超声波辅助酶解谷朊粉制备抗氧化肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究了碱性蛋白酶酶解谷朊粉,以提高酶解产物的抗氧化能力作为最终目标,使用超声波作为酶解辅助手段,考察了超声波功率、频率、酶解时间对酶解产物抗氧化活性的影响,通过单因素和正交试验筛选出最佳工艺参数为:超声波功率(400w),低频(25kHz)、酶解时间30min。在最佳酶解条件下(温度50℃,pH9.0),亚铁离子螯合能力IC50值为0.513mg/mL,当蛋白质含量为2.4mg/mL时,酶解产物的还原能力为0.385,ABTS自由基清除能力相当于1.40mmol/L Trolox,且对亚油酸自动氧化抑制效果显著(P<0.05)。
     研究了超滤处理方式富集酶解产物中的抗氧化组分的效果,结果表明:分子量在5kDa以下的组分抗氧化能力最强,当浓度为0.2和0.4mg/mL时,亚铁离子螯合能力是超滤前样品的2倍左右;对亚油酸自氧化的抑制能力在36h后比其它分子量片段的组分效果明显;而当浓度为2.4mg/mL时,TEAC值达到1.45mmol/L Trolox;并且由高效液相色谱法对其相对分子质量进行分析发现,分子量在2kDa以下的组分含量占了90.81%,推测抗氧化肽主要集中在2kDa以下。
     检测分析了谷朊粉酶解产物(WGH)及5kDa超滤膜超滤样(WGHU-5)对D-半乳糖诱导衰老模型小鼠抗氧化能力的影响,结果表明:四组实验组都可以提高D-半乳糖致衰老模型中小鼠血浆、心脏、脑、肝脏和肾组织的SOD(超氧化物歧化酶)、T-AOC(总抗氧化能力)、GSH-PX(谷胱甘肽过氧化物酶)的活性,而降低其体内MDA(丙二醛)含量,WGHU-5高剂量组效果最为显著(P<0.01),说明WGH具有明显的防衰老抗氧化作用。
     采用DA201-C型大孔吸附树脂对谷朊粉抗氧化肽进行分级筛选。静态吸附实验发现大孔吸附树脂对谷朊粉抗氧化肽吸附很快,在30min时基本达到吸附平衡,75%乙醇静态解吸率在30min时可以达到70%。动态洗脱中,采用乙醇梯度洗脱效果良好,可以将谷朊粉抗氧化肽很好的分级分离,乙醇梯度洗脱组各组分的抗氧化能力随着疏水性的增加先增加后减小。75%乙醇洗脱组分的抗氧化能力最高,在蛋白质浓度为0.4mg/mL时,亚铁离子螯合能力达到84.13%,TEAC值为0.36mmol/L Trolox,除盐率达到93.56%。。
     采用质谱分析了产物中两个主要组分的相对相对分子质量为951和1349Da。MALDI-TOF-TOF MS结合串联质谱仪(TOF MS/MS)的方法得出:951Da肽段的一级序列为Ser-Arg-Tyr-Asp-Ala-Ile-Arg-Ala(简称为SRYDAIRA);1349Da肽段的一级序列为Tyr-Pro-Leu-Glu-Ala-Ala-Gly-Asp-Thr-Lys-Arg-Glu(简称为YPLEAAGDTKRE)。
Wheat gluten was hydrolyzed by Alcalase 2.4L under ultrasound. Different antioxidant assays in vitro were employed to evaluate the antioxidant activities of the wheat gluten hydrolysate (WGH) obtained. The best ultrasonic parameters were the maximum ultrasonic power (400w) and low-frequency (25kHz) under the conditions of hydrolysis 30min. Under optimal conditions (temperature 50℃, pH9.0), WGHL (WGH which was obtained by low frequency ultrasound) exhibited the strongest antioxidant activities, with an IC50 value of 0.513mg/mL for ferrous iron-chelating activity, as well as a high and dose-dependent reducing power. In the linoleic acid system, a longer induction time indicated a significant decrease of lipid peroxidation. In addition, WGH also exhibited notable ABTS radical scavenging activity.
     Then, the results of ultrafiltration showed that WGHU-5 (WGH with the molecular weight below 5kDa) possessed the highest antioxidant activity. When the concentration of 0.2-0.4 mg/mL, the ferrous ion chelating activity of WGHU-5 was twice as much as WGH. The oxidation of linoleic acid was significantly inhibited by the addition of WGH (P<0.05) after 36h than WGH. When the concentration of 4mg/mL, TEAC value reached 1.45mmol/L Trolox. And the high-performance liquid chromatography analysis of its molecular weight revealed that the fractions below 2kDa accounted for the majority. It can be conjectured that antioxidant peptides fractions were concentrated in 2kDa. In order to investigate the effect of WGH and WGHU-5 on D-galactose induced aging model mice. The mouse were divided into normal control group, D-galactose model group, WGH low dose group, WGH high dose group, WGHU-5 low dose group and WGHU-5 high dose group. The results show that high-dose group WGHU-5 can significantly improve SOD, T-AOC, GSH- PX activity (P<0.01) of plasma, heart, brain, liver and kidney tissue, but reduce the MDA (MDA) content. It indicated that wheat gluten hydrolysates had obvious antioxidant effect.
     In order to get better quality products, the antioxidant peptide was fractionated by ethanol elution from a macroporous adsorption resin (DA201-C). It was found that adsorption reach equilibrium in 30min, and static desorption rate can reach 70% in 30min using the basic 75% ethanol. WGH can be well separated by using gradient elution ethanol. The basic inorganic salt ions are washed out at the end of elution. The antioxidant capacity of each component increased with the hydrophobicity and then decreased. 75% ethanol fractions exhibited the highest antioxidant activity, at a concentration of 0.4mg/mL, the ferrous ion chelating activity was 84.13%, TEAC value of 0.36mmol/L Trolox,and desalination rate reached 93.56%.
     The fraction was then identified by MALDI-TOF-TOF MS/MS. Their molecular weights were 951Da and 1349Da respectively. The amino acid sequences were Ser-Arg-Tyr-Asp-Ala-Ile-Arg-Ala(SRYDAIRA) and Tyr-Pro-Leu-Glu-Ala-Ala-Gly-Asp-Thr-Lys- Arg-Glu(YPLEAAGDTKRE).
引文
1.孔祥珍.小麦面筋蛋白酶解物的制备、功能性质及其阿片活性的研究[D]:[博士学位论文].无锡:江南大学,2008,6.
    2.王怡然.超声促酶解面筋蛋白/多糖接枝物结构及功能性的研究[D]:[硕士学位论文].广州:华南理工大学,2008,5.
    3. Wang J S,Zhao M M,Yang XQ,et al.Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration.Journal of Cereal Science,2006,44,93-100.
    4.刘振家.小麦胚芽抗氧化肽的制备以及富集研究[D]:[硕士学位论文].无锡:江南大学,2009,7.
    5.周徐慧.汉麻籽蛋白抗氧化肽的制备及其活性研究[D]:[硕士学位论文].无锡:江南大学,2008,8.
    6.李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化肽的研究[D]:[博士学位论文].无锡:江南大学,2008,3.
    7.丁红军.芝麻抗氧化肽的分离纯化与生物活性研究[D]:[硕士学位论文].西安:陕西师范大学,2008,6.
    8.何婷.蓝园鲹蛋白控制酶解及酶解物抗氧化特性研究[D]:[硕士学位论文].广州:华南理工大学,2008,5.
    9.殷微微.麦胚蛋白提取及其酶解产物抗氧化活性研究[D]:[硕士学位论文].哈尔滨:东北农业大学,2008,4.
    10. Zioudrou, C,Streaty, R A,Klee, W A.Opioid peptides derived from food proteins.The exorphins. J Biol Chem.,1979,254(7):2446-2449.
    11. Fukudome, S,Yoshikawa, M.Opioid peptides derived from wheat gluten: their isolation and characterization.FEBS Lett.,1992,296(1):107-11
    12. Fukudome, S,Yoshikawa, M.Gluten exorphin C. A novel opioid peptide derived from wheat gluten.FEBS-Letters,1993,316(1):17-19.
    13. Fukudome, S,Jinsmaa, Y.,et al.Release of opioid peptides,gluten exorphins by the action of pancreatic elastase.FEBS Letters,1997,412:475-479.
    14.田河山.饲料蛋白质体外胃蛋白酶酶解产物中阿片样活性的测定[J].南京农业大学学报,2002,25(1):117-118.
    15.吕艳.酶解小麦蛋白制取谷氨酰胺活性肽的研究[D]:[硕士学位论文].杭州:浙江大学,2005,5.
    16. Tanabe, S,Watanabe, M,Arai, S.Production of a high-glutamine oligopeptide fraction from gluten by enzymatic treatment and evaluation of its nutritional effect on the small intestine of rats.J. Food Biochem.,1993,16:235-248.
    17. Saiga, A,Kanda, K,Wei, Z,et al.Hypotensive activity of muscle protein and gluten hydrolysates obtained by protease treatment.J. Food Biochem.,2002,391-401.
    18.蒲首丞,王金水,王亚平.响应面法对酶水解谷朊粉制备生物活性肽的优化研究[J].粮食与饲料工业,2005,5:23-24.
    19.刘立芳,徐怀德,王青林.中性蛋白酶酶解谷朊粉制备抗氧化多肽研究[J].西北农业学报,2008,17(6):281-285.
    20.王金水,赵某明,蒲首丞.胰蛋白酶水解谷朊粉的酶解产物抗氧化性研究[J].食品工业科技,2005,10(26):93-96.
    21. Suetsuna, K. and Chen, J.R.Isolation and characterization of peptides with antioxidant activity derived from wheat gluten.Food Science and Technology Research,2002,8(3):227-230.
    22.孙月梅.大豆抗氧化肽酶法制备及其活性保护技术研究[D]:[硕士学位论文].哈尔滨:东北农业大学,2008,6.
    23.谢正军,金征宇,徐学明等.苜蓿叶蛋白及其酶解物抗氧化活性的比较[J].食品与生物技术学报,2009,28(5):627-631.
    24.李珂,卜尔红,杨秀华等.骨蛋白酶解物的抗氧化作用[J].食品与生物技术学报,28(6):773-776.
    25.孔祥珍,周惠明,王洪燕.碱性蛋白酶水解小麦面筋蛋白的研究[J].食品工技.2009,9:104-105.
    26. Zhu K X,Zhou H M,Qian H F.Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry,2006,41,1296-1302.
    27. Ferreira I C F R,Baptista P,Vilas-Boas M,et al.Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity.Food Chemistry,2007,100,1511-1516.
    28. Wu H C,Chen H M,Shiau C Y.Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus).Food Research International,2003,36,949-957.
    29. Re R,Pellegrini N,Proteggente A,et al.Antioxidant activity applying an improved ABTSradical cation decolorization assay.Free Radical Biology & Medicine,1999,26,1231-1237.
    30.梁金钟,孙莉洁,李松松.MAR和GPC方法分离纯化大豆活性肽的研究[J].食品工业科技,2009,30(06):201~205.
    31.任建东.酶解鹿茸血疏水性肽的分离及活性研究[D]:[硕士学位论文].无锡:江南大学,2008,5.
    32.张亚飞,乐国伟,施用晖等.小麦蛋白Alcalase水解物免疫活性肽的研究[J].食品与机械,2006,22(3):44-47.
    33.安志丛.预处理对小麦面筋蛋白功能性质及酶解特性的影响研究[D]:[硕士学位论文].无锡:江南大学,2009,7.
    34.赵伟睿,马海乐,贾俊强,李云亮,杨会丽.超声波对麦胚蛋白性质及其酶解物ACE抑制活性的影响[J].食品与生物技术学报,2010,29(2):177-181.
    35.朱少娟,施用晖,乐国伟.超声波对胰蛋白酶水解酪蛋白的影响[J].食品与生物技术学报,2005,24(2):50-54.
    36.崔凤杰,闫桂强,黄达明等.酶法降解小麦面筋蛋白制备抗氧化产物的研究[J].食品研究与开发.2007,28(11):83.
    37. Isabel C F R F,Paula B,Miguel V B,et al.Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity[J].Food Chemistry,2007,100:1514.
    38.吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D]:[博士学位论文].广州:华南理工大学,2003,5.
    39. Chanput W,Theerakulkait C,Nakai, S.Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates.Journal of Cereal Science,2009,49,422-428.
    40.郭晓娜,崔颖,张晖,姚惠源.苦荞麦蛋白酶解产物的抗氧化活性研究[J].粮食与饲料工业,2009,7:18-20.
    41.朱丽娟.玉米蛋白水解物体外消化产物的抗氧化及ACE抑制活性研究[D]:[硕士学位论文].无锡:江南大学,2008,6.
    42.黄国平.玉米醇溶蛋白的超声波提取、改性与释药性能的研究[D]:[博士学位论文].华南理工大学食品科学,2004,6.
    43.段振华,汪菊兰,王美蓉.超声波辅助制备鱼鳔寡肽的研究[J].中国食物与营养,2008,6:27-29.
    44. Wang J S,Zhao M M,Zhao Q Z,et al.Antioxidant properties of papain hydrolysates ofwheat gluten in different oxidation systems.Food Chemistry,2007,101:1658-1663.
    45.任海伟,王常青.超滤法分离黑豆抗氧化活性肽[J].食品科学,2009,30(12):123-126.
    46. Gao D D,Cao Y S,Li H X,2010.Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate.Journal of the science of food and agriculture,90,1855-1860.
    47. Moure, A,Dominguez, H,Parajo,J C.Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates.Process Biochemistry,2006,41:447–456.
    48. Mamelona, J,Saint-Louis, R,Pelletier,é.Nutritional composition and antioxidant properties of protein hydrolysates prepared from echinoderm byproducts.International Journal of Food Science and Technology,2010,45:147–154.
    49. Raghavan, S,Kristinsson, H G..Antioxidative Efficacy of Alkali-Treated Tilapia Protein Hydrolysates:A Comparative Study of Five Enzymes.Journal of agricultural and food chemistry,2008,56:1434-1441.
    50. Tang, X Y,He, Z Y,Dai,Y F,et.al.Peptide Fractionation and Free Radical Scavenging Activity of Zein Hydrolysate.Journal of agricultural and food chemistry,2010,58:587-593.
    51. Dong,X P, Zhu,B W, Zhao, H X.,et al.Preparation and in vitro antioxidant activity of enzymatic hydrolysates from oyster(Crassostrea talienwhannensis)meat. International Journal of Food Science and Technology,2010,45:978-984.
    52. Je J Y,Park P J,Kim S K.Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate. Food Research international,2005,38:45-50.
    53.徐力,赵忠岩,李鸿梅等.大豆蛋白的小分子酶解产物抗氧化活性研究[J].吉林农业大学学报,2007,29(1):48-52.
    54.陈贵堂,赵立艳,丛涛等.花生多肽的制备及其对氧化损伤模型小鼠抗氧化作用的研究[J].食品科学,2007,28(03):324-327.
    55.曲娴,方文娟,李冰等.维生素E对D-半乳糖诱导致衰老小鼠脑抗氧化能力、钙稳态和线粒体DNA(mtDNA)损伤的影响[J].中国病理生理杂志,2008,24(3):523-526.
    56.黄儒强,刘学铭.大孔吸附树脂分离龙眼核中抗氧化活性物质方法的研究[J].湖北农业科学,2007,46(1):141~143.
    57.赵利,王璋,许时婴.大孔吸附树脂对酪蛋白非磷肽吸附性的研究[J].研究与探讨,2002,23(12):28~31.
    58.刘志东,王荫榆,曲映红等.大孔吸附树脂对酪蛋白酶解物的吸附特性研究[J].食品工业科技,2008(6):88-91.
    59.程云辉,王璋,许时婴.大孔吸附树脂对麦胚肽的吸附特性研究[J].食品与机械,2005,21(6):7-12.
    60. Zhong F,Zhang X M,Ma J G.,et al.Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates.Food Research International,2007,40:756-762.
    61.张君慧.大米蛋白抗氧化肽的制备、分离纯化和结构鉴定[D]:[博士学位论文].无锡:江南大学,2009,12.
    62.黄文.白果活性蛋白的分离、纯化、结构及其生物活性研究[D]:[博士学位论文].武汉:华中农业大学,2002,11.
    63.任娇艳.草鱼蛋白源抗疲劳生物活性肽的制备分离及鉴定技术研究[D]:[博士学位论文].广州:华南理工大学,2008,4.
    64. Dong S Y,Zeng M Y,Wang D F,et al.Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp(Hypophthalmichthys molitrix),2008,107:1485-1493.
    65. Sun, W Z,Zhao H F,Zhao Q Z, et al.Structural characteristics of peptides extracted from Cantonese sausage during drying and their antioxidant activities. Innovative food science and emerging technologies,2009,10:558-563.
    66. Suetsuna K,Ukeda H,Ochi H.Isolation and characterization of free radical scavenging activities peptides derived from casein[J].J Nutr Biochem.2000,11(3):128-131.
    67.李琳.鳙鱼蛋白控制酶解及酶解物抗氧化研究[D]:[博士学位论文].广州:华南理工大学,2006,6.
    68 Tang C H.,Wang X S.,Yang X Q.Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates.Food Chemistry,2009,114,1484-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700