伊春市带岭区主要虫害(落叶松毛虫)发生规律及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究伊春市带岭区主要虫害,落叶松毛虫的发生规律及防治,在东北地区,落叶松毛虫主要危害落叶松和红松,是我国东北及内蒙古林区松林的主要害虫。由于幼虫连续二年取食针叶,使树木生长衰弱,引起蛀干害虫发生,进而导致落叶松林木大片死亡,给林业生产带来了巨大的经济损失。因此,研究落叶松毛虫的发生规律及防治技术具有十分重大的现实意义。
     本文对落叶松毛虫发生规律和防治技术进行了系统研究,得出结论如下:
     (1)落叶松毛虫在伊春市带岭区为二年发生一代,实际跨三个年度,幼虫有9龄,落叶松毛虫的卵多产的松针或松小枝上,孵化时幼虫将卵壳咬破而后爬出,孵化孔多为不整齐,且幼虫爬出后有继续取食卵壳的习性,落叶松毛虫主要在4~8时孵化,正常受精的卵孵化率一般在90%左右。落叶松毛虫成虫寿命平均为6d左右,雌虫的寿命略大于雄虫。
     (2)伊春市带岭区的落叶松毛虫性比为♀:♂=1.06:1。性比(♀:♂)基本接近于1:1,且雌虫略多于雄虫,这反映了环境较优越,也表现出该虫种在该区域发育正常,尚有进一步发展的趋势。2007年、2008年和2009年落叶松毛虫各龄级存活的个体数存在明显的差异,可以分析出2009年落叶松毛虫将大发生。通过幼虫各龄级个体分布情况分析,可提前预知下一年度落叶松毛虫能否大发生,为提前采取防治措施提供了科学依据。落叶松毛虫在不同的发育时期,其空间分布格局显著不同。卵期为随机分布,而幼虫期和蛹期为聚集分布。
     (3)落叶松毛虫的发生与气候条件有密切的关系,温暖干旱的气候有利于落叶松毛虫的生长发育,另一方面温暖干旱的气候可以使针叶生物化学成分发生变化,增加对幼虫的营养,提高害虫存活率。落叶松毛虫雌虫产卵量随食料不同而有差别。
     (4)落叶松毛虫发生严重程度是受林分环境制约的,这样我们可以通过调查,把有利于落叶松毛虫大发生的林地,作为重点检查对象。同时也找出那些具有不利于落叶松毛虫大发生的林分,可不把它放在监测的重点上,这样我们就可分清主次,合理地利用人力物力,避免不必要的浪费。另一方面,我们也可以在林业措施上下功夫杜绝或减小有利于落叶松毛虫发生的环境,以达到自然控制的目的。如适当的封山育林,在人为经营活动中适当地保留稍大的郁闭度(如郁闭度不小于0.7)和保留一定数量的阔叶树等。
     (5)人工采摘卵块和蛹能能有效控制落叶松毛虫发生。黑光灯与频振灯诱蛾效果相比,黑光灯略好于频振灯。仅从防治后效果来看,黑光灯好于频振灯,特别是多灯防治尤为突出。悬挂鸟巢箱对控制落叶松毛虫有比较明显的作用,可有效抑制落叶松毛虫种群的发展。
This thesis research main insect pest in Dailing district in Yichun city, with ownership larch caterpillars occurrence regularity and prevention, in the Northeast, larch caterpillar mainly damage larch and Korean pine, is China's Northeastern and pine forest the main insect pests in Inner Mongolia. Due to continuous feeding needles, two larva grow weak, make the tree cavities caused by dry pests occur, which led to the death, give a blockbuster larch trees forestry production brought huge economic losses. Therefore, the study of larch caterpillars occurrence regularity and prevention and control technology has very important practical significance.
     This paper studied larch caterpillar occurrence regularity, analyzing conclusion is as follows:
     (1) larch caterpillar in ownership is two years happened with generation in Dailing district, actual across three year, larvae nine years old, larch caterpillar eggs prolific pine needles or release of the small branches, and hatching larvae when releasing eggs shell bite open then crawled out, hatch hole more for doesn't furl neatly and larvae climbed out after feeding egg shell habit continued larch caterpillars, mainly in 4 ~ 8 hatch the eggs hatch, normal fertilization rates generally about 90%. The average adult life for larch caterpillar 6d left and right sides, female insect life slightly higher than male worm.
     (2) with the ownership Dailing larch caterpillar sex ratio for♀: came = 1.06:1. Sex ratio (came)♀: basic thereabouts, and female insect slightly more than male worm, reflecting the environment is superior, also show the worm in the regional developing normally, there are further development trend. In 2007 and 2008 and 2009 larch caterpillar each age level of individual number of live there exist obvious differences can be analyzed into 2009 larch caterpillar will be large happen. Through each age level larva individual distribution analysis, can predict early next year, whether big happened larch caterpillar for early protective measures are provided scientific basis. Larch caterpillar in different development stages, the spatial distribution pattern varies significantly.
     (3) larch caterpillars occurrence and climatic conditions have close relations, and warm arid climate conducive to larch caterpillar growth and development, on the other hand warm arid climate can make acerola biological chemical composition change, an increase of larvae of nutrition, improve pests survival. Larch caterpillar female insect spawning quantity with univariate vary.
     (4) larch caterpillar happen severity is influenced by environmental constraints of the stand, so we can through investigation, the benefit of larch caterpillar serious occurrence of forestland, as the key inspection object. Also find those with unfavorable to the forest larch caterpillar big happened, don't put it on monitoring point so that we can set priorities and rational use of manpower and material resources to avoid unnecessary waste. On the other hand, we also can be in forestry measures to prevent or reduce fluctuation kongfu larch caterpillar occurring conditions, in order to achieve the purpose of natural control. If appropriate closing hillsides to facilitate afforestation in human activities appropriate to keep largish crown density (such as crown density not less than 0.7) and retention of a certain number of hardwood etc.
     (5) artificially picking LuanKuai and pupa can effectively control larch caterpillar happen. Black lights and frequency vibration light traping moth effect compared, black lights is slightly better than frequency vibration lamp. Only after judging from prevention effect, black lights better than frequency vibration lamp, especially the lamp prevention outstandingly. Hanging nest box to control larch caterpillar obvious effect, can restrain the development of larch caterpillar population.
引文
[1]蔡帮华.中国落叶松毛虫研究现状.昆虫学集刊,1959,118-149.
    [2]李国英,任瑞艳,刘朝晖.根据立地类型划分判断松毛虫发生类型.辽宁林业科技,1997, (1):42-44.
    [3]刘宝忠,韩树文,管文臣等,冀北松毛虫越冬幼虫上树始见期预测模型研究.河北林业科技,2004,(2):13.
    [4]陈昌洁.松毛虫综合治理.中国林业出版社,北京.1990.
    [5] Rae A M, Robinson D M, Street N R, et al. Morphological and physiological straits influencing biomass productivity in short~rotation coppice poplar[J]. Can J For Res.2004, 34: 1488-1498.
    [6]周昌清,翁仲彦.松毛虫狭颊寄蝇实验种群生态学研究.应用生态学报,2004,15(l):103-107.
    [7]肖艳,常忠连.辽宁省松毛虫监测预报信息管理系统的研究.辽宁林业科技,2004,(3):13-15.
    [8]刘友樵.落叶松毛虫生活史的初步观察.昆虫学报,1957,30:251-260.
    [9]李红征,侯佩华,简国林等.松毛虫CPV、Bt.林间防治第一代马尾松毛虫试验初报.江西植保,2003,26(1):37-38.
    [10]刘宽余.落叶松毛虫种群动态预测预报及防治指标的研究.东北林业大学学报,1985,24-28.
    [11]查广林.采用文山松毛虫NPV、CPV病毒混合液对虫害进行控制的研究.林业调查规划,2003, 28(2):105-108.
    [12] Wyman J, Bruneau A, Tremblay M F. Microsatellite analysis of genetic diversity in four populations of Populus tremuloids in Quebec[J]. Can J Bot. 2003, 81:360-369.
    [13]赵秋雁,赵晓虹.苏云金杆菌对落叶松毛虫毒力测定.东北林业大学学报,1998,26(1):70-71.
    [14]柴守权,许国莲,邵登坤.文山松毛虫危害程度与发生范围预测预报研究.西南林学院学报,2003,23(l):59-61.
    [15]陈鹏,季梅,刘宏屏等.印糠素制剂防治松毛虫及松小蠢室内试验初报.云南林业科技,2003,(4):72-74.
    [16]梅丽娟,盛茂领,王国仁等. V-Bt-生物复合病毒杀虫剂防治松毛虫试验.森林病虫通讯,1998,(1):96-97.
    [17]孟庆繁,刘宽余,王庆喜.落叶松针叶的质量对落叶松毛虫影响的研究.吉林林学院学报,1995,11(4):217-220.
    [18]孟庆繁,逢增和,兴安落叶松林龄与耐害性关系的研究.东北林业大学学报,1995,23(5):46-50.
    [19]王志英,贾春生,孙守慧等.苏芸金杆菌杀虫剂对落叶松毛虫卵期寄生蜂的影响.东北林业大学学报,1996,24(4):51-55.
    [20]王志英,岳书奎,张玉楼等.落叶松毛虫天敌复合体.东北林业大学报,19%,24(4):87-90.
    [21] Pacala S W,Hurtt G C,Baker D,et al.Consistent land-and atmosphere-based US carbon sink estimates. Science .2001, 292, 2316~2320.
    [22] David A Wardle, Lawrence R Walker, Richard D Bardgett. Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences. Science . 2004,305: 509~514.
    [23]王庆贵.黑龙江省东部山区谷地云冷杉林衰退机理.哈尔滨:黑龙江人民出版社, 2006.
    [24] Vitousek,P.M. Beyond global warming: ecology and global change. Ecology . 1994.,75: 1861~1876.
    [25] Hodges DM, Forney CF. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot . 2000,51: 645~655.
    [26] Sergi Munné-Bosch, Josep Pe?uelas, Dolores Asensio, Joan Llusià. Airborne Ethylene May Alter Antioxidant Protection and Reduce Tolerance of Holm Oak to Heat and Drought Stress. Plant Physiology. 2004,136: 2937~2947.
    [27]赵士洞,延晓冬,杨思河等.东北森林对未来气候变化响应研究的几点新进展.生态学报, 1995, 15增刊B: 1~11.
    [28]陈育峰.自然植被对气候变化响应的研究:综述.地理科学进展, 1997, 16 (2) 70~77.
    [29] Ricardo Villalba, Thomas T Veblen. Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology . 1998,79: 2624~2640.
    [30] John Aber, Ronald P Neilson, Steve McNulty, James M Lenihan. Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. Bioscience .2001, 51: 735~751.
    [31] Munné-Bosch S, Alegre L. Drought-induced changes in the redox state ofα-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labtatae species differing in carnosic add contents. Plant Physiol.2003.131: 1816~1825.
    [32] Beniston, M. Climatic change in mountain regions: a review of possible impacts. Climatic change.2003,59: 5~31.
    [33] Bonello P., McNee W.R., Storer AJ., Wood D.L., Gordon, T.R. The role of olfactory stimuli in the location of weakened hosts by twig-infesting Pityophtlwrux spp. Ecological Entomology .2001,26: 8~15.
    [34] Gordon TR., Storer AJ., Wood, D.E. The pitch canker epidemic in California. Plant Disease. 2001,85: 1128~1139.
    [35]王晓春.中国东北亚高山林线对全球气候变化的响应. 2004.东北林业大学博士论文.
    [36] Nadir Erbilgin, Andrew J Storer, David L Wood, Thomas R Gordon. Colonization of cut branches of five coniferous hosts of the pitch canker fungus by Pityophthorus spp. (Coleoptera: Scolytidae) in central, coastal California. Canadian Entomologist.2005,137: 337~349.
    [37]高均凯.我国林业应对气候变化问题的基本定位及政策建议.吉林林业科技. 2005, 34 (3): 3~5.
    [38] Kellom-ki S and Kolstr-m M. Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions, Vegetation.1992,102: 47-68.
    [39] Leemans R. Modelling ecological and agricultural impacts of global change on a global scale, Journal of Scientific and Industrial Research.1992,51: 709-724.
    [40] Becker A., Bugman H. Global change and mountain regions. The Mountain Research Intiative, IGBP report.2001,49.
    [41] Theurillat J.P., Guisan A. Potential impact of climate change on vegetation in the European Alps: a review. Climatic change. 2001,50: 77~109.
    [42] Farge D.B., Peteson D.L., Hessl A.E. Taking the pulse of mountains: ecosystem response to climatic variability. Climatic change. 2003,59: 263~282.
    [43]蒋有绪.中国森林生态系统结构与功能规律研究.北京:中国林业出版社. 1996, 3~15.
    [44] Sedjo R A. The carbon cycle and global forest ecosystem. Water, Air and Soil Pollution .1993,70: 295~307.
    [45] Olson J S., Watts J A, Allison L. J. Carbon in live vegetation of major world ecosystems [R].US. Department of Energy. Oak Ridge/Tennessee: Oak Rigde National Laboratory. 1983. [46 ] Winjum J K, Dixon R K, Schroeder P E..Forest Management and carbon storage: an analysis of 12 key forest nations. Water, Air and Soil Pollution.1993,70: 239~257.
    [47]康惠宁,马钦彦,袁嘉祖. 1996.中国森林C汇功能基本估计.应用生态学报, 7(3):230~234.
    [48] Millennium Ecosystem Assessment. Ecosystem and Human Well-being: Synthesis. Washing D C:Islan Press,2005.
    [49]赵士洞. 2006.生态系统与人类福祉.地球科学进展,21(9):895~02.
    [50] Ajtay J M, Ketner P, Duvigneaud P. Terrestrial carbon storage from the last glacial maximum to the present. Nature .1979,348: 711~714.
    [51] Dixon R K, Tumer D P. The global carbon cycle and climate change: responses and feedbacks from belowground systems. Environmental pollution,1991,73: 245~262.
    [52] Post W P, Emanual W R, Zinke P J, Stangenberger A G. Nature .1982,298: 156~159.
    [53] Dixon R K, Tumer D P. The global carbon cycle and climate change: responses and feedbacks from belowground systems. Environmental pollution. 1991.73: 245~262.
    [54] Zhou, G.Y., et al. Old-growth forests can accumulate carbon in soil. Science .2006,314:1414.
    [55] Sampson,R.N. et al. Workshop summary: Terrestrial biospheric carbon flux- quatification of sink sources of CO2. Water, Air and Soil Pullution .1993,70:3~15.
    [56]方精云,朴世龙,赵淑清. CO2失汇与北半球高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594~602.
    [57] Houghton J.T et al. Climate change 2001: the scientific basis.Cambridge University Press, Cambridge, UK. 2001.
    [58] Fang J Y, Chen A P, Peng C H,et al. Changes in forest biomas carbon storage in China between 1949 and 1998. Science, 2001,292:2320~2322.
    [59] Hamilton, J. G. et al. Forest carbon balance under elevated CO2. Ecologia,.2002,131:250~60.
    [60] Pan G X,Li L,Wu L,et al. Storage and sequestration potential top soil organic carbon in China’s paddy soils.Glob Change Biol. 2003,10:79~92.
    [61] Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger SP, Cleveland C C, Green P A, Holland E A, Karl D M, Porter J H, Townsend A R. and Vorosmarty C J. Nitrogen cycles: past, present and future. Biogeochemistry .2004,70: 153-226.
    [62] Jiangming Mo, Wei Zhang, Weixing Zhu, Yunting Fang, Dejun Li, Ping Zhao. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China. Plant and Soil.2007,296 (1): 125-135.
    [63] Hua Fang, Jiangming Mo*, Shaolin Peng, Zhian Li, Hui Wang. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant and Soil. 2007,297(1): 233-242.
    [64]周幼吾,郭东信,邱国庆,程国栋,李树德.中国冻土.北京:科学出版社, 2000.
    [65] Aber, J.D. and A.H. Magill. Chronic Nitrogen Additions at the Harvard Forest: The First Fifteen Years of a Nitrogen Saturation Experiment. Forest Ecology and Management. 2004,196:1-6.
    [66] Magill, A.H., J.D. Aber, W. Currie, K.J. Nadelhoffer, M.E. Martin, W.H. McDowell, J.M. Melillo and P. Steudler. Ecosystem Response to 15 years of Chronic Nitrogen Additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management.2004,196:7-28.
    [67]蒋有绪.全球气候变化与中国森林的预测问题.林业科学,1992,28: 431~438.
    [68]张新时,周广胜,高琼,倪建,唐海萍.中国全球变化与陆地生态系统关系研究.地学前缘, 1997, 4(1)137~144.
    [69]方精云,刘国华.植物分布的生态学:历史回顾和最新进展.中国科学基金, 1998,12(专刊)48~51.
    [70]刘国华,傅伯杰.全球气候变化对森林生态系统的影响.自然资源学报, 2001, 16(1)71~78.
    [71]王庆贵.谷地云冷杉林对全球气候变化的响应.北京:科学出版社. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700