黑龙江省东部山区谷地云冷杉林衰退机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是周晓峰教授主持的国家自然科学基金委员会重大项目“中国东部陆地农业生态系统与全球变化相互作用机理的研究(编号 39899370)”的一部分。通过常规的生态学手段,从谷地云冷杉林本身的生物学和生态学特性、谷地云冷杉林的生境条件、病虫害对其的影响、全球变化对云冷杉林的影响等方面,系统地研究了黑龙江省东部山区谷地云冷杉林的衰退机理,得出结论如下:
     1、云杉生长的近40年内均表现了生长下降的趋势,使其生长下降的影响因子唯一可能的是气候因子。塔河、乌伊岭、汤旺河、红星的云杉林为进展种群,而五营和带岭的云杉林为衰退种群。云杉死亡株的年龄结构范围较宽,排除了过熟死亡的可能性,进一步论证了死亡是由于外力的干扰而导致的。
     2、土壤PH与云杉死亡没有明显关系。另外,从PH值也可看出,该地区土壤未呈现酸化趋势;但是土壤阳离子代换量低可能是云杉死亡的一个因子。死亡木、濒死木、健康木三种不同生长状态的云杉各器官营养元素平均值含量无明显差异,各元素含量与云杉生长状态没有明显关系,这进一步说明云杉的死亡与营养元素的吸收无关。各样地微生物都极为丰富,特别是细菌数量远远多于其它非云冷杉林分,细菌数量在云杉林死亡区略高于生长正常区;放线菌数量变化与云杉死亡没有明显相关性。
     3、云杉死亡与线虫危害无关,病害也不是导致云杉林衰退的直接原因,云杉菌根呈现衰退趋势,菌根衰退可能是导致谷地云冷杉林衰退的一个因素,但是菌根衰退是一个复杂的过程,原因还有待更深入的研究。
     4、黑龙江省近百年来气温升高明显,大约+0.25℃/10a。降水呈规律性的波动性变化,周期大约为11a。凉水自然保护区:在近30年的时间里年平均温度上升十分明显;近30年来的降水没有十分显著的差异,总体上保持平稳的水平。丰林自然保护区近年来无论是年均温、平均最高温度、平均最低温度均表现出了明显的升高趋势;降水变化十分明显,有明显的下降趋势,近30年来平均下降了50mm以上,说明该地区有明显的干旱趋势。塔河林业局的年均温升温十分明显;降水总体上比较平稳,略有升高的趋势。
     5、黑龙江省谷地云冷杉林衰退的最直接的原因即诱发因素是全球变化当中的温度变化,温度的明显升高导致了大小兴安岭的多年冻土南界的北移,而原来的南界地区——伊春市带岭区的多年冻土已基本上完全消融,从而导致了谷地云冷杉林的水分失调——春季过于干旱,而夏、秋两季湿度又过大。春、夏、秋季的土壤水分变化均导致了谷地云冷杉林的生长衰退,而且这一因素又长期在起作用,因此气候变化是最直接的原因,是诱因。
     随着谷地云冷杉林生长势的明显下降,进而导致了病虫害的侵入,进一步加剧了谷地云冷杉林的衰退过程。因此,病虫害的侵害是刺激因素,它是第二阶段起作用的因素,可促使
    
    诱发因素的作用明显表现出来。
     随着谷地云冷杉林的更进一步的衰退和靠近死亡线,云冷杉林的根系活力明显下降,进
    而导致了根部菌根的明显衰退,加之土壤湿度的进一步加大,导致了云冷杉林的根部腐朽,
    促进了谷地云冷杉林的衰退和死亡,因此,菌根数量的降低和根部的腐烂是谷地云冷杉林
    退的促进因素,是第三阶段起作用的因素。
This thesis is one part of Grand Project of National natural Science Foundation Association named " Study on mutual affection mechanism between eastern China terrestrial agricultural ecosystem and global climate change" which was directed by professor Zhou Xiaofeng . By the traditional ecological investigation methods, we systematically researched spruce forest decline mechanism in low-lying land in eastern mountain area in Heilongjiang province with ecological and biological specific character of spruce forest, habitat of spruce, influenced by disease and insect, and affected by global climate change. The results as follows:
    The firstly, the spruce has been grown decline for about 40 years, and the reason is only climate change factor. The spruce forest is progressive population in Tahe, Wuyiling, Tangwanghe and Hongxing forestry bureau, however, which is decline population in Wuying and Bailing forestry bureau. The age structure of died spruce is widely, from 108 to 220. The age structure rule out death possibility of overmature forest, further demonstrate that the death of spruce is caused by the external disturbance.
    The secondly, there are no closely relationship between soil PH and spruce death. In addition, we can draw a conclusion that the soil in this site is not acid. However, the low exchangeable caution of cation is one of the reason about spruce death. There are no clearly difference of nutrient content of spruce organs in different growth condition about death tree, close to the death tree and healthy tree. There are no closely relationship between nutrient content and growth condition of spruce, which further show that there are no relationship about spruce growth condition and absorb of nutrient element. There are plenty of microorganisms in every plot, especially in the spruce plot, the number of bacterium is more clearly than the other plot. In the meanwhile, the number of bacterium in ara of spruce death are more than those in area of growth normal, and there are no closely relationship between the variation of number of actinomyces and spruce death.
    The thirdly, there are no relationship between spruce death and endangering of nematodes, and disease is not directly reason of causing spruce growth decline. The ectomycorrhizal of spruce show decline tendency, and the decline of ectomycorrhizal of spruce is one of the reason of forest decline in low-lying land, but the decline of ectomycorrhizal of spruce is complicated process, the decline reason is need further more research work.
    The fourth, the annual mean temperature increases as 0.25℃/10a in Heilongjiang province Chinain recent hundred years, and the precipitation shows fluctuation change, the cycle is 11 a. In the Liangshui Nature Reserve: the air temperature increases clearly in recent 30 years, there are no
    
    
    obviously difference about the precipitation in recent 30 years, which keeps the tendency steadily. The annual mean temperature, annual mean lowest temperature and annual mean highest temperature increases clearly, and the variation of precipitation changes obviously, which decreases 50mm in recent 30 years, it shows that this area changes drier and drier. The annual mean temperature increases clearly very much, the precipitation is stable, and it exists enlarger tendency slightly.
    The fifth, the direct reason-predisposing factors of spruce forest decline in low-lying land in eastern mountain area in Heilongjiang province is global climate change, the increased temperature causes northern movement of south boundary of permafrost in Daxinganling and Xiaoxinganling mountain area. However, the original south boundary of permafrost in dialing district in Yichun city is all melting now. For the melting permafrost in dialing, the climate exists dry spring, summer and autumn is too wet. So, the climatic change in this area is the direct reason causing spruce decline, which is predisposing factors.
    With the obvious decreasing growth of spruce forest in low-lying land, which can cause the disease and insect invading the tree, so, it can fu
引文
1. Auclair A D et al. A case study of forest decline in western Canada and the adjacent United State. Water, Air & Soil Pollut. 1990, 53: 13-31
    2. Auclair A N D, Martin H C, Walker S L. A case study of forest decline in western Canada and the adjacent United States. Water Air Soil Pollut, 1990, 53(1): 13-31
    3. Anderson J M. Ecology of environmental science-resources and environmenta lscienceseries[J]. Edward Arnold(Ltd.). 1981, 87-95
    4. Anisimov O A, Nelson F E. permafrost distribution un the Northern Hemisphere under scenarios of climate change. Global and Planetary Change, 196, 14: 59-72
    5. Becket M et al. Silver fir decline in the Vosges mountain (France): role of climate and silviculture, ater, Air & Soil Pollut. 1989, 48: 239-250
    6. Bonan G B et al. Environmental factors and ecological processes in boreal forests. Ann. Rev. Ecol. Syst. 1989, 2: 1-28
    7. Buke I C, Yonker C M, Parton W J et al. Texture, Climate, and cultivation effects on soil otganic matter content in US grasslands soils. Soil Sci. Amer. J, 1989, 53 (3): 800-805
    8. Box E O. Macroclimate an Plant Form. The Hague: Junk Publishers, 1981
    9. Bier J E. The relation of bark moisture to the development of canker disease caused by facultative parasites. Ⅰ.Cryptodiaporthe canker of willow. Can J Bot, 1959, 37: 229-238
    10. Bier J E. The relation of bark moisture to the development of canker disease caused by facultative parasites.Ⅷ. Sone effects of the saprophytes on the bark of poplar and willow on the incidence of hypoxylon canker. Can J Bot, 1962, 40: 61-69
    11. Chou C K S. Crown wilt of pinus radiation with Diplodia pinea infection of woody stems. Eur J For Path, 1987, 17: 398-411
    12. Cohen Y et al. The responses of a forest model to serial correlations of global warming. Ecology, 1991, 72: 1161-1165
    13. Clements F E. Research methods in ecology. Nebraska: University Publishing Company, 1905
    14. Cui zhijiu. Periglacial phenomena and environment resconstrution in the Qinghai-Xizang (Tibet) Plateau. In: Collection of Geological Research Papers for the International Exchange. Beijing. Geological Pulishing House, 1980. 109-115
    15. Cheng Guodong, Dramis F. Distribution of mountain permafrost and climate. Permafrost and Periglacial Process, 1992, 3(2): 83-91
    16. Cramer W P and Solomon A M. Climatic classification and future global redistribution of agricultural land, Climate Research, 1993, 3: 97-110
    
    
    17. Crist C R and Schoeneweiss D F. The influence of controlled stresses on susceptibility of Europen white birch stems to attack by Botryosphaeria dothides. Phytopathology, 1975, 65: 369-373
    18. Cook E C and Johnson A H. Climate change and forest decline: a review of the red spruce case. Water, Air & Soil Pollut. 1989, 48: 127-140
    19. Daubenmire R. Soil moisture in relation to vegetation distribution in the mountains of Northern Idaho. Ecology, 1968, 49: 431-438
    20. Dixon R K et al. The clobal carbon cycle and climate change: Responses and feedbacks from below-ground systems. Enviro. Poilut. 1991, 73: 245-262
    21. Dixon R K et al. Carbon pools and flux of global forest ecosystems, Science, 1994, 263: 185-190
    22. Daubenm ire R F. Climate as a determinant of vegetation distribution in eastern Washington and northern Idaho, Eco-logical Monograph, 1956, 26: 131~154.
    23. Davis M B. Lags in vegetation response to greenhouse warming. Climatic Change, 1989, 15: 75-82
    24. Emanuel W R et al. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes, Climatic Change, 1985, 7: 29-43
    25. Emanuel E R, H H Shugat, M P Stevenson. Climate change and broad scale distribution of terrestrial ecosystem complexes. Climate Change, 1985, 7: 29-43
    26. Foley J A, S Levis, I C Prenrice, et al. Coupling dynamic models of climate and vegetation. Global change Biology, 1998, 4: 561-579
    27. Gieick P H. The development and testing of a water balance model for climate impact assessment: modeling the Sacramento Basin. Water Resour. Res. 1987, 23: 1049-1061
    28. Gerrish G, Mueller-Dombois D, Bridges K W. Nutrient limitation and metrosideros froest dieback in Hawaii.Ecology, 1988, 69(3): 723-727
    29. Gates D M. Climate Change and Its Biological Consequences. Sunderland, M A: Sinauer Association, 1993, 45-87
    30. Gates D M. Climate change and forest. Tree Physiol., 1990, 7: 1-5
    31. Heisting G H. Climate and forest decline. Ann. Rev. Phytopath. 1963, 1: 31-32
    32. Hansen J et al. Global climate changes as forecast by Godaard Institute for Space Studies' three-dimensional model. J. Geophys. Res. 1988, 93: 9341-9364
    33. Hennon R E et al. Dynamics of decline and mortality of Chamaecyparis nootkatensis in Southeast Alaska. Can. J. Bot. 1991, 68: 651-662
    34. Hare F K. Climate variation and variability: empirical evidence from meteorological and other sources. Proc. World Clim. Conf. Geneva, WHO, 1979, (537), 51-87
    
    
    35. Haeberli W, Cheng G, Oorbunov A P. et al. Mountain permafrost and climate change. Permafrost and Periglacial Process, 1993, 4(2): 165-174
    36. Henderson-Seller A and McGuffie K. Land surface characterization in green house climate simulations, International Journal of Climatology, 1994, 14: 1065-1094
    37. Heath L S et al. Contribution of temperate forests to the worlds' carbon budget, Water, Air, & Soil Pollution, 1993, 70: 55-69
    38. Houghton J T, G J Jenkins, J J Ephraumx. Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press, 1990: 1-15
    39. Houghton J T, B A Callander, S K Varaey. Climate Change 1992. The supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press, 1992: 1-30
    40. Houston D R. A host-Stress-saprogen model for forest dieback-decline diseases, in "Forest Decline Concepts", eds. By Manion and Landscape. 1992: 3-25
    41. Hurtt G C, P R Moorcroft, S W Pacala, et al. Terrestrial models and global change: challenges for the future.Global Change Biology, 1998, 4: 581-590
    42. IPCC (International Panel on Climate Change). Scientific Assessment of Climate Change. Cambridge University Press, Cambridge, 1990
    43. Itai C and Ben-Zioni A. Regulation of Plant response to high temperature. In: Bislesk R Let al. Mechanism of Regulation of Plant Growth. Roy. Soc. N. Z. Bull. 1974, 12: 477-482
    44. Jones P D et al. Northern Hemisphere surface air temperature variation: 1851-1984. J. Clim. Appl. Meteorol. 1986, 25: 161-179
    45. Jones P D et al. southern Hemisphere surface air temperature variation: 1851-1984. J. Clim. Appl. Meteorol.1986, 25: 1213-1230
    46. Karl T R et al. Global warming: evidence for asymmetric diurnal temperature change. Geophys. R. L. 1991, 18: 2253-2256
    47. King G A and Neilson R P. The transient response of vegetation to climate change: a potential source of CO_2 to the atmosphere. Water, Air & Soil Pollut. 1992, 64: 365-383
    48. Keller E Automated mapping of mountain permafrost using the program PERMAKART within the geographic information system ARC/INFO. Permafrost and Periglacial Process, 1992, 3(2): 139-142
    49. Kellom-ki S and Kolstr-m M. Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions, Vegetatio, 1992, 102: 47-68
    50. Kirschbaum M U F. A modeling study of thee fleets of changes in atmospheric CO_2 concentration, temperature and atmospheric nitrogen input on soil organic carbon storage, Tellus, 1993, 45B: 321-334
    
    
    51. Kerr R A. Greenhouse skeptic out in the cold. Science, 1989, 246: 1118-1119
    52. Kramer P J. Carbon Dioxide concentration, photosynthesis, and dry matter production. BioScience, 1981, 31: 29-33
    53. Katz R W, B G Brown. Extreme events in a changing climate: Variability is more important than averages.Climatic Change, 1992, 21: 289-302
    54. Leemans R and Solomon A M. Modeling the potential change in yield and distribution of the Earth's crops under a warmed climate, Climate Research, 1993, 3: 79-96
    55. Leemans R and van den Born G J. Determining the potential distribution of vegetation, crops and agricultural productivity, Water, Air & Soil Pollution, 1994, 76: 133-161
    56. Leemans R. Modellin gecological and agricultural impacts of global change on a global scale, Journal of Scientific and Industrial Research, 1992, 51: 709-724
    57. Ludeke M KB et al. Responses in NPP and carbon stores of the northern biomes to a CO_2-induced climatic change, as evaluated by the Frankfurt Biosphere Model (FBM), Tellus, 1995, 478: 191-205
    58. Mueller-Dombois D. A dieback in Hawaii: 1984 synthesis and evolution. Pac. Sci. 1985, 39: 50-170
    59. Mueller-Dombois D. Canopy dieback and successional processes in Pacific forest. Pac Sci, 1983, 37: 317-325
    60. Mueller-Dombois D. Canopy dieback and successional processes in Pacific area. In: Grenter W: Zimmer B(eds). Proc ⅩⅣ Int Bot Congr Koelz, Konigstain/Ts., 1988, 455-465
    61. Mueller-Dombois D. A natural dieback theory cohort senescence as an alternative to the decline disease theory.In Forest Decline Concepts, 1992, 26-37
    62. Mueller-Dombois D. Forst decline and soil nutritional problems in areas. Water, Airpol-lut, 1990, 54: 195-207
    63. Mitchell J F B. The greenhouse effect and climatic change. Rev. Geophys. 1989, 27: 115-139
    64. Melillo J M et al. Effects on ecosystems, in Houghton J Tetal (eds.), Climate Change—the IPCC Scientific Assessment: Report Prepared for PICC by Working Group Ⅰ, Cambridge University Press, Cambridge, 1990:
    65. Monserud R A et al. Global vegetation change predicted by the modified Budyko model, Climatic Change, 1993, 25: 59-83
    66. Melillo J M et al. Global climate change and terrestrial net primary production, Nature, 1993, 363: 234-240
    67. Manion P D. Tree disease Concepts. Prentice Hall. Englew cliffs, 1991
    68. Neilson R P et al. Regional and local vegetation patterns: the responses of vegetation diversity to sub continental air masses. In: Hanson A. Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Spring-Verlag, New York, 1992
    69. Neilson R Pet al. Sensitivity of Ecological Landscape and regions to Global Climate Change. USEPA, Washington D C, 1989
    
    
    70. Neilson R P et al. Modeling forest response to climatic change: the potential for large emissions of carbon from dying forets, in Kanninen, M.(ed.), Carbon Balance of World's Forested Ecosystems: Toward a Global Assessment, Academy of Finland, Helsinki, Finland, 1994: 150-162
    71. Neilson R P. Vegetation redistribution: A possible biosphere source of CO_2 during climate change. Water, Air and Soil Pollution, 1993, 70: 659-673
    72. Nelson F E, Outcalt S I. A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 1987, 19(3): 279-288
    73. Nelson F E, Anisimov O A. Permafrost zonation in Russia under anthropogenic climate change. Permafrost and periglacial Process, 1993, 4(2): 137-148
    74. Overpeck J T. Climate-induced change in forest disturbance and vegetation. Nature, 1990, 343: 51-53
    75. Perry D A et al. Species migrations and ecosystem stability during climatic change: the below-ground connection. Biol. Conser. 1990, 4: 266-274
    76. Prentice I C et al. A global biome model based on plant physiology and dominance, soil properties and climate, Journal of Biogeography, 1992, 19: 117-134
    77. Peters R L. Effects of global warming on forest. Forest Ecological Management, 1990, 35: 13-33
    78. Redmond D R. Studies in forest pathology. XV. Rootlets, mycorrhizae, and soil temperature in relation to birch dieback. Can. J. Bot., 1955, 23 (6): 595-627
    79. Rowe J S. Phytogeographie zonation: an ecologicala ppreciation, In Taylor Rland Ludwig R A. (eds.), The Evolution of Canada's Flora, Univ. Tornoto Press, 1966: 283-310
    80. Running S W and Nemani R R. Regional hydrologic and carbon balance responses of forests resulting from potential climatic change, Climatic Change, 1991, 19: 342-368
    81. Rizzo Band Wiken E. Assessing the sensitivity of Canada's ecosystems to climatic change, Climatic Change, 1992, 21: 37-55
    82. Sehuze E D et al. Forest Decline and Air Pollution. Spring-Verlag, Heidelberg, 1989
    83. Stephenson N L. Climatic control of vegetation distribution: the role of the water balance. Amer. Nat. 1990, 135: 649-670
    84. Smith T M et al. Sensitivity of terrestrial carbon storage to CO_2 induced climate change: comparison of four scenarios based on general circulation models, Climatic Change, 1992, 21: 367-384
    85. Smith T M, P N Halpin, H H Shugart, et al. Global forest. K M Strzepek, J B Smith. As climate change: International Impacts and Implications. Cambridge University Press, 1995: 59-78
    86. Smith J B, D Tripak. The Potential EffeCts of Global Change on the United States. U. S. EPA. Washington D C.USA, 1989: 1-20
    
    
    87. Spurr S H and Barnes B V. Forest Ecology (2nded.), New York: Ronald, 1973: 570-571.
    88. Shugart H H et al(eds.). A Systems Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, 1992: 565
    89. Skelly J M & Innes J L. Waldsterben in the forests of central Europe and Eastern North America: Fantasy or Reality? Plant Dis, 1994, 78 (11): 1021-1032
    90. Sinclair W A. Comparison of recent decline of while ash, oaks and sugar maple in Northeastern woodlands.Coenell Plantations, 1965, 20: 62-67
    91. Tattatr T A. Disease of Shade Trees. Academic Press, New York, 1978, 310-318
    92. Tchebakova N M et al. A Siberian vegetation model based on climatic parameters, Canadian Journal of Forest Research, 1994, 24: 1597-1607
    93. Tchebakova N M et al. A global vegetation model based on the climatological approach of Budyko, Journal of Bio-geography, 1993, 20: 129-144
    94. Thornley J H M et al. Terrestrial carbon storage resulting from CO_2 and nitrogen fertilization in temperate grass-lands, Plant, Cell and Environment, 1991, 14: 1007-1011
    95. Tinker P B, Ineson P. Soil organic matter and biology in relation to climate change. In: Scharpenseel H W, Schomaker M, Ayoub A. Soils on a warmer Earth. New York: Elsevier Science Publishers B V, 1990.71-87
    96. Trexler M C and Haugen C. Keeping It Green: Evaluating Tropical Forestry Strategies to Mitigate Global warming. World Resource Institute, Washington D C, 1993
    97. Turner N C and Kramer P J Adaptation of Plant to Water and high Temperature Stress. Wiley-Interscience.New York, 1980
    98. Turrner D P and Franz E. The influence of western hemlock and western red cedar on microbial numbers, nitrogen mineralization and nitrification. Plant & soil. 1985, 88: 259-267
    99. Urban D L, M E Harmon, C B Halpern. Potential response of Pacific Northwestern forests to climate change: Effects of stand age and initial composition. Climatic Change, 1993, 23: 247-266
    100. Wang B, French H M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China.Permafrost and Periglacial Process, 1994, 5(2): 87-100
    101. Watson R T et al. Climate Change 1995—Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge: Cambridge University Press, 1996: 95-130
    102. Wene E G and SSchoeneweiss D F. Localized freezing predisposition to Botryosphaeria canker in differentially frozen woody stems. Can I Bot, 1980, 58: 1455-1459
    103. Winjum J K et al. Forest management and carbon storage: an analysis of 12 key forest nations, Water, Air & soil pollution, 1993, 70: 239-257
    
    
    104. Woodward F I. A review of the effects of climate on vegetation: Ranges, competition and composition. R L Peters, T E Lovejoy. Global Warming and Biological Diversity. New Haven, CT. USA: Yale University Press, 1992: 105-123
    105. Woodward F I. Climate and Plant Distribution. Cambridge University Press, London, 1987
    106. Wullschleger S D et al. On the potential for a CO~2 fertilization effect in forests: estimates of the biotic growth factor, basedon 58 controlled-exposure studies, in Woodwell G M and Mackenzie F T. Biospheric Feedbacks in the Global Climate System—Will the Warming? Oxford University Press, New York, 1995: 85-107
    107. Xie Youyu. Effects of Climate Change on Permafrost in China. In: Global Change Study No.2, Series publication. Institute of Geography, Chinese Academy of Science, 1996
    108. Zoettl H W and Huettl R F. Management of Nutrition in Forests under Stress. Kluwer Academic Publishers. Dordrecht, 1991
    109.陈育峰.自然植被对气候变化相应的研究:综述.地理科学进展,1997,16(2):70-77
    110.岑庆雅.中国松科冷杉亚科植物区系研究.中山大学学报论丛,1996,2:87-92
    111.程国栋.我国高海拔多年冻土地带性规律之探讨.地理学报,1984,39(2):185-193
    112.陈旭东.鄂尔多斯高原生态过渡带的判定及生物群区特征.植物生态学报,1998,22(4):312-318
    113.陈尚.生态交错带理论及其在海洋生态学中的应用.地球科学进展,1998,13(5):431-437
    114.党常顺,李严寒,尚立权,罗刚.红皮云杉播种苗生长与土壤水分的关系.林业科技,1999,24(5)
    115.方精云,刘国华.植物分布的生态学:历史回顾和最新进展.中国科学基金,1998,12(专刊):48-51
    116.方精云.东亚地区森林植被带的三维空间分布.地理学报.1995,50(2):160-167
    117.方精云.中国自然植被的分布格局及其气候学和地形解释.见现代生态学和热点问题研究.北京
    118.冯玉波,李郁,戴宗乐,周发,王德强.红皮云杉的气候区划.吉林林业科技,2001(30):24-27
    119.管中天.四川杉类植物分布的基本特征.植物分类学报,1982,19(4):393-407
    120.高洪文.生态交错带理论研究进展'生态学杂志,1994,13(1):32-38
    121.黑龙江森林编辑委员会.黑龙江森林.哈尔滨:东北林业大学出版社,北京:中国林业出版社,1993
    122.蒋雪彬,李建民,高庭玉,徐桂生,佘绍强.云杉的演化史.林业勘察设计,2000,(1):30-33
    123.蒋有绪.全球气候变化与中国森林的预测问题.林业科学,1992,28:431-438
    124.金会军,李述训,王绍令,赵林.气候变化对中国多年冻土和旱区环境的影响.地理学报,2000,55(2):161-173
    125.李建贵.天山与山林死亡木的大小结构与空间分布格局.新疆农业大学学报,2003,26(1):5-9
    126.李文华,周沛村.暗针叶林在欧亚大陆分布的基本规律及数学模型的研究.自然资源,1979,(1):21-34,科学技术出版社,1996.369-380
    127.李新,程国栋.高海拔多年冻土对全球变化的的响应模型.中国科学(D辑),1999,(29)2:185-192
    
    
    128.刘盛.红皮云杉生长特点的对比研究.吉林林学院学报,1999,15(3)159-162
    129.刘国华,傅世杰.全球气候变化对森林生态系统的影响.自然资源学报,2001,16(1):71-78
    130.刘世骥.森林衰退病研究现状及展望.中国森林昆虫,2002,21(1):15-19
    131.马世骏.边际效应与边际生态学.见:马世骏主编.现代生态学透视.北京:科学出版社,1990.43-45
    132.毛文永.温室气体与气候变迁——兼论科学不确定性.生态学报.19992,12(2):186-192
    133.倪乃华.红皮云杉人工林生长节律。东北林业大学,25(6):63-65
    134.牛文元.生态环境脆弱带的基础制定.见:马世骏主编.现代生态学透视.北京:科学出版社,1990.46-53
    135.牛文元.生态环境脆弱带ECOTONE的基础判定.1989(2)
    136.倪健,宋永昌.中国亚热带常绿阔叶林优势种及常见种分布与气候的相关分析.植物生态学报,1997,21(2):115-129
    137.森林调查员手册.林业部森林调查设计局森林经理处编.中国林业出版社,北京,1958
    138.束庆龙,邹运鼎,杨光道,朱谦,黄长春.国外松衰退病于环境和林分因苏关系的研究.应用生态学报.2001,12(3):331-334
    139.束庆龙,徐向宇,刘世骥.森林衰退病三种模式的比较.安徽农业大学学报,1996,23(4):500-503
    140.孙成权,陈晔.中国的全球变化研究项目评述.地球科学进展,1995,10(1):70-74
    141.王荷生.中国松科植物的分布型和区系分析.植物研究,2000,20(1):12-19
    142.王庆锁.生态交错带与生物多样性.生物多样性,1997,5(2):126-131
    143.王庆锁,冯宗炜,,罗菊春.河北北部、内蒙古东部森林.草原交错带生物多样性研究.植物生态学报,2000,24(2):141-146
    144.王庆锁,冯宗炜,罗菊春.生态交错带与生态流.生态学杂志,1997,16(6):52-58
    145.王献溥.全球气候变暖对生态系统和生物多样性的影响及主要对策(一、二).农村生态环境,1992,N1:1-6,N3:1-5
    146.王燕,赵士洞.天山云杉林生物量和生产力的研究.应用生态学报,1999,10(4):389-391
    147.伍建榕,盛世法.森林衰退病研究综述.西南林学院学报,2000,20(2):121-126
    148.乌弘奇.中国东北云杉林及其动态的研究.东北林业大学博士论文,1987
    149.肖辉林.森林衰退与全球气候变化.生态学报,1994,14(4):430-436
    150.肖辉林.土壤温度上升与森林衰退.热带亚热带土壤科学.1995,4(4):246-249
    151.肖笃宁编.景观生态学—理论方法及应用.北京:中国林业出版社,1991.35-43
    152.徐存宝,宋影,金淑芳,张伟,李万云,赵国慧.云杉枯死与森林病害关系的分析.林业科技,1998,23(6):30-31
    153.姚俊英.兴安落叶松、红松、红皮云杉物候期及气象指标.黑龙江气象,1998,(4):21-22
    
    
    154.叶笃正主编.中国的全球变化与研究.北京.气象出版社,1992
    155.叶笃正,曾庆存,郭裕福主编.当代气候研究.北京:气象出版社,1991
    156.尹承陇,王桑,王有奎,张耀荣,李进军.青海云杉种实害虫发生与环境条件关系的调查研究.甘肃林业科技,1999,24(3)31-34
    157.英俊生.中国裸子植物分布区的研究(1).植物分类学报,1989,27(1):27-38
    158.尹澄清.内陆水—陆地交错带的生态功能及其保护与开发前景.生态学报,1995,15(3):331-334
    159.袁玉,李江风.天山西部云杉林年轮气候生长量与气候的关系.新疆大学学报(自然科学版),1994,11(4)93-98
    160.赵士洞,延晓冬,杨思河等.东北森林对未来气候变化响应研究的几点新进展.生态学报,1995,15增刊B:1-11
    161.郑万均,傅立国.中国植物志(第七卷).北京:科学出版社,1978
    162.张新时,周广胜,高琼,倪建,唐海萍.中国全球变化与陆地生态系统关系研究.地学前缘,1997,4(1)137-144
    163.中国植被编辑委员会.中国植被.北京:科学出版社,1980
    164.中国森林编辑委员会.中国森林(第一卷).北京:中国林业出版社,1997,513-574
    165.中国科学技术委员会.气候.北京:科学技术文献出版社,1990
    166.周广胜,张新时.全球变化的中国气候—植被分类研究.植物学报,1996,38(1):1-8
    167.周广胜,张新时.中国气候—植被分类初探.植物生态学报,1996,20(2):113-1192
    168.周广胜,张新时.自然植被的净第一性生产力模型初探.植物生态学报,1995,19(3):193-200
    169.周广胜,张新时.全球变化的中国自然植被的净第一性生产力研究.植物生态学报,1995,20(1)9-17
    170.周武锋,莫兴国.气候变化与植被系统的响应.见:《气候变化对中国农业的影响》(邓根云主编).北京:北京科学技术出版社,1993,90-98
    171.周晓峰.几个主要用材林树种的生长节律.东北林学院学报,1981,(2)
    172.周延儒.中国北方农牧交错带全新世环境演变及预测.北京:地质出版社,1992.
    173.周以良.中国的几种植被类型(Ⅵ)——落叶针叶林.生物学通报,1988,(5):6-10
    174.周幼吾,郭东信,邱国庆,程国栋,李树德.中国冻土.北京:科学出版社,2000
    175.庄平,彭启兴,刘仁英,吴荭.峨眉山冷杉森林衰退状况研究.武汉植物学研究,1995,12(4):317-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700