带压开采下底板渗流与应力耦合破坏突水机理及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着董家河煤矿开采深度的增加,开采环境日趋复杂,水压、地应力等不断增大,太原组下部煤层开采受到奥陶纪灰岩承压水的威胁将更加突出,如何有效预防和控制底板奥灰岩溶水害问题已变得十分迫切和重要。本文围绕带压开采条件下煤层底板突水的影响因素分析、采动支承压力和承压水压力数学模型的建立、流固耦合数值模型的建立、底板隔水层突水危险区域等级划分、底板注浆改造工程设计依据等科学问题,综合运用理论分析、数值模拟、现场测试及实验室试验等技术途径,对渗流与应力耦合作用下底板采动破坏特征及突水机理展开了全面系统的研究,并取得了如下成果:
     (1)在分析董家河煤矿工程地质、水文地质及以往突水资料的基础上,系统研究了影响董家河煤矿5号煤层底板突水的主要因素,即奥灰岩含水层水头高度、含水层富水性、底板隔水层岩性、岩层组合特征、地质构造以及矿山压力等,董家河煤矿5号煤层底板突水是这些因素共同作用的结果,在这些影响因素中,地质构造和奥灰水头高度是主导因素、奥灰岩的富水性以及底板隔水层的组合特性是客观因素、采动矿压是促进因素、工作面的倾斜长度及开采面积是工程主观因素。
     (2)应用煤体线性弹塑性软化模型,推导出煤壁前方支承压力表达式,采用半无限平面体受支承压力作用的弹性解分析得出煤层底板岩体应力分布状态,给出了充分采动前、后煤层底板岩体应力达到屈服时的塑性线,同时采用塑性滑移线场理论研究了底板采动破坏形态及破坏深度,并结合承压水压力对底板隔水层的影响,研究了承压水压力对底板隔水层的作用机理,分析了带压开采下底板采动应力耦合作用,从而形成了董家河煤矿5号煤层底板突水理论和技术的综合研究体系,所得出的理论分析方法为底板采动破坏现场实测研究打下了理论基础。
     (3)利用本文的理论分析方法,把理论与现场实测相结合,对董家河煤矿5号煤层底板岩体受采动影响的局部深度进行现场实测,得到了带压开采条件下煤层底板采动破坏深度,实现了用理论方法解决现场实测的关键性技术问题。
     (4)采用岩石损伤破裂过程渗流与应力耦合分析系统F-RFPA2D,建立了渗流场与应力场耦合作用下董家河煤矿5号煤层底板岩层结构数值模型,对底板采动应力与渗流影响进行数值模拟分析,揭示了煤层底板隔水层的采动破坏特征、应力分布及渗流特征,为深入研究董家河煤矿5号煤层底板突水规律提供了科学依据。
     (5)结合董家河煤矿实际水文地质条件,运用突水系数理论对董家河煤矿太原组5号煤层底板隔水层进行带压开采危险等级区域划分,并据此对底板岩层的隔水性能作出评价,预测未来开采条件下底板突水情况,最大限度地解放了董家河煤矿5号煤层受奥灰水害威胁的压煤储量达到5344.6万吨,提高了煤炭资源的回收率,创造了相当可观的经济效益,为董家河煤矿带压开采底板水害防治与控制奠定了基础。
     (6)通过本文的系统分析,将研究成果应用于董家河煤矿5号煤层22507工作面底板注浆加固改造工程中,采用流固耦合数值分析于底板水害防治技术实践,并结合模拟结果提出煤层底板注浆加固改造技术措施,实现了工作面安全回采,取得了巨大的经济效益和社会效益,为今后董家河煤矿乃至澄合矿区太原组下部5号煤层底板奥灰岩溶水害预测和预防提供了宝贵经验。
In resent years, with the increase of mining depth in the Dongjiahe coal mine, the miningenvironment is becoming more complex, the ground stress and water pressure are increasingconstantly, the coal mining under the threat of ordovician limestone water has beenoutstanding in the lower Taiyuan Formation, it is very imminent and important how toefficiently prevent and control water disaster problem of ordovician limestone karst. Thisthesis centres on the influenced factors that affected floor water irruption, establishment ofmathematical mechanical model coupling seepage field and stress field, establishment offluid-solid coupling numerical model, the distribution of mine karst water inrush danger zonefrom floor and design consideration of floor gronting reforming engineering. Throughcomprehensive use of theoretical analysis, numerical simulation, in-situ test and laboratorytesting, a systematic research were carried out about the influence of seepage and stresscoupling on mining failure features and water inrush mechanism of seam floor, and the mainwork is as follow:
     (1) On the base of engineering geological and hydrogeological and the previous inrushdata of Dongjiahe coal mine, the influenced factors that affected floor water irruption hasbeen studied systematically in No.5coal of Dongjiahe coal mine, including head pressure andthe water abundance of Ordovician limestone, floor aquifuge lithologic, rock assemblagecharacteristics, geological structure and ground pressure and so on. The reasons for floorwater invasion of No.5coal of Dongjiahe coal mine is founded on the interactive effect ofthese factors, Including dominant factors which includes geological structure and headpressure, the subjective factors which includes the water abundance and rock assemblagecharacteristics, the promotion factors which includes ground pressure, the subjective factorswhich includes the inclined length and mining area of the coal face.
     (2) According to the theory of elastic mechanics and face underground pressure theory,established the ideal linear elastic-plastic softening constitutive model of coal, expressions oflead abutment pressure ahead of the working face is derived, and combines with stressanalysis of semi-infinite plate body under vertical loads, it reveals basic characteristics ofstress distribution of the coal floor, also the yield line of stress over seam floors betweenpre-and post full mining are given by yield condition. At the same time, the mining failureform and floor-broken depth were given using the theory of slip line field. By above research,then enriches and consummates water inrush theory theory and technology of coal seam floor,it is laying a solid foundation for theoretical research on groundwater hazard preventiontechnique of No.5coal of Dongjiahe coal mine.
     (3) By using the method of theoretical analysis, the paper is the mutual combination oftheoretical study and site measurement, based on field test research of mining distortion andfailure character of coal seam floor, the evolutional regularity of mining destruction and themaximal failure depth for No.5coal of Dongjiahe coal mine have been basically grasped, thekey technological problems of field measurement is realized by theoretical method.
     (4) By using of the software of the coupling system of flow and solid in rock failureprocess anslysis(F-RFPA2D), the bottom board structure for No.5coal of Dongjiahe coal mineis established based on coupling of seepage field and stress field, the numerical simulationwas conducted for the influence of mining and seepage, the change law of mining failurefeatures and percolation characteristics of seam floor aquifuge and is revealed, which providesthe scientific basis that will be helpful to the further study for floor faultage's water regularitymining on the top of water pressured.
     (5) Combined with actual hydrogeologic conditions, the destruction depth of floormining that is consideredwhether or not are analyzed and the danger zones of water inrushfrom floor aquifuge of No.5coal of Dongjiahe coal mine are predicted using the way of waterbursting coefficient, and then the water resisting property of the floor stratais also evaluated,and predicting water inrushes situation of the floor under the circumstances of coal mining infuture, In order to liberation coal reserves of the ordovician limestone water disaster threatfurthest in No.5coal of Dongjiahe coal mine, these coal reserves of5344.6million tons isattained, its result improves the recovery rate of Dongjiahe coal mine resources, and createsthe considerable economic efficiency. This study laid a foundation for coal mine water hazardprotection and control of Dongjiahe coal mine.
     (6) Through the systematic researching from the article, and applying researches allabove to the grouting reinforcement project of floor aquifer in No.22507working face of No.5coal in Dongjiahe coal mine, the fluid-solid coupling numerical analysis method is usedfor water disaster control practice, and grouting reinforcement strengthening and rebuildingtechnical method based on simulated output was put forward, safety mining of No.22507coalmining face has been realized at present, which have achieved enormous economic benefitsand social benefits. These research results have provided the reference experience that will behelpful to the further prediction and prevention for floor water disaster of ordovician karstmining on the top of water pressured in Dongjiahe coal mine and even all over Chen-he coalmine area.
引文
[1]王作宇,刘鸿泉.承压水上采煤[M].煤炭工业出版杜,1993.
    [2]谭志祥.断层突水的力学机制浅析[J].矿业安全与环保,1999,(3):21~23.
    [3]施龙青,韩进.底板突水机理及预测预报[M].中国矿业大学出出版社,2004.
    [4]赵全福.中国煤矿防治水技术经验汇编[M].北京:煤炭工业出版社,1998.
    [5]Brace, Matthew. Predicting coal mine water[M].Australian Mining,2006Reed BusinessPublishing Pty.Ltd.
    [6]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.
    [7]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1992.
    [8]中国统配煤矿总公司生产局.煤炭科技情报研究所.煤矿水害事故典型案例题汇编,1992.1.
    [9]Zhang Jin-cai. Investigations of water inrushes from aquifers under coal seams[J].International Journal of Rock Mechanics and Mining Sciences,2005,42,(3):350~360.
    [10]Zheng Yong-guo,Wang Ping, Ting He. The exploration and prevention of mine waterinvasion in Feicheng area based on RS[J]. Proceedings of SPIE-The International Societyfor Optical Engineering, v5568, Remote Sensing for Agriculture, Ecosystems, andHydrology VI,2004:197~204.
    [11]煤炭工业部煤炭科学研究总院西安分院.华北型煤田奥灰岩溶水煤矿床带压安全开采配套技术(之三),1995.10.
    [12]煤炭部生产协同.国有重点煤矿井田内受小煤矿开采影响安全生产情况的调查,1995.
    [13]陕西省煤炭厅,开滦矿务局,焦作矿务局等.国家工业性试验项目:华北型煤田奥灰岩溶水综合防治工业性试验,1991.
    [14]沈光寒,李白英,吴戈.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.
    [15]许学汉.煤矿突水预测预报研究[M].北京:地质出版社,1992.
    [16]宋景义,王成绪等.论承压水在岩体裂隙中的静力学效应,煤科总院西安分院文集(第五集),1991.
    [17]荆自刚.峰峰二矿开采活动与底板突水关系研究[J].煤炭学报,1984,No.4.
    [18]B.斯列萨列夫.水体下安全采煤的条件,国外矿山防治水技术的发展与实践,冶金矿设计院,1983.
    [19]黎良杰.采场底板突水机理的研究[D].中国矿业大学博士学位论文,1995.
    [20]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.
    [21]靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术,2002,(30):1~4.
    [22]阎海珠.利用突水系数指导带压开采的实践[J].河北煤炭,1998年第4期:28~30.
    [23]王希良,彭苏萍,郑世书.深部煤层开采高承压水突水预报及控制[J].辽宁工程技术大学学报,2004,23(6):758~760.
    [24]高延法,于永辛,牛学良.水压在底板突水中的力学作用[J].煤田地质与勘探,1996,24(6):37~39.
    [25]李家祥,李大普,张文泉等.原始地应力与煤层底板突水的关系[J].岩石力学与工程学报1999,18(4):419~423.
    [26]韩爱民,白玉华,孙家齐.断层透水性工程地质评价[J].南京建筑工程学院学报,2002,(1):21~25.
    [27]于喜东.地质构造与煤层底板突水[J].煤炭工程2004年第12期,34~35.
    [28]刘蕴祥,陈祥恩,张胜利.永城矿区煤层底板裂隙灰岩突水机理[J].煤田地质与勘探,2002,30(3):45~46.
    [29]白海波,陈忠胜,张景钟.徐州矿区奥灰岩溶水突出的原因与防治[J].煤田地质与勘探,2006,27(3):47~49.
    [30]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,18(4):11~18.
    [31]凌良辅.以“下三带”理论对开采受承压水威胁煤层的探讨[J].科技情报开发与经济,2003,13(10):192~193.
    [32]张渊.开采矿压对底板的损伤破坏及其对突水的诱发作用[J].太原理工大学学报,2002,33(3):252~256.
    [33]施龙青,宋振骇.采场底板突水条件及位置分析[J].煤田地质与勘探,1999,27(5):49~52.
    [34]施龙青,尹增德,刘永法.煤矿底板损伤突水模型[J].焦作工学院报,1998,17(6):403~405.
    [35] Shuancheng Gu, Ang Li. Theoretical analysis and Numerical Simulation Study on failuredepth of coal seams floor caused by mining under pressure[A].2011InternationalConference on Multimedia Technology, ICMT2011.1367~1373.
    [36]靳德武,王延福,马培智.煤层底板突水的动力学分析[J].西安矿业学院学报,1997,17(4):354~356.
    [37]Shi Long-qing,Han Jin. Theory and practice of dividing coal mining area floor intofour-zone[J]. Journal of China University of Mining and Technology,2005,34(1):16~23.
    [38]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40~48.
    [39]姜耀东;吕玉凯;赵毅鑫;张党育.承压水上开采工作面底板破坏规律相似模拟试验[J].岩石力学与工程学报,2011,30(8):1571~1578.
    [40]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [41]王吉松,关英斌.煤层底板突水研究的理论和方法[J].煤炭技术,2006,25(1):113~115.
    [42]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,17(6):56~61.
    [43]Xu Jia-lin, Qian Ming-gao. Study and application of mining-induced fracture distributionin green mining[J].Journal of China University of Mining and Technology,2004,33(2):141~144.
    [44]王壹,杨伟峰,李明,刘曦.采动断层活化引发突水机理研究[J].煤炭工程,2011,8:90~92.
    [45]黎良杰.采场底板突水机理的研究[D].中国矿业大学博士学位论文,1995.
    [46]王延福,靳德武,曾艳京,王晓明.岩溶矿井煤层底板突水系统的非线性特征初步分析[J].中国岩溶,1998,17(4):331~341.
    [47]周辉,翟德元,王泳嘉.薄隔水层井筒底板突水的突变模型[J].中国安全科学学报,1999,9(3):44~58.
    [48]潘岳,李爱武.对“动力扰动诱发承压底板关键层失稳的突变理论研究”的讨论[J].岩土力学,2011,32(7):2231~2235.
    [49]左宇军,李术才,秦泗凤,李利平.对隔水底板破断突水机制的突变理论分析的认识-兼对潘岳教授等提问的答复[J].岩土力学,2011,32(7):2236~2239.
    [50]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2002,21(l):59~61.
    [51]王连国,宋扬.底板突水煤层的突变学特征[J].中国安全科学学报,1999,9(5):10~21.
    [52]王连国,宋扬,缪协兴.底板岩层变形破坏过程中混沌性态的Lyap-指数描述[J].岩土工程学报,2002,24(3):356~359.
    [53]郑德志,杨滨滨.煤层底板突水危险性综合评价[J].煤矿安全,2012,42(2):132~135.
    [54]武强,庞炜,戴迎春等.煤层底板突水脆弱性评价的GIS与ANN耦合技术[J].煤炭学报,2006,31(3):314~319.
    [55]廖巍,周荣义,李树清.基于小波神经网络的煤层底板突水非线性预测方法研究[J].2006,16(11):24~28.
    [56]靳德武,陈健鹏,王延福等.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214~216.
    [57]黄莲莲,张正培,陈琛.煤层底板导水破坏深度的灰色BP神经网络预算模型[J].露天采矿技术,2011,2:6~8.
    [58]王连国,宋扬.煤层底板突水组合人工神经网络预测[J].岩土工程学报,2001,23(4):502~505.
    [59]姜成志,张绍兵.建立在神经网络基础上的煤矿突水预测模型[J].黑龙江科技学院学报,2006,16(1):8~11.
    [60]施龙青,韩进,宋扬.用突水概率指数法预测采场底板突水[J].中国矿业大学学报,1999,28(5):442~460.
    [61]冯利军,李竞生等.具有线性功能函数的神经元在矿井水质类型识别中的应用[J].煤田地质与勘探,2002(04):21~24.
    [62]王广才,李竞生等.平顶山矿区矿井突(涌)水水源判别模式[J].煤田地质与勘探,1998(03):58~63.
    [63]王成绪.研究底板突水的结构力学方法[J].煤田地质与勘探,1997,25:48~49.
    [64]施龙青.采场底板突水力学分析[J].煤田地质与勘探,1998,26(5):36~38.
    [65]张文志,李兴高.底板破坏型突水的力学模型[J].矿山压力与顶板管理,2001,4:100~101.
    [66]Fawcett.R.J., Hibberd.S., Singh.R.N. Analytic Calculations Of Hydraulic ConductivitiesAbove Longwall Coal Faces[J].International Journal of Mine Water,1986,5(1):45~60.
    [67]Hatzor,Y,H, Talesnick M, Tsesarsky M. Continuous and discontinuous stability analysis ofthe bell~shaped caverns at Bet Guvrin,Israel[J].Int J Rock Mech Min Sci,2002,39(7):867~886.
    [68]张西民,马培智.采煤工作面顶板来压和底板突水关系的数值模拟[J].煤田地质与勘探,1998,26(增刊):33~35.
    [69]刘红元,唐春安.承压水底板失稳过程的数值模拟[J].煤矿开采,2001,42:50~51.
    [70]冯启言,杨天鸿,于庆磊等.基于渗流-损伤耦合分析的煤层底板突水过程的数值模拟[J].安全与环境学报,2000,6(3):1~4.
    [71]Yang,T.H, Liu,J., Zhu,W.C., Elsworth,D, Tham,L.G., Tang,C.A. A coupled flow-stress-damage model for ground water outbursts from an underlying aquifer into miningexcavations[J]. International Journal of Rock Mechanics and MiningSciences,2007,44(1):87~97.
    [72]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(4):421~424.
    [73]吕春峰,王芝银,李云鹏.含裂隙煤层底板突水规律的数值模拟与工程应用[J].岩土力学,2003,24增刊:112~116.
    [74]吴双宏,张渊.带压开采底板突水破坏的数值实验[J].资源环境与工程,2006,20(3):244~247.
    [75]武强,刘金韬,钟亚平等.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报,2002,27(5):511~516.
    [76]Cundall,P.A. Numerical modelling of jointed and faulted rock[A].Mechanics of jointedand faulted rock[C].Rotterdam:A.A.Balke ma,1990,11~18.
    [77]Cundall,P.A. Shear band Initiation and evolution in frictional materials[A].MechanicsComputing in1990s and Beyond[C].New York:AS ME,1991,1279~1289.
    [78]尹尚先,武强.陷落柱概化模式及突水力学判据[J].北京科技大学学报,2006,28(9):812~817.
    [79]尹尚先,武强,王尚旭.范各庄矿井地下水系统广义多重介质渗流模型[J].岩石力学与工程学报,2004,23(14):2319~2325.
    [80]尹尚先,王尚旭.陷落柱影响采场围岩破坏和底板突水的数值模拟分析[J].煤炭学报,2003,28(3):264~269.
    [81]Snow,D.T.Rock fracture specings,openings,and porosities[J].J.Soil Mech.Found.Div.Proc.,1968,94.
    [82]Louis,C. Groundwater flow in rock masses and its influence on stability[R].RockMech.Res. Report10,London:Imperial College,1969.
    [83]T,Sang.Y.W., Tsang,C.F. Channel model of flow through fracture media[J].WaterResources Research,1987,23(3):467-479.
    [84]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.
    [85]Oda,M. An equivalent continuum model for coupled stress and fluid flow analysis injointed rock masses[J].Water Resources Research,1986,(13):1854~1865.
    [86]B.H.G布雷迪,ET.布朗.地下采矿岩石力学[M].煤炭工业出版社,1990.
    [87]山东矿业学院,开滦矿务局,开滦矿务局赵各庄矿.改革采煤方法和开采工艺预防突水灾害的研究,1991.
    [88]高航,孙振鹏.煤层底板采动影响的研究[J].山东矿业学院学报,1987(2).
    [89]刘宗才.煤层底板破坏深度的综合测试方法[J].山东矿业学院学报,1986(4)P31~37.
    [90]任德惠等.开采煤层底板应力的有限元分析[J].煤炭科学技术,1989(1).
    [91]薛世峰,仝兴华,岳伯谦,董波,宋惠珍.地下流固耦合理论的研究进展及应用[J].石油大学学报,2000,24(2):109~114.
    [92]Terzaghi,K. Theoretical Soil Mechanics[M].New York: Tiho Wiley,1943.
    [93]L,Jing. A Review of Techniques, Advances and Out-standing Issues in NumericalModeling for Rock Mechanics and Rock Engineering, Imitational Journal of RockMechanics&Mining Sciences,2003,(40):283~353..
    [94]R.W Zimmerman. Coupling in Poroelasticity and Thermoelasticity[J].InternationalJournal of Rock Mechanics&Mining Sciences,2000,37(1):79~87.
    [95]李培超,李贤桂,卢德唐.饱和土体一维固结理论的修正-饱和多孔介质流固耦合渗流模型之应用[J].中国科学技术大学学报,2010,40(12):1273~1278.
    [96]Snow,D.T. A Parallel Plates model of fractured Permeable media, PHD Thesis, Universityof California,Berkeley,1966.
    [97]Biot,M.A. Gernaral theory of three-dimensional consolidation[J].Appl. Phys,1941,12:155~164.
    [98]陈平,张有天.裂隙岩体渗流与应力耦合分析[J],岩石力学与工程学报,1994,13(4):299~308.
    [99]周创兵.裂隙岩体渗流场与应力场耦合分析研究[D].武汉:武汉水利大学,1995.
    [100]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338~344.
    [101]陈胜宏等.节理面渗流特性的讨论[J].武汉水利电力学院学报,1989,22(1):53~60.
    [102]段小宁,李继初,刘继山等.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J],大连理工大学学报,1992,32(6):712~717.
    [103]赵阳升.矿山岩体流体力学[M].北京:煤炭工业出版社,1994.
    [104]王芝银,李云鹏.地下工程反分析法及程序[M].西安:陕西科学技术出版社,1993.
    [105]李玉林,李竞生等.有限变形应变与裂隙网络渗透系数耦合模型[J].煤田地质与勘探,1999(02).
    [106]李利平,李术才,石少帅,周宗青,郭明,王庆瀚.岩体突水通道形成过程中应力-渗流-损伤多场耦合机制[J].采矿与安全工程学报,2012,29(2):232~237..
    [107]仵彦卿,张悼元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [108]王媛.裂隙岩体渗流及其与应力的全耦合分析[D].河海大学博士学位论文,1995.
    [109]胡峰华,鞠远江.煤矿底板软硬相间岩层突水的流固耦合分析[J].煤矿安全,2011,6:15~18.
    [110]张国玉,田晶莹,孙玉杰,王海超.裂隙岩体渗流应力耦合机制研究[J].工业建筑,2011,41(15):115~119.
    [111]耿克勤,吴永平.拱坝和坝肩岩体的力学和渗流的耦合分析实例[J].岩石力学与工程学报,1997,16(2):125~131.
    [112]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26~30.
    [113]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489~493.
    [114]盛金昌,许孝臣,姚德生,詹美礼,速宝玉.流固化学耦合作用下裂隙岩体渗透特性研究进展[J].岩土工程学报,2011,33(7):996~1006.
    [115]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156~159.
    [116]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(1):17~26.
    [117]徐曾和,徐小荷.论矿业工程中的流固耦合渗流问题[J].中国矿业,1996,15(3):53~60.
    [118]梁冰,孙可明,薛强.地下工程中的流固耦合问题的探讨[J].辽宁工程技术大学学报2001,20(2):129~134.
    [119]任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报,2004,37(2):8~12.
    [120]刘建军,薛强.岩土工程中的若干流固耦合问题[J].岩土工程界,2004,7(11):27~30.
    [121]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.6.
    [122]童立元,刘松玉,邱钰,方磊.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004,23(3):1198~1202.
    [123]Majkuth,T., Szabadvary, L., Szabo, N, Vegh,S. Possibilities of Geophysical Methods InProtecting Mines Against Water Inrush[J].Organ By Hung Min And Metall Soc,Budapest And Cent Inst For Min Dev Of Hung,1982:113~125.
    [124]胡耀青,杨栋,赵阳升等.矿区突水监控理论及模型[J].煤炭学报,2000,25,增刊:130~133.
    [125]江东,王建华,陈佩佩等.基于GIS的煤矿底板突水预测模型的构建与应用[J].中国地质灾害与防治学报,1999,(10):67~72.
    [126]高卫东,渠立权.基于GIS的煤层底板突水预测[J].测绘通报,2003,12:45~47.
    [127]汪宏志,胡宝林,徐德金.基于GIS技术的煤层底板突水危险性综合评价[J].煤炭科学技术,2008,36(10):82~85.
    [128]Liu Wei-tao. Evaluation methods on safety of mine floor water inrush; Wu, Qiang; Gu,Jingmei; Chen,Xia. Progress in Safety Science and Technology Volume4:Proceedingsof the2004International Symposium on Safety Science and Technology, Part A, Progressin Safety Science and Technology,2004:973~978.
    [129]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.6.
    [130]高延法,沈光寒.底板突水类型的划分与统计[J].山东矿业学院学报,1995,14(12).
    [131]郭全龙.影响潘西矿19号煤层底板突水主要因素分析[J]山东省煤矿防治水技术研讨会,2008:335~342.
    [132]胡茂流.朱庄煤矿六煤层底板突水防治技术的研究[D].安徽:安徽理工大学,2005.
    [133]冯梅梅.带压开采煤层底板阻隔水性能的力学分析及应用研究[D].徐州:中国矿业大学,2007.
    [134]牛建立.煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D].西安:煤科总院西安研究院,2008.
    [135]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].山东:山东科技大学,2004.
    [136]李子林.大采深条件下徐_奥灰突水机理及防治技术研究[D].山东:山东科技大学,2007.
    [137]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J].煤田地质与勘探,2003,(3):31~33.
    [138]刘传武,张明,赵武升.用声波测试技术确定煤层开采后底板破坏深度[J].煤炭科技,2005,(3):4~5.
    [139]吴立新,王金庄,孟顺利.煤岩损伤扩展规律的即时压缩SEM研究[J].岩石力学与工程学报,1998,17(1):9~15.
    [140]杨永杰,郭惟嘉,陈绍杰.煤岩强度及变形特征的三轴压缩实验[J].北京科技大学学报,2004,26:189~191.
    [141]朱术云.“三软”厚煤层底板采动变形特征及其机理研究[D].北京:中国矿业大学,2007.
    [142]Whittaker.B.N. An appraisal of strata control practice [J]. Mining Engineer,1974.
    [143]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1993.
    [144]施龙青.薄隔水层底板突水机理及预测预报研究[D].山东:山东矿业学院,1995.
    [145]蒋玉川,李章政.弹性力学与有限元法简明教程[M].北京:化学工业出版社,2010.08.
    [146]孟祥瑞,徐铖辉,高召宁,王向前.采场底板应力分布及破坏机理[J].煤炭学报,2010,35(11):1832~1836.
    [147]徐学燕.高等土力学[M].哈尔滨:哈尔滨工业大学出版社,2008.09.
    [148]朱泽虎.高承压含水层上采煤突水机制及水害防治方法研究[D].北京:煤炭科学研究总院,1994.
    [149]郑颖人,孔亮.岩土弹塑性力学[M].上海:中国建筑工业出版社,2010.03.
    [150]沈光寒等.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.05.
    [151]刘伟韬.煤层底板断裂滞后突水机理及数值仿真研究[D].北京:中国矿业大学,2005.
    [152]唐春安.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [153]杨天鸿,唐春安,徐涛,芮勇勤.岩石破裂过程的渗流特性理论、模型与应用[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700