Highly Nonlinear Photonic Crystal Fibers, Journal of Lightwave Technology,2009,27(11):1580-1589,
    [159]K Kim, R Stolen, W Reed, et al, Measurement of the nonlinear index of silica-core and dispersion-shifted fibers, Optical Express,1994,19(4):257-259,
    [160]张丽梅,王智,余贶碌,吴重庆.光源的稳定性对拍信号在非线性光子晶体光纤中演化的影 响.中国激光,2009,36(4):895-900,
    [161]李赞,吴重庆,李亚捷等,基于自相位调制原理的光纤非线性系数测量,半导体光电,2006,27(5):455-458,
    [162]Robinson Kuis, Anthony Johnson, Sudhir Trivedi, Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique, Optical Express,2011,19(3):1755-1766,
    [163]Govind Agrawal, Applications of Nonlinear Fiber Optics, Academic Press,2001,
    [164]Tomoharu Hasegawa, Tatsuo Nagashima, Naoki Sugimoto, Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing, Optics Communications,2008,281(4):782-787,
    [165]A Boskovic, S Chernikov, J Taylor, Direct Continuous-Wave Measurement of n2 in Various Types of Telecommunication Fiber at 1.55μm. Optics Letters,1996,21(24):1966-1968,
    [166]S Chernikov, J Taylor, Measurement of Normalization Factor of n2 for Random Polarization in Optical Fibers, Optics Letters,1996,21(19):1559-1561,
    [167]Govind Agrawal, Nonlinear Fiber Optics (Third Edition), Elsevier (Singapore) Pte Ltd.,2005: 18,
    [168]Zhi Wang, Guobin Ren, Shuqin Lou, et al, Compact Supercell Method Based on Opposite Parity for Bragg Fibers, Optics Express,2003,11:3542-3549,
    [169]王智,任国斌,娄淑琴,用于光子晶体光纤研究的超格子构造法,中国激光,2005,32(1):59-63,
    [170]Lanlan Liu, Chongqing Wu, Luyao Zhai, et al, The study of the gain characteristics of 1.66μm fiber Raman amplifier with ordinary single-mode fiber, Digest of SPIE APOC 2008:7134-120,
    [171]Lanlan Liu, Chongqing Wu, Guodong Lin, et al, Spectrum Property of 6.5W Multi-mode Output Laser Diode, Proceedings on PIERS 2009:1259-1262,
    [172]Liu Lanlan, Chongqing Wu, Guodong Lin, Study on use of fiber Raman amplifier in U-band for gas detection, ISIST 2009, China, Proceedings of the SPIE, Vol.7133:71332Y,
    [173]王春华,李风勤,葛旭亮,三波长泵浦实现平坦C+L-band光纤拉曼放大,光电子激光,2004,15(z):150-153,
    [174]李亚捷,双环耦合全光缓存器中若干关键问题的研究[学位论文],北京交通大学图书馆,北京交通大学,2007:13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700