消逝波激励及增益耦合的圆柱形微腔WGM激光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将石英裸光纤插入低折射率的激光染料溶液中,采用沿光纤轴向光抽运、抽运光的消逝波激励增益的方式,构成了一种新颖的圆柱形微腔回音壁模式(Whispering Gallery Mode, WGM)激光器,即:消逝波抽运及增益耦合的圆柱形微腔WGM激光器。本博士论文较为系统地研究了这种WGM激光器的偏振、阈值、光谱漂移及谱线展宽特性,并以此为基础,发明了一种基于PDMS基片的多波段WGM光纤激光器。论文的主要研究内容和结果如下:
     1.在消逝波光抽运条件下,分析并计算了圆柱形微腔中WGM激光的激光增益。推导出了高斯分布光束及均匀分布光束作为抽运光在光纤内表面的角度分布函数,并对分布函数进行了数值计算。计算结果表明:随抽运光在光纤端面上入射角的增加,分布函数曲线向光纤界面入射角的小角度方向移动,端面的大角度入射有利于抽运光的消逝场隧穿到包层染料溶液中,并有效地激发激光增益。
     2.推导出了圆柱形微腔中泄露损耗对应的Q值的解析近似公式,并对微腔的各种损耗进行了理论分析和数值计算。结果表明:(1)圆柱形微腔的损耗主要决定于吸收和泄露损耗;(2)对大(小)直径光纤,圆柱形微腔的损耗决定于吸收(泄露)损耗;(3)对直径适中的光纤,吸收和泄露损耗共同确定了微腔的损耗。
     3.分别采用轴向和侧向两种光抽运方式,对圆柱形微腔中WGM激光的偏振特性进行了较为系统的实验研究。结果表明:(1)对于侧向光抽运方式,抽运光的偏振状态决定了WGM激光的偏振状态;对于轴向消逝波光抽运方式,抽运光在光纤中的传输状态决定了WGM激光的偏振状态。(2)当抽运光以子午光线形式在光纤中传播时,WGM激光只存在TE模式激光辐射,从而形成一种特殊的径向偏振激光;当抽运光以偏斜光线形式在光纤中传播时,WGM激光辐射中既存在TE波也存在TM波,是一种径向和轴向共存的混合偏振激光。(3)相邻TE波和TM波之间的波数差,随光纤直径及包层溶液折射率的增大而规律性地减小。
     4.采用沿光纤轴向消逝波光抽运方式,研究了WGM激光的阈值能量和光纤直径以及包层溶液折射率的关系;研究了激光沿光纤轴向的产生长度与包层溶液折射率以及激光染料浓度的关系。结果表明:(1)随染料溶液折射率的增加,对小直径光纤,阈值能量单调递增;对大直径光纤,阈值能量缓慢地单调递减;对直径适中的光纤,阈值能量先减后增,存在一个和最小阈值能量对应的最佳折射率。(2)在一定的抽运能量下,激光沿光纤轴向的产生长度随染料浓度以及包层溶液折射率的增加而变短;产生长度和抽运能量之间满足对数型增长关系。
     5.采用沿光纤轴向消逝波光抽运方式,通过改变增益包层染料溶液折射率和光纤直径,研究了圆柱形微腔中WGM激光光谱漂移和谱线展宽性质。结果表明:无论是通过增加染料溶液折射率还是减小光纤直径,WGM激光都会产生光谱蓝移现象,同时光谱谱线变宽。
     6.利用消逝波激励增益的WGM激光器具有较长激光产生长度的特点,设计并制作了一种基于PDMS基片的WGM光纤激光器,在一块PDMS基片上同时实现了三个波段的WGM激光辐射及双波段WGM激光的定向输出。
A cylindrical microcavity laser is fabricated by inserting a bare optical fiber into a lasing dye solution of low refractive index (RI), optically pumped and gain coupled by evanescent-waves, Whispering-Gallery-Mode (WGM) lasing emission is found around the fiber. The characteristics of the WGM lasers, including the polarization, energy threshold, spectrum shifted and spectral line broaden have been investigated systematically in this doctoral dissertation. Based on the investigation, a novel multi-band WGM fiber laser buried into a PDMS substrate is successfully invented. The main research contents and results of the dissertation are consisted of six aspects as following:
     First of all, the optical gain of the WGM lasing in a cylindrical microcavity is analyzed and calculated on the base of evanescent wave pumped and coupled gain. The pump light is assumed to be a Gaussian beams and homogeneous distribution beams, and when the beams are tightly focused by a concave lens and coupled into an optical fiber, the distribution function of incident angle on the inner surface of the fiber is derived and calculated. The calculation results indicate that the distribution function curves shift to the small angle direction of the inner surface of the fiber, that is, the bigger incident angle in the end face of the fiber is beneficial to the evanescent field of the pump beams tunneling into the cladding dye solution and stimulates the lasing gain effectively.
     Secondly, the analytical approximate formulas for the Q values which corre-spond to the leakage losses in a cylindrical cavity are deduced, and various losses related to the microcavity are analyzed theoretically and calculated numerically. The results show that:various losses related to the cylindrical microcavity are mainly de-pendent on the absorption and leakage losses; for a large (or small) diameter fiber, the losses are mainly determined by absorption (or leakage) losses, while the absorp-tion and leakage losses are determined the losses together for a moderate diameter fiber.
     Thirdly, the polarization characteristics of the WGM lasing in a cylindrical microcavity have been systematically studied by using both axial and side pump schemes. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized state of the pump beams. The polarization property of lasing emission depends on the prop-agating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the RI of cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.
     Fourthly, pumped by evanescent-wave along the fiber axis, the energy thresh-old properties of the lasers, including the energy threshold varied with the RI of the dye solution for different fiber diameters, and the produced length of lasing emission along the fiber axis varied with the RI of the dye solution and the lasing dye solu-tion concentration, have been investigated. We find experimentally that the energy threshold is very sensitive to the RI of dye solution and the fiber diameter, with the in-crease of the RI of the mixed solution, the threshold energy increases monotonously for smaller diameter fibers, but decreases slowly for fibers of larger diameter; for a fiber of moderate diameter, the threshold energy decreases slowly at first, and then increases sharply, there is an optimum RI of the mixed solution which matches a minimum threshold energy. The produced length of lasing emission is dependent on the dye concentration and the RI of dye solution, for a given pumping energy, the lasing produced length decreases with the increase of the dye concentration and the RI of dye solution, and the lasing produced length logarithm increases with the pump energy.
     Fifthly, cavity-Q-driven lasing wavelength shift and line-width widening in an evanescent-wave pumped and gain coupled WGM fiber lasers have been investi-gated. We find that both lasing wavelengths and line-width of WGM peaks are sen-sitive to the RI of the dye solution and the fiber diameter, with the increase of the RI of dye solution or decrease of the fiber diameter, a blue shift of the lasing spectrum and a widening on the spectral line width are observed. The observed phenomena have been attributed to the change of quality factor of a circular cavity built in the fiber cross section, the achieved experimental data agree well with the calculated values of the quality factor.
     Finally, a novel multi-band WGM fiber laser buried into a PDMS substrate has been invented, that is based on evanescent-waves pumped and coupled gain. Three-wavelength-range WGM lasing radiation, and a dual wavelength-range with unidi-rectional WGM lasing emission from a PDMS chip have been successfully achieved.
引文
[1]方洪烈,光学谐振腔理论[M].北京:科学出版社,1981.
    [2]Y. D. Yang, Y. Z. Huang, and Q. Chen, High-Q TM whispering-gallery modes in three-dimensional microcylinders [J]. Phys.Rev.A.,2007,75:013817.
    [3]K. J. Vahala, Optical microcavities [J]. Nature,2003,424:839-846
    [4]周炳琨,激光原理[M].北京:国防工业出版社,1984
    [5]T. J. Balle, and W. H. Flygare, Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source [J]. IEEE Rev. Sci Instrum.,1981,52(1):33-45.
    [6]K. Iga, F. Koyama, and S. Kionshita, Surface emitting semiconductor laser [J] IEEE J. Q. Electron.,1988,24(9):1845-1855.
    [7]J. L. Jewell, A. Scherer, S. L. McCall, et al., Low-threshold electrically pumped vertical-cavity surface-emitting microlasers [J]. Electron. Lett.,1989,25(17): 1123-1124.
    [8]M. Orenstein, A. C. Vonlehmen, C. Chang-Hasnain, et al., Vertical cavity surface emitting InGaAs/GaAs-lasers with planar lateral definition [J]. Appl. Phys.Lett.,1990,56(24):2384-2386.
    [9]J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, et al., Strong coupling in a single quantum dot-semiconductor microcavity system [J]. Nature,2004,432: 197-200.
    [10]A. F. J. Levi, R. E. Slusher. S. L. McCall. et al., Directional light coupling from microdisk lasers [J]. Appl. Phys. Lett.,1993,62(6):561-563.
    [11]S. N. Ghosh, B. B. Buckley, C. G. L. Ferri, et al., Polarization based control of optical hysteresis in coupled GaAs microdisks [J]. Appl. Phys. Lett.,2010,97(1): 011106.
    [12]T. J. Johnson, M. Borselli, and O. Painter, Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator [J]. Opt. Exp., 2006,14(2):817-831.
    [13]B. J. Li, and P. L. Liu, Numerical analysis of microdisk lasers with rough boundaries [J]. Quantum Electron.,1997,33(5):791-795.
    [14]H. J. Moon, Y. T. Chough, J. B. Kim, et al., Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser [J]. Appl. Phys. Lett., 2000,76(25):3679-3681.
    [15]H. J. Moon, and K. An, Interferential coupling effect on the whispering-gallery mode lasing in a double-layered micro-cylinder [J]. Appl. Phys. Lett., 2002,80(18):3250-3252
    [16]H. J. Moon, G. W. Park, S. B.Lee, et al., Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator [J]. Appl. Phys. Lett.,2004,84(22):4547-4549.
    [17]杨睿,於文华,鲍洋等,消逝场耦合圆柱形微腔中回音壁模式结构的实验研究[J].物理学报,2008,57(10):6412-6148.
    [18]Y. X. Zhang, X. Y. Pu, K. Zhu, et al., Threshold property of whispering-gallery mode fiber lasers pumped by evanescent [J]. J. Opt. Soc. Am. B,2011, 28(8):2048-2056.
    [19]Y. X. Zhang, X. Y. Pu, L. Zhou, et al., Cavity-Q-driven phenomena in an evanescent-wave pumped and gain coupled whispering-gallery mode fiber laser [J]. Opt. Commun.,2O12,285:3510-3513.
    [20]张远宪,冯黎,刘春等,消逝波抽运的回音壁模式激光增益计算[J].光学学报,2012,32(2):0214001.
    [21]张远宪,张晓晓,刘春等,基于PDMS基片的回音壁模式光纤激光器[J].中国激光,2012,39(11):1102001.
    [22]R. Yang, A. P. Yun, Y. X. Zhang, and X. Y. Pu, Quantum theory of whispering gallery modes in a cylindrical optical microcavity [J]. Optik,2011,122 (10):900-909.
    [23]江楠,王东林,普小云,消逝波激励及增益耦合的柱形微腔回音廊模激光辐射[J].中国激光,2007,34(7):920-923.
    [24]向文丽,普小云,白然等,轴向隐失波激励的回音壁模式光纤激光器[J].光学学报,2008,28(12):2359-2364.
    [25]江楠,杜飞,白然等,影响柱形微腔回音廊模激光抽运阈值能量的因素[J].中国激光,2008,35(5):660-663.
    [26]A. Shevchenko, K. Lindfors, S. C. Buchter, et al, Evanescent wave pumped cylindrical microcavity laser with intense output radiation [J]. Opt. Commun., 2005,245:349-353.
    [27]M.Kazes, D. Y. Lewis, Y. Ebenstein, et al., Lasing from semicon-ductor quan-tum roads in a cylindrical micro-cavity [J]. Adv. Mater.,2002,14(4):317-321.
    [28]S. X. Dou, E. Toussaere, T. B. Messaoud, et al., Polymer microring lasers with longitudinal optical pumping [J]. Appl. Phys. Lett.,2002,80(2):165-167.
    [29]H. Fujiwarra, and K. Sasaki, Lasing of a microsphere in dye solution [J]. Jpn. J. Appl. Phys.,1999,38(6):5101-5104.
    [30]S. B. Lee, M. K. Oh, J. H. Lee, et al., Single radial-mode lasing in a submicron-thickness spherical shell microlaser [J]. Appl. Phys. Lett.,2007, 90(20):201102.
    [31]R. M. Cole, Y. Sugawara, and J. J. Baumberg, Easily Coupled Whispering Gallery Plasmonsin Dielectric Nanospheres Embedded in Gold Films [J]. Phys. Rev. Lett.,2006,97(13):137401.
    [32]X. Y. Pu, S. Zhang, C. W. Chan, et al., Lasing features of dye-doped pendant drops added with polymer particles:spectral blueshift and indensity enhancement [J]. Chin. Phys.,2002,11(11):1179-1183.
    [33]X. Y. Pu, and W. K. Lee, Lasing characteristics of a pendant drop deformed by an applied electric field [J]. Opt. Lett.,2000,25(7):466-468.
    [34]S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Ultralow-threshold Roman laser using a spherical dielectric miarocavity [J]. Nature,2002,415:621-623.
    [35]D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, et al, Cavity QED with high-Q whispering-gallery modes [J]. Phys.Rev.A.,1998,57(4):R2293-R2296.
    [36]Y. S. Chio,H. J. Moon, and K. An, Ultrahigh-Q Microsphere Dye Laser Based on Evanescent-wave Coupling [J]. J. Phys. Soc. Korean.,2001,39(5):928-931.
    [37]T. E. Ruekgauer, P. Nachman, J. G. Xie, et al., Nonlinear outcoupling mecha-nism in a cylindrical dielectric microcavity supporting stimulated Raman scatter-ing [J]. Opt. Lett.,1995,20(20):2090-2092.
    [38]P. Domokos, and H. Ritsch, Mechanical effects of light in optical resonators [J]. J. Opt. Soc. Am. B,2003,20(5):1098-1130.
    [39]N. Lermer, M. D. Barnes, C. Y. Kung, et al., Spatial photoselection of single molecules on the surface of spherical microcavities [J]. Opt. Lett.,1998,23(12): 951-953.
    [40]E. Chow, A. Grot, L. W. Mirkarimi, et al., Ultracompact biochemical sen-sor built with two-dimensional photonic crystal microcavity [J]. Opt. Lett.,2004, 29(10):1093-1095.
    [41]F. Vollmer, D. Braun, and A.Libchaber, Protein detection by optical shift of a resonant microcavity [J]. Appl. Phys.Lett.,2002,80(21):4057-4059.
    [42]普小云,杨正,江楠等,用激光增益获取弱增益模式的受激拉曼散射研究[J].物理学报,2003,52(10):2443-2448.
    [43]Y Sun, S. I. Shopovab, C. S. Wu, et al., Bioinspired optofluidic FRET lasers via DNA scaffolds [J]. Proc. Natl. Acad. Sci.,2010,107(37):16039-16042.
    [44]C. Manolaton, M. J. Khan, and S. Fan, Coupling of modes analysis of resonant channel add-drop filters [J]. IEEE J. Q. electron.,1999,35(9):1322-1331.
    [45]P. R. Villeneuve, D. S. Abrams, S. Fan, et al., Single-mode waveguide mi-crovity for fast optical switching [J]. Opt. Lett.,1996,21(24):2017-2019.
    [46]M. Selim and S. Strete, Resonant cavity enhanced photonic devices [J]. J. Appl. Phys.,1995,78(2):607-639.
    [47]C. Monat, P. Domachuk, and B. J. Eggleton, Integrated optofluidics:A new river of light [J]. Nat. Photon.,2007,1:106-114.
    [48]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett.,1987,58(20):2059-2062.
    [49]S. John, Strong localization of photons in certain disordered dielectric super-lattices [J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [50]Y. Akahane, High-Q photonic nanocavity in a two-dimensional photonic crys-tal [J]. Nature,2003,425:944-947.
    [51]E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: the free centered cubic case employing non-spherical atoms [J]. Phys. Rev. Lett., 1991,67(17):2295-2298.
    [52]F. Du, Y. Q. Lu, and S. T. Wu, Electrically tunable liquid-crystal photonic crystal fiber [J]. Appl. Phys. Lett.,2004,85(12):2181-2183.
    [53]G. Subramania, and S. Y. Lin, Tuning the microcavity resonant wavelength in a two dimensional photonic crystal by modify the cavity geometry [J]. Appl. Phys. Lett.,2003,83(22):4491-4493.
    [54]L. Rayleigh, The problem of the whispering gallery [J]. Phil. Mag.,1910, 20(120):1001-1004.
    [55]M. Born, and E. Wolf, Principles of Optics [M]. 北京:科学出版社,1981.
    [56]G. Mie, Beitrage zur optic triiber medien, speziell kolloidaler metallosungen [J]. Ann. Phys.,1908,330(3):377-445.
    [57]R. D. Richtmyer, Dielectric resonators [J]. J. Appl. Phys.,1939,10(6):391-398.
    [58]C. B. Garrett, W. Kaiser, and W. L. Bond, Stimulated emission into optical whispering modes of spheres [J]. Phys. Rev.,1961,124:1807.
    [59]R. E. Benner, P. W. Barber, J. F. Owen, et al., Observation of structure res-onances in the fluorescence spectra from microsphere [J]. Phy. Rev. Lett.,1980, 44(7):475-478.
    [60]S. L. McCall, A. F. J. Levi, R. E. Slusher, et al., Whispering-gallery mode microdisk lasers [J]. Appl. Phys. Lett.,1992,60(3):289-291.
    [61]S. C. Hagness, D. Rafizadeh, S. R. Ho, et al., FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery mode disk resonators [J]. J. Light. Tech.,1997,15(11):2154-2165.
    [62]J. U. Nockel, A. D. Stone, G. Chen, et al., Directional emission from asym-metric resonant cavities [J]. Opt. Lett.,1996,21(19):1609-1611.
    [63]J. U. Nockel, and A. D. Stone, Ray and wave chaos in asymmetric resonant optical cavities [J]. Nature,1997,385:45-47.
    [64]C. Gmachal, F. Capasso, E. E. Narimanov, et al., High-power directional emission from microlasers with chaotic resonators [J]. Science,1998,280(5369): 1556-1564.
    [65]S. Lacey, H. Wang, D. H. Foster, et al., Directional tunneling escape from nearly spherical optical resonators [J]. Phys. Rev. Lett.,2003,91(3):033902.
    [66]S. Shinohara, M. Hentchel, J. Wiersig, et al., Ray-wave correspondence in limacon-shaped semiconductor microcavities [J]. Phys. Rev. A,2009,80(3): R031801.
    [67]Q. J. Wang, C. Yan, N. Yu, et al., Whispering-gallery mode resonators for highly unidirectional laser action [J]. Proc. Natl. Acad. Sci.,2010,107(52): 22407-22412.
    [68]S. X. Qian, J. B. Snow, H. M. Tzeng, et al., Lasing droplet:high-ligthing the liquid-air interface by laser emission [J]. Science,1986,231:486-488.
    [69]S. X. Qian, and R. K. Chang, Multi-order Stocks emission from micrometer-sized droplets [J]. Phys. Rev. Lett.,1986,56:926-929.
    [70]王育竹,黎永青,刘亚淑等,Nd玻璃球中观察到谐振腔得量子点动力学效应[J].中国激光,1990,19(12):716.
    [71]章蓓,王若鹏,丁晓民等,InGaAsp单量子阱半导体微盘激光器研究[J].红外与毫米波学报,1995,14(4):253-256.
    [72]微腔碟型激光器[J].军民两用技术与产品,2002,03:34.
    [73]黄永箴,国伟华,正三角形及正方形微光学腔模式特性研究[J].物理,2004,33(7):515-518.
    [74]黄永箴,车凯军,杨跃德等,InGaAsP/InP正方形微腔激光器[J].激光与光电子学进展,2009,46(2):16..
    [75]王加贤,李俊杰,吴文广等,耦合微腔及带输出波导的单微盘腔的耦合模式特性[J].光学学报,2011,31(1):0106006.
    [76]Y. F. Xiao, C. H. Dong, Z. F. Han, et al., Directional escape from a a high-Q deformed microsphere induced by short CO21aser pulses [J]. Opt. Lett.,2007, 32(6):644-646.
    [77]F. J. Shu, C. L. Zou, F. W. Sun, et al., Mechanism of directional emission from a peanut-shaped microcavity [J]. Phys. Rev. A,2011,83:053835.
    [78]Y. Z. Yan, C. L. Zou, S. B. Yan, et al., Robust spot-packaged microsphere-taper coupling structure for in-line optical seneors [J]. Photon. Tech. Lett.,2011, 23(22):1736-1738.
    [79]F. J. Shu, C. L. Zou, and F. W. Sun, Perpendicular coupler for whispering-gallery resonators [J]. Opt. Lett.,2012,37(15):3123-3125.
    [80]B. B. Li, Y. F. Xiao, C. L. Zou, et al., Experimental controlling of Fano res-onancein indirectly coupled whispering-gallery microresonators [J]. Appl. Phys. Lett.,2012,100:021108.
    [81]X. S. Jiang, Q. Song, L. Xu, et al., Microfiber knot dye laser based on the evanescent-wave-coupled gain [J]. Appl. Phys. Lett.,2007,90:233501.
    [82]L. Shang, L. Y. Liu, L. Xu, Single-frequency coupled asymmetric microcavity laser [J]. Opt. Lett.,2008,33(10):1150-1152.
    [83]X. Wu, H. Li, L. Y. Liu, et al., Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser [J]. Appl. Phys. Lett.,2008,93:081105.
    [84]H. Li, L. Shang, X. Tu, et al., Coupling variation induced utralsensitive label-free biosensing by using single mode coupled microcavity laser [J]. J. AM. Chem. Soc,2009,131(41):16612-16613.
    [85]Y. F. Xiao, C. L. Zou, B. B. Li, et al., High-Q exterior whispering gallery modes in a metal-coated microresonator [J]. Phys. Rev. Lett.,2010,105(15): 153902.
    [86]J. C. Knight, H. S. T. Driver, and G. N. Robertson, Interference modulation of Q values in a cladded-fiber whispering-gallery-mode laser [J]. Opt. Lett.,1993, 18(16):1296-1298.
    [87]G. Cocorullo, and I. Rendina, Thermo-optical modulation at 1.5μm in silicon etalon [J]. Electronics Lett.,1992,28(1):83-85.
    [88]J. Z. Zheng, D. H. Leach, and R. K. Chang, Photon lifetime within a droplet temporal determination of elastic and stimulated Raman scattering [J]. Opt. Lett., 1988,13(4):270-272.
    [89]H. J. Moon, Y. T. Chough, and K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain [J]. Phys. Rev. Lett.,2000,85(15):3161-3163.
    [90]冯永利,韩德昱,普小云等,偏斜光线抽运下回音壁模式光纤激光辐射的偏振特性[J].中国激光,2010,37(3):627-630.
    [91]张远宪,冯永利,周丽等,偏斜光线抽运下回音壁模式光纤激光辐射特性[J].物理学报,2010,59(3):1806-1812.
    [92]王东林,江楠,姜利群等,柱形微腔回音壁模式的精确标定[J].光谱学与光谱分析,2008,28(12):2749-2753.
    [93]普小云,江楠,白然等,消逝波激励及增益耦合的多波段回音壁模式光纤激光器:中国,ZL 200810058304.8[P].2009-09-30.
    [94]X. Y. Pu, N. Jiang, D. Y. Han, et al., Linearly Polarized Three-Color Lasing Emission from an Evanescent Wave Pumped and Gain Coupled Fibre Laser [J]. Chin. Phys. B,2010,19(5):054207.
    [95]H. Schmidt, and A. R. Hankins, The photonic integration of non-solid media using optofluidics [J]. Nat. Photon.,2011,5:598-604.
    [96]B. Helbo, and A.Kristensen, A micro-cavity fluidic dye laser [J]. J. Mi-cromech. Microeng.2003,13:307-311.
    [97]D. V. Vezonov, B. T. Mayers, R. S. Conroy, et al, A low-threshold, high-ef-ficiency microfluidic waveguide laser [J]. J. AM. CHEM. SOC.,2005,127(25): 8952-8953.
    [98]S. Balelev, and A. Kristensen, Microfluidic singe-mode laser using high-order bragg grating and antiguiding segments [J]. Opt. Exp.,2005,13(1):344-351.
    [99]J. C. Galas, J. Torres, M. Belotti, et al., Microfluidic tunable dye laser with intedrated mixer and ring resonator [J]. App. Phy. Lett.,2005,86(26):264101.
    [100]D. Psaltis, S. R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature,2006,442:381-386.
    [101]杜飞,确定微型圆柱腔回音廊模式共振宽度和位置的方法[D].昆明:云南大学,2008.
    [102]姜丽群,圆柱形光学谐振腔回音廊模共振峰位置的确定及其应用[M].昆明:云南大学,2007.
    [103]J. D. Jackson, Classical Electrodynamics Third Edition [M]北京:高等教育出版社,2004.
    [104]Y. X. Zhang, X. Y. Pu, L. Feng, et al., Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain [J]. Opt. Exp.,2013,21(10):12617-12628.
    [105]K. M. Djiafar, L. S. Lowell,光纤通讯技术[M].北京:科学出版社,2002.
    [106]张伟刚,光纤光学原理及应用[M].天津:南开大学出版社,2008.
    [107]K. J. Moh, X. C. Yuan, J. Bu, et al., Generating radial or azimuthal polariza-tion by axial sampling of circularly polarized vortex beams [J]. Appl. Opt.,2007, 46(30):7544-7551.
    [108]王之江,光学技术手册[M].北京:机械工业出版社,1987.
    [109]E. S. C. Ching, P. T. Leung, and K. Young, The role of Quasi-normal Modes-Optical Processes in Microcavities [M]. Edited by R. K. Chang and A. J. Campillo, Singapore:World Scientific Publishing Co Pte Ltd,1996.
    [110]曾谨言,量子力学[M].北京:科学出版社,2000.
    [111]J. T. Robinson, C. Manolatou, L. Chen, et al., Ultrasmall mode volumes in dielectric optical microcavities[J]. Phys. Rev. Lett.,2005,95(14):143901.
    [112]M. Borselli, K. Srinivasan, P. E. Barclay, et al., Rayleigh scattering, mode coupling, and optical loss in silicon microdisks [M]. Appl. Phys. Lett.,2004, 85(17):3693-3695.
    [113]李俊昌,信息光学理论与计算[M].北京:科学出版社,2009.
    [114]田兴时,林南英,姚裕昌等,光学[M].昆明:云南大学出版社,1996.
    [115]俞宽新,江铁良,激光原理与激光技术[M].北京:北京工业大学出版社,2003.
    [116]刘卫国,陈昭平,张颖,Matlab程序设计及应用[M].北京:高等教育出版社,2004.
    [117]普小云,白然,向文丽等,消逝波激励的双波段光纤回音壁模式激光辐射[J].物理学报,2009,58(6):3923-3928.
    [118]S. V. Frolov, M. Shkunov, and Z. V. Vardeny, Ring microlasers from con-ducting polymers[J]. Phys. Rev. B.,1997,56(8):R4363-R4366.
    [119]H. Azzouz, L. Alkhafadiji, S. Balalev, et al., Levitated droplet dye laser [J]. Opt. Exp.,2006,14:4374-7379.
    [120]S. I. Shopova, H. Y. Zhou, and X. D. Fan, Optofluidic ring resonator based dye laser [J]. Appl. Phys. Lett.,2007,90:221101.
    [121]S. C. Wu, Mathematical and Physical Method [M]. Beijing:Peking Univer-sity Press,2001.
    [122]C. C. Lam, P. T. Leung, and K. Yang, Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering [J]. J. Opt. Soc. Am. B,1992,9(9):1585-1592.
    [123]A. Backer, R. Ketzmerick, and S. Lock, Quality factor and dynamical tun-neling in annular microcavities [J]. Phys. Rev. A,2009,79(6):063804.
    [124]A. M. Stolyarov, L. Wei, O. Shapria, et al., Microfluidic directional emission control of an azimuthally polarized radial fiber laser [J]. Nat. Photon.,2012,24: 229-233.
    [125]Y. Shimizu. and H. Sasada, Novel optical trap of atoms with a doughnut beam [J]. Phys. Rev. Lett.,1997,78(25):4713-4716.
    [126]Q. Zhan, Trapping metallic Rayleigh particles with radial polarization [J]. Opt. Exp.,2004,12(15):3377-3382.
    [127]K. Watanabe, and N. Horiguchi, Optimized measreement probe of the lo-calized surface Plasmon microscope by using radially polarized illumination [J]. Appl. Opt.,2007,46(22):4985-4990.
    [128]W. Chen, and Q. Zhan, Numerical study of an apertureless near field scan-ning optical microscope probe under radial polarization illumination [J]. Opt. Exp.,2007,15(7):4106-4111.
    [129]V. Nizier, and A. Nesterov, Influence of beam polarization on laser cutting efficiency [J]. J. Phys. D,1999,32:1455-1461.
    [130]W. C. Kim, and N. C. Park. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage [J]. Opt. Rev.,2007, 14(4):236-242.
    [131]P. Balcou, and L. Dutriaux, Dual optical tunneling times in frustrated total internal reflection [J]. Phys. Rev. Lett.,1997,78:851-854.
    [132]K. Rahnavardy, V. Arya, A. Wang, et al., Investigation and application of the frustrated-total-internal-reflection phenomenon in optical fibers [J]. Appl.Opt., 1997,36(10):2183-2187.
    [133]H. G. Winful, and C. Zhang, Tunneling delay time in frustrated total internal reflection [J]. Phys. Rev. A,2009,79(2):023826.
    [134]郭永康,鲍培谛,光学教程[M].成都:四川大学出版社,1992.
    [135]M. M. Mazumder, G. Chen, and R. K. Chang, Wavelength shifts of dye lasing in microdroplets:effect of absorption change [J]. Opt. Lett.,1995,20(8):878-880.
    [136]S. Arnold, M. Khoshsima, I. Teraoka, et al., Shift of whispering gallery modes in microspheres by protein adsorption [J]. Opt. Lett.2003,28(4):272-274.
    [137]X. Fan, and I. M. White, Optofluidic microsystems for chemical and biolog-ical analysis [J]. Nat. Photon.,2011,5:591-597.
    [138]K. Reddy, Y. Guo, J. Liu, et al., Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography [J]. Lab Chip,2012,12:901-905.
    [139]F. Vollmer, and S. Arnold, Whispering-gallery-mode biosensing:label-free detection down to single molecules [J]. Nat. Meth.,2008,5:591-596.
    [140]张远宪,普小云,刘春等,一种基于PDMS的多波段回音壁模式光纤激光器及其加工方法:中国,专利申请号201210178462.3[P].2012.06.04.
    [141]S. I. Shopova, J. M. Cupps, P. Zhang, et al., Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer[J]. Opt. Exp.,2007,15(20): 12735-12742.
    [142]张志毅,周涛,巩伟丽等,荧光共振能量转移技术在生命科学中的应用于研究进展[J].电子显微学报,2007,26(6):620-624.
    [143]刘春春,杭海英,生物大分子相互作用检测技术新进展[J].生物化学与生物物理进展,2006,3(33):292-296.
    [144]T. Ha, Single-Molecule Fluorescence Resonance Energy Transfer [J]. Meth-ods.2001,25:78-86.
    [145]H. Harma, S. Pihlasalo, P. J. Cywinski, et al., Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Qwan-tum Dots [J]. Analy. Chem.,2013,85(5):2921-2926.
    [146]E. Oh, M. Y. Hong, D. Lee, et al., Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer between Qwantum Dots and Gold Nanoparticles [J]. J. AM. Chem. Soc.,2005,127:3270-3271.
    [147]K. Oda, N. Takato, and H. Toba, A wide-FSR waveguide double-ring res-onator for optical FDM transmission system[J]. J. Lightwave Technol.,1991,9(6): 728-736.
    [148]X. Wu, Y. Z. Sun, J. D. Suter, et al., Single mode coupled optofluidic ring resonator dye lasers [J]. Appl. Phys. Lett.,2009,94:241109.
    [149]L. Zhou, H. H. You, and X. Y. Pu, Broadening free spectral range of an evanescent-wave pumped whispering-gallerv-mode fiber laser by Vernier effect [J]. Opt. Commun.,2011,284(13):3387-3390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700