超分子自组装膜修饰电极的制备及电化学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文自行合成了超分子化合物单-6-对甲基苯磺酰-β-环糊精(6-OTS-β-CD),并在此基础上继续合成了功能化离子液体β-环糊精季铵化的吡啶类离子液体[CDbPy]BF4,以它们为修饰剂,首次制备了超分子自组装膜化学修饰电极,并进行了电化学表征,结果表明功能化离子液体超分子自组装膜修饰电极的灵敏度最好。研究了肾上腺素、抗坏血酸和1-亚硝基-2-萘酚、硝基氯苯等生物活性物质和环境污染物在修饰电极上的电化学行为,并进行了应用研究,建立了相关分析方法。本论文的研究工作共分为四部分,其主要内容如下:
     第一部分合成超分子化合物6-OTs-β-CD,把它修饰在电极上制备了超分子自组装膜修饰电极6-OTS-β-CD/L-cys/Au,铁氰化钾为电化学探针,用循环伏安法和交流阻抗法对电极进行了电化学表征,在此修饰电极上首次对1-亚硝基-2-萘酚的电化学特性进行了研究。在0.1 mol/L PBS (pH=5.04)底液中,1-亚硝基-2-萘酚在+0.582 V和+0.482 V (vs .SCE)处产生灵敏的准可逆氧化还原峰,电极反应受扩散控制。1-亚硝基-2-萘酚的氧化峰电流与其浓度在1.0×10-6~1.0×10-4 mol/L范围内呈良好的线性关系,检测下限可达3.33×10-7 mol/L,同一支电极连续九次测定5.0×10-5 mol/L的1-亚硝基-2-萘酚溶液,相对标准偏差为1.66%,说明电极的稳定性和重现性很好。
     第二部分制备了新型修饰电极6-OTS-β-CD/PDDA/Au,用同样的方法对电极进行了电化学表征,利用循环伏安法,示差脉冲伏安法等电化学方法研究了肾上腺素的电化学特性。在0.1mol/L PBS (pH=7.4)底液中,肾上腺素在+ 0.354V(vs.SCE)处产生一个灵敏的不可逆氧化峰,电极反应受扩散控制。该法用于盐酸肾上腺素针剂中肾上腺素含量的测定,结果令人满意。
     第三部分合成了功能化的离子液体[CDbPy]BF4,首次把它修饰在不同基体电极上,制备了三种不同类型的功能化离子液体超分子自组装膜修饰电极。以二茂铁为电化学探针,考察了双层膜数的影响,并对电极进行了循环伏安,交流阻抗和计时电量表征,计算得到了修饰电极的真实面积。考察了扫描速度对二茂铁氧化还原峰电流影响,结果表明,电极反应主要受扩散控制。通过对修饰电极各种参数的比较,确定([CDIL]/L-cys)2/Au的电极性能最好。
     第四部分利用不同的功能化离子液体超分子自组装膜修饰电极,分别研究了抗坏血酸和硝基氯苯的电化学行为。优化了测定条件,考察了扫描速度的影响,结果表明,电极反应过程主要受扩散控制。该法用于Vc片剂中抗坏血酸含量的测定,得到了令人满意的结果。通过邻、间、对三种硝基氯苯各种实验参数的比较,结果表明,修饰电极对对硝基氯苯的选择性电催化作用最好,因此以它为研究对象进行了实际的样品测定,结果满意。
In this thesis, supermolecule self-assemble modified electrodes were fabricated by using self-synthetical supermolecule compound such as 6-OTs-β-CD and functional ionic liquid of pyridinium derivative of quaternary ammonium salt ofβ-cyclodextrin ([CDbPy]BF4) to study the electrochemical behavior of bioactive materials and contamination of environment such as epinephrine, ascorbic acid, 1-nitrosol-2-naphthol and chloronitrobenzene (CNB). Additional sensitivity and selectivity can be provided by utilizing specifically character and moleculed structure of modifiers to study electrocatalyze and analytical determination. The work of this thesis was divided into four parts:
     In the first part, supermolecule compound 6-OTs-β-CD was synthesized and used it as modifier to fabricate modified electrode 6-OTs-β-CD/L-cys/Au. With potassium ferricyanide as electrochemical probe, charactered the modified electrode by CV and EIS and investigated the electrochemical speciality of 1-nitroso-2- naphthol by CV at the first time. Sensitive semi-reversible redox peaks were observed at +0.582 V and -0.482 V (vs .SCE)in 0.1mol/L pH 5.04 phosphate buffer solution. The experimental results showed that the charge transfer process in the modified electrode was controlled by diffusion. The anodic current increased linearly with the concentration of 1-nitroso-2- naphthol in the range of 1.0×10-6 ~ 1.0×10-4 mol/L. The determination limit was 3.33×10-7 mol/L. The relative standard deviation of 1.66% was obtained by nine successive determination of 5.0×10-5 mol/L 1-nitroso-2- naphthol.
     In the second part, modified electrode 6-OTs-β-CD/PDDA/Au was fabricated, charactered it by CV and EIS with potassium ferricyanide as electrochemical probe, and investigated the electrochemical speciality of epinephrine by CV and DPV. A sensitive irreversible oxidation peak was observed at +0.354V( vs .SCE)in 0.1mol/L pH 7.4 phosphate buffer solution. The experimental results showed that the charge transfer process in the modified electrode was controlled by diffusion. This modified electrode had been used satisfactorily in the determination of epinephrine content in injection.
     In the third part, functional ionic liquid ([CDbPy]BF4) was synthesized and used it as modifier to fabricate three type self-assembled modified electrode on the different electrode at the first time. With ferrocene as electrochemical probe, investigated the effect of different bilayer films and charactered these modified electrodes by CV, EIS and Chronocoulometry. Moreover, the real area of the modified graphite electrode was obtained by calculating. The influence of scan rate to ferrocene was investigated and the experimental results showed that the charge transfer process in the modified electrode was controlled by diffusion. Propertie of ([CDIL]/L-cys)2/Au was the best than the others by comparing the parameters of all modified electrodes.
     In the forth part, different functionalized ionic liquid modified electrodes were used for researching the electrochemical behaviors of ascorbic acid and chloronitrobenzen, respectively. The effect of scan rate was investigated in the optimized condition, and the experimental results showed that the charge transfer process in the modified electrode was controlled by diffusion. This modified electrode has been used satisfactorily in the determination of ascorbic acid content in Vc tablet. The result showed that modified electrode possessed the better electrocatalysed effect on the deoxidization of p-CNB than o- CNB and m- CNB, wherefore, p-CNB was used was used as the sample of measurement in this paper with satisfactory result.
引文
[1]李景虹.自组装膜电化学.北京:高等教育出版社,2002.
    [2]董绍俊,车广礼,谢远武.化学修饰电极(修订版).北京:科学出版社, 2001.
    [3]余丽丽.药物/环糊精超分子体的制备及表征[硕士学位论文].南京:南京师范大学图书馆, 2005.
    [4] Ulman A. Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996, 96(4): 1533-1554.
    [5] Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold sufarces. J Am Chem Soc, 1983, 105(13): 4481-4483.
    [6]董绍俊.化学修饰电极.北京:科学出版社,2003.
    [7] R G Nuzzo, L H Dubois, D L Allara, Fundamental Studies of Microscopic Wetting on Organic Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers. J Am Chem Soc, 1990, 112(4): 558-569.
    [8]翁文婷.荧光性超分子自组装膜的制备、性能表征及应用[硕士学位论文].厦门:华侨大学图书馆,2005.
    [9]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社, 2001.
    [10]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用.分析化学, 1996, 24(9): 1093-1099.
    [11] K Ariga, Y Lvov, T Kunitake. Assembling Alternate Dye-polyion Molecular Films by Electrostatic Layer-By-Layer Adsorption.J Am ChemSoc, 1997, 119(9): 2224-2231.
    [12] Y Lvov, K Ariga, I Ichinose, etal.Assembly of Multi-component Protein Films by Means of Electrostatic Layer-By-Layer Adsorption. J Am Chem Soc,1995,117(22): 6117-6123.
    [13] F Caruso, K NiikUra, D N Furlong, etal. Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing.Langmuir, 1997, 13(13): 3427-3433.
    [14] Shipway A N, Lahav M, Millner I. Nanostructured Au-Colloid Electrodes. Adv Mater, 2000, 12(13): 993-998.
    [15]韦天新,黄春辉,辛颢,等.不同中心离子对自组装三元配合物膜光诱导电子转移性质的影响.中国科学B, 2001, 31(1): 49-55.
    [16]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装.高等学校化学学报, 2001, 22(6): 1057-1065.
    [17] Cao T B, Yang S M, Huang C H, etal. Phottoelectric Conversion Property of Covalent- Attached Multilayer Self-Assembled Films Fabricated from Diazoresin and Fullerol. Langmuir, 2001,17(20): 6034-6036.
    [18] Chidsey C E D,Bertozzi C R,Putvinski T M,et al.“Coadsorption of Ferrocene- Terminated Coadsorption of Ferrocene-Terminated and Unsubstituted Alkanethiols on Gold”“ElectroactiveSelf-Assembled Monolayers and Unsubstituted Alkanethiols on Gold”Electroactive Self-Assembled Monolayers. J Am Chem Soc,1990,112(11): 4301.
    [19] Schereth D D, Katz E, Schmidt H L. Nafion polymer film modified electrode via adsorption. Electroanalysis, 1995, 7(1): 46.
    [20] Masayuki Ohtani, Susumu Kuwabata, Hiroshi Yoneyama. Electrochemical Oxidation of Reduced Nicotinamide Coenzymes at Au Electrode Modified with Phenothiazine Derivatives Monolayer. J Electroanal Chem, 1997, 422(1): 45.
    [21]程广军,于代忠,邵会波,等.二茂铁硫醇自组装膜的电化学行及其离子对效应.高等学校化学学报, 1997, 42(7): 1141-1144.
    [22]于花忠,王永强,王健,等.光电双活性偶氮苯自组装单分子膜的设计.科学通报, 1997, 42(6): 620-623.
    [23]徐静绢,方惠群,陈洪渊.硫堇衍生化自组装膜修饰金电极的电化学性质及其对抗坏血酸的电催化氧化.高等学校化学学报, 1997, 5: 706-709.
    [24] J H Yan, J H Li. Synthesis of N-(n-Octyl)-N’-(10-Mercaptodecyl)-4, 4’Bipyridinium Diobromide and Electrochemical Behavior of Its Monolayers on a Gold Electrode.J Chem Soc Faraday Tran, 1996, 92(6): 1001-1006.
    [25]孙长青,刘国晶,张鸿安.钒氧酞著分子沉积自组膜电极的组装及其对肼的电催化研究.高等学校化学学报, 1998, 19(3):382-384.
    [26] K Takethara, H Takemur. Y Ide. Electrochemical Studies of Pemeation of FAD and UQO into the Self-Assembled n-Alkanethiol Monolayer Formed on a Gold Electrode. J Colloid & Interface Sci, 1993, 156(2): 274-278.
    [27] Willner I, Riklin A. Separation of Fragments up to 570 Bases in Length by Use of 6-Percent T Non-Cross-Linked Polyacrylamide for DNA Sequencing in Capillary Electrophoresis. Anal Chem, 1994(66): 1535.
    [28] Willner I, Heleg shabtai V, Blonder R, etal. Electrical“wiring”and alignment of flavoen zymes by reconstitution in a monolayer on an electrode surface.J Am Chem Soc, 1996(118): 10321.
    [29] Creager S E, Olsen K G. Scintillator-Based Nanosecond Light Sources for Time- Resolved Fluorimetry. Anal Chem Acta, 1995, (307): 277.
    [30] Herne T M, Tarlov M J. Characterization of probe immobilized on gold surface. J Am Chem Soc, 1997, (119): 8916-8920.
    [31] Q Cheng, A Brajter-Toth. Selectivity and sensitivity of self-assembled thiotic acid electrodes.Anal Chem, 1992, 64(17): 1998-2000.
    [32]杜丹.L-半胱氨酸自组装膜修饰电极的研制、表征及分析应用[硕士学位论文].武昌:湖北大学图书馆, 2002.
    [33] J G Huddleston, A E Visser, H D Willauer, etal. Characterization and Comparison of Hydrophilicand Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation.Green Chemistry, 2001, 3: 156-164.
    [34] S Sugden, H Wilkins.The parachor and chemical constitution PartⅫfused metals and salts. J Chem Soc, 1929, 1291-1298.
    [35] H L Chum, L L Miller, R A Osteryoung.Electrochemical scrutiny of organometallic iroc complexes and hexamethylbenzene in room temperature molten salt system aluminum chloride-n- butylpyridinium chloride.J Am Chem Soc, 1975, 97(11): 3264- 3265.
    [36] C G Swain, A Ohno, D K Roe, etal.Tetrahexylammonium benzoate, a liquid salt at 25.degree, a solvent for kinetics or electrochemistry.J Am Chem Soc, 1967, 89(11): 2648-2649.
    [37] T M Laher, C L Hussey.Copper (Ⅰ) and copper (Ⅱ) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid.Inorg Chem, 1983, 22(22): 3247-3251.
    [38] D Appleby, C L Hussey, K R Seddon, etal.Room-temperature ionic liquids as solvents for electronic absorption- spectroscopy of halide-complexes.Nature, 1986, 323: 614-616.
    [39]李汝雄.绿色溶剂-离子液体的合成与应用.北京:化学工业出版社,2003.
    [40]孙伟,高瑞芳,焦奎.离子液体在分析化学中应用研究进展.分析化学,2007,35(12):1813-1919.
    [41]顾彦龙,彭家建,乔琨.室温离子液体及其在催化和有机合成中的应用.化学进展,2003,15(3):222-241.
    [42]石峰,马宇春,周瀚成.钯-离子液体/钛硅复合氧化物催化剂的合成及在胺羰化中的应用.高等学校化学学报,2002,23(9):1781-1783.
    [43] Jiang T F, Gu Y L, Liang B, etal. Dynamically Coating the Capillary with 1-alkyl-3-methylimida zolium-based Ionic Liquids for Separation of Basic Proteins by Capillary Electrophoresis.Anal Chim Acta, 2003, 479(2): 249-254.
    [44] Ding J, Welton T, Armstrong D W. Immobilized Ionic Liquids as High Temperature/High Selectivity /High Temperature Gas Chromatography Stationary Phases. Anal Chem, 2005, 77: 6453-6462.
    [45] Qiu H D, Jiang S X, Liu X. Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr A, 2006, 1103: 267-270.
    [46] Armstrong D W, Zhang L K, He L, etal. Ionic liquid as matrixes for matrix-assisted laser desorption /ionization mass spectrometry. Anal Chem, 2001, 73(15): 3679-3686.
    [47] BuzzeoM C, Evans R G, Compton R G. Non-Haloaluminate Room-Temperature Ionic Liquids inElectrochemistry - A Review. Chem Phys Chem, 2004, 5(8): 1106-1120.
    [48] Adam Lesniewski, Joanna Niedziolka. Electrode modified with ionic liquid covalently bonded to silicate matrix for accumulation of electroactive anions. Electrochemistry Communications, 2007, 9(10): 2580-2584.
    [49] Cuili Xiang, Yongjin Zou, Li Xian Sun, etal. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochemistry Communications, 2008, 10(1): 38-41.
    [50] Ying Liu, Lijian Huang, Shaojun Dong. Electrochemical catalysis and thermal stability characterization of laccase–carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Biosensors and Bioelectronics, 2007, 23(1,30): 35-41.
    [51] Dongxue Hua, Xuepeng Qiu, Yanfei Shen. Electropolymerization of polypyrrole on PFIL-PSS- modified electrodes without added support electrolytes. Journal of Electroanalytical Chemistry, 2006, 596(1,15): 33-37.
    [52] Sun W, Gao R F, Jiao K. Electrochemistry and electrocatalysis of hemoglobin in nafion/nano- CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B, 2007, 111(17): 4560-4567.
    [53]孙伟,高瑞芳,毕瑞锋,等.室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征.分析化学,2007,35(4):567-570.
    [54] Buzzeo Marisa C, Hardacre Christopher, Compton Richard G. Use of room temperature ionic liquids in gas sensor design. Analytical Chemietry, 2004, 76(15): 4583-4588.
    [55]贾晓光,张玲,朱永春.对苯二酚在室温离子液体碳糊电极上电化学行为的半经验量子化学AM1研究.沈阳师范大学学报(自然科学版),2008,26(3):340-343.
    [56] Liu H T, He P, Li Z Y.An Ionic Liquid-Type Carbon Paste Electrode and Its Polyoxometalate- Modified Properties.Electrochem Comm, 2005, 7: 1357-1363.
    [57] Afsaneh Safavi, Norouz Maleki, Omran Moradlou, etal. Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid using Carbon Ionic Liquid Electrode.Analytical Biochem, 2006, 359: 224-229.
    [58] Yang F, Jiao L S, Shen Y F. Enhanced Response Induced by Polyelectrolyte-Functionalized Ionic Liquid in Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material. Journal of Electroanal Chem, 2007, 608: 78-83.
    [59] Wang S F, Xiong H Y, Zeng Q X. Design of Carbon Paste Biosensors Based on the Mixture of Ionic Liquid and Paraffin Oil as a Binder for High Performance and Stabilization. Electrochem Comm, 2007, 9: 807-812.
    [60] Mustafa Musameh, Joseph Wang.Sensitive and Stable Amperometric Measurements at Ionicliquid- Carbon Paste Microelectrodes.Analytica Chimica Acta, 2008, 606: 45-49.
    [61]李江文,赵发琼,肖萍,等.氯丙嗪在离子液体BMMPF6修饰玻碳电极上的伏安行为.分析化学,2006,34(9):S5-S9.
    [62]颜权平,赵发琼,曾百肇.肾上腺素在碳纳米管-离子液体糊修饰电极上的伏安行为.分析科学学报,2006,22(5):523-526..
    [63]张旭志,焦奎.单壁碳纳米管和室温离子液体胶修饰电极.物理化学学报,2008,24(8): 1439-1444.
    [64] Yu P, Lin L, Xiang L, etal.Mao Molecular Films of Water-Miscible Ionic Liquids Formed onto Glassy Carbon Electrode: Characterization and Electrochemical Applications. Langmuir, 2005, 21: 9000-9006.
    [65] Sun W, Gao R F, Jiao K. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano- CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B, 2007, 111: 4560-4567.
    [66]朱振中,胡小艳,孙唯,等.离子液体对酪氨酸酶碳糊电极电化学行为的影响.光谱实验室,2008,25(5):883-886.
    [67]李红丽,王荣,魏雅,等.细胞色素C在离子液体修饰电极上的电化学行为.化学研究与应用,2007,19(9):987-990.
    [68] Norouz Maleki, Afsaneh Safavi, Elahe Farjami, etal.Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine.Analytica Chimica Acta, 2008, 611(2): 151-155.
    [69] Afsaneh Safavi, Norouz Maleki, Omran Moradlou, etal.Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode.Electrochemistry Communications, 2008, 10(3): 420-423.
    [70] Cuili Xiang, Yongjin Zou, LiXian Sun, etal.Direct electron transfer of cytochrome c and its biosensor based on gold manoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochemistry Communications, 2008, 10(1): 38-41.
    [71] Adam Lesniewski, Joanna Niedziolka, Barbara Palys, etal.Electrode modified with ionic liquid covalently bonded to silicate matrix for accumulation of electroactive anions. Electrochemistry Communications, 2007, 9(10): 2580-2584.
    [72] Ya Zhang, Jian Bin Zheng . Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode.Electrochimica Acta, 2007, 52(25): 7210-7216.
    [73] Afsaneh Safavi, Norouz Maleki, Fariba Tajabadi, etal.High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrod.Electrochemistry Communications, 2007, 9(8): 1963-1968.
    [74] GuangChao Zhao, MiaoQing Xu, Juan Ma, etal.Direct electrochemistry of hemoglobin on a room temperature ionic liquid modified electrode and its electrocatalytic activity for the reduction of oxygen. Electrochemistry Communications, 2007, 9(5): 920-924.
    [75] Wang S F, Chen T, Zhang Z L, etal.Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids. Langmuir, 2005, 21: 9260-9266.
    [76] Ding Sufang, Zhao Guangchao, Wang Lei, etal.Immobilization of Hemoglobin and a Room Temperature Ionic Liquid, 1-(3-Aminopropyl)-3-Methylimidazolium Bromide, on a Basal Plane Graphite Electrode for Preparation of a Novel Oxygen Biosensor. Journal of Huaibei Coal Industry Teachers College (Natural Science), 2008, 29(1): 34-37.
    [77]胡小艳,朱振中.基于离子液体-石蜡油混合物为黏和剂的酪氨酸酶碳糊生物传感器的研制.分析试验室,2008,27(11):91-94.
    [78]李雪辉,赵东滨,费兆福,等.离子液体的功能化及其应用.中国科学B辑化学,2006,36(3):181-196.
    [79] Dzyuba S, V Bartsch R A.New room-temperature ionic liquids with C2-symmetrical imidazolium cations.Chem Commun, 200l, (16): 1466-1467.
    [80] Moret M-E, Chaplin A B, Lawrence A K, etal. Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallies, 2005, 24: 4039-4048.
    [81] Zhao D, Fei Z, Geldbach T J, etal.Allyl-functionalised ionic liquids: Synthesis, characterization, and reactivity. Helv Chim Acta, 2005, 88: 665-675.
    [82] Geldbach T J, Laurenczy G, Scopelliti R, etal.Synthesis of imidazolium tethered ruthenium(Ⅱ)- arene complexes and their application in biphasic catalysis. Organometallics, 2006, 25: 733-742.
    [83] Mazille F, Fei Z, Kuang D, etal.Influence of ionic liquids bearing functional groups in dye- sensitized solar cells. Inorg Chem, 2006, 45: 1585-1590.
    [84] Gao Y, Arritt S W, Twamley B, etal.Guanidinium-based ionic liquids.Inorg Chem, 2005, 44(6): 1704-1712.
    [85] Ding J, Welton T, Armstrong D W . Chiral ionic liquids as stationary phases in gas chromatogramphy.Anal Chem, 2004, 76(22): 6819-6822.
    [86] Matsumoto H, Mazda T, Miyazaki I. Room temperature molten salts based on trialkylsulfonium cations and bis (trifluoromethyl sulfonyl) imide. Chem Lett, 2000, 1430-1431.
    [87] Martiz B, Keyrouz R, Gmouh S, etal.Superoxide-stable ionic liquids: new and efficient media for electrosynthesis of functional siloxanes. Chem Commun, 2004, (6): 674-675.
    [88] Bradaric C J, Downard A, Kennedy C, etal.Industrial preparation of phosphonium ionic liquids. Green Chem, 2003, 5(2): 143-152.
    [89] Baker G A, Baker S N, Pandey S, etal.An analytical view of ionic liquids.Analyst, 2005, 130: 800-808.
    [1]童林荟.环糊精化学-基础与应用.北京:科学出版社, 2001.
    [2]陈培丰.β-环糊精磺酰化的超分子作用机理研究.福建师范大学学报, 2001, 17(2): 52-53.
    [3] Pierre M. Bersier, Jacques Bersier, Bernd Klingert. Electrochemistry of cyclodextrins and cyclodextrin inclusion complexes. Electroanalysis, 1991, 3: 443-455.
    [4]王南平,余晓冬,陈洪渊.环糊精超分子化学研究的新进展.化学研究与应用,2001,13(1):27-32.
    [5] Tamagaki S, Fukuka K, Sumita H, etal. Electrochemical response of gold electrodes coated with amonolayer of cyclodextrin thio derivatives. Chem Exp, 1991, (6): 695-698.
    [6]何品刚,方禹之,铃木,等.β-环糊精含硫衍生物自组单分子膜修饰金电极的选择穿透性研究.高等学校化学学报,1996,17(6):893-895.
    [7] He P G, Ye J, Fang Y Z, etal. Voltammetric responsive sensors for organic compounds based on organized self-assembled lipoyl-beta-cyclodextrin derivative monolayer on a gold electrode. Anal Chim Acta, 1997, 337(2): 217-223.
    [8] Luis A G, James L, Marc M, etal. Multilayer self-assembly of amphiphilic cyclodextrin hosts on bare and modified gold substrates:controlling aggregation via surface modification. Langmuir, 1998, 14(1): 137-144.
    [9]王臻,张浩力,力虎林.偶氮苯衍生物-β-环糊精包合物的自组装行为.物理化学学报,1999,15(7):606-612.
    [10] Ohira A, Ishizaki T, Sakata M, etal. Formation of the“nanotube”structure of betacyclodextrin on Au(Ⅲ) surfaces induced by potential controlled adsorption. Colloids and Sur. A-Physicochem and Eng Asp, 2000, 169(1-3): 27-33.
    [11] Kunitake M, Ohira A, Uemura S, etal. Adsorption-induced two-dimensional self-organization. Kobunshi Ronbunshu, 1999, 56(10): 609-616.
    [12] Hamasaki K, Ikeda H, Nakamura A, etal. Fluorescent sensors of molecular recognition: modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J Am Chem Soc, 1993, 115: 5035-5040.
    [13]程志亮,杨秀荣.电化学交阻抗技术表征自组装多层膜.分析化学,2001,29(1):6.
    [1]李斌,马奔,方华,等.磁性壳聚糖微球固定化漆酶催化肾上腺素.武汉理工大学学报,2006,28(11):21-24.
    [2]童裳伦,朱岩,郭丹,等.离子色谱荧光检测法测定肾上腺素和多巴胺.分析化学,2001,29(10):1237.
    [3] Zhang H M, Zhou X L, Li N Q, et al. Studies of the Electrochemical Behavior of Epinephrine at a Homocysteine Self-assembled Electrode. Talanta, 2002, 56: 1081-1088.
    [4]费俊杰,谭红艳,陈小明,等.锇联吡啶氧化还原聚合物膜修饰电极对肾上腺素的电催化氧化及安培检测.催化学报,2006,27(7):619-623.
    [5]汪振辉,刘小花,张岱,等.肾上腺素在聚对氨基吡啶化学修饰电极上的电化学行为及其吸附伏安法测定.分析实验室,2003,22(5):54-58.
    [6]何星存,陈孟林.修饰电极导数伏安法测定神经递质肾上腺素广西师范大学学报(自然科学版).1999,17(4):63-66.
    [7]邹明珠,胡枢.Nafion修饰电极测定血液中的肾上腺素.分析化学,1992,20(5):588-590.
    [8]孙元喜,冶保献,周性尧.聚中性红膜修饰电极上神经递质的电化学行为及应用.分析化学,1998,26(5):506-510.
    [9]姚兵,唐小荣,何频,等.超微电极测定单细胞中神经递质的进展.分析科学学报,1998,14(14):332-337.
    [10]邬春华,吕元琦,袁倬斌.咖啡酸修饰电极的电化学性质及其对肾上腺素的电化学研究.分析测试学报,2004,23(5):60-62.
    [11]薛启冥.神经系统的生理和病理化学.北京:科学出版社,1978.
    [12]童裳伦,朱岩,杨景和.稀土离子荧光探针对肾上腺素的测定.分析化学,2000,28(3):293-295.
    [13] Fotopoulouma, Ioannoup C. Post_column terbiumcomplexation and sensitized fluorescence detection for the deter-mination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Anal ChimActa, 2002, 462(2): 179-185.
    [14]汪振辉,孟召辉,罗红霞,等.单扫描示波极谱法测定肾上腺素的研究.分析试验室,1997,16(3):79-82.
    [15]李军,李洪坤,赵艳霞,等.肾上腺素在对氨基苯磺酸修饰玻碳电极上的电化学行为.分析试验室,2005,24(11):40-42.
    [16]刘传银,李业梅,李新民,等.肾上腺素在酞菁铁-Nafion双层膜修饰玻碳电极上的电催化.中南民族大学学报(自然科学版),2004,23(3):20-23.
    [17] Wang Y S, Fice Debra S, Yeung Pollen K F. A simple high-performance liquid chromatography assa-y for simultaneous determination of plasma norepinephrine, epinephrine, dopamine and 3, 4-dihydroxyphenyl acetic acid. J Pharmaceutical and biomedical analysis, 1999, 21(3): 519-525.
    [18]童裳伦,朱岩,郭丹,等.离子色谱荧光检测法测定肾上腺素和多巴胺.分析化学, 2001,29(10):1237.
    [19] Zhang H M, Zhou X L, Li N Q, et al. Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode. Talanta, 2002, 56: 1081-1088.
    [20]方禹之,于雁灵,何品刚. Nafion修饰电化学活化碳纤维微电极测定去甲肾上腺素.分析化学,1995,23(12):1440-1443.
    [21] Mohammad K A, Said S, Shahram T, et al. Iron(Ⅱ) phthalocyanine-modified carbon-pasteelectrode for potentiometric detection of ascorbic acid. Anal Biochem, 2001, 290 :277-282.
    [22]刘涛,王磊,郁章玉.磨料颗粒对不同电极材料上肾上腺素的循环伏安性质的影响.曲阜师范大学学报,2005,31(2):88-91.
    [23]王育华.肾上腺素电氧化反应的研究[硕士学位论文].曲阜:曲阜师范大学, 1997.
    [24]肖海燕,黄俊,刘诚.血红密孔菌漆酶催化肾上腺素氧化的研究.武汉理工大学学报,2006,28(9):34-37.
    [25]辛梅华,李明春,徐金瑞,等.环糊精固定相-电化学检测测定肾上腺素和拟肾上腺素对映体.化学通报,2001,(8):504-506.
    [26]张东明,付敏,马万云,等.胶束电动毛细管色谱半导体激光诱导荧光测定单胺类神经递质.分析科学学报,2002,(18):265-268.
    [27]彭贵华,唐银,曾立明,等.高效液相色谱法测定血浆中儿茶酚胺.湖南医科大学学报,2001,26(5):485-487.
    [28]孟召辉,王素红.可见分光光度法测定肾上腺素的含量.南阳师范学院学报(自然科学版), 2002,1(6):39-40.
    [29]张占军,李经建,吴锡尊,等.肾上腺素电氧化过程的快速扫描循环伏安研究.物理化学学报,2001,17:542-546.
    [30] Hawley M D, Tatawawadi S V, Piekarski S, et al. Electro-chemical studies of the oxidation pathways of catecholamines. J Am Chem Soc, 1967, 89: 447-450.
    [31] Fike R R, Curran D J. Determination of catecholamines by thin-layer linear sweep voltammetry. Anal Chem, 1977, 49: 1205-1210.
    [32] El_Kommos M E, Mohamed F A,Khedr A S. Spectropho-tometric determination of epinephrine and norepinephrine with sodium periodate. Talanta, 1990, 37: 625-627.
    [33] KimSH, Lee JW, Yeo IH. Spectroelectrochemical and elec-trochemical behavior of epinephrine at a gold electrode. Electrochim Acta, 2000, 45: 2889-2895.
    [34] ZhangHM, Zhou XL, Hui RT, et al. Studies of the electro-chemical behavior of epinephrine at a homocysteine self_assem-bled electrode. Talanta, 2002, 56: 1081-1088.
    [35]郁章玉,王育华,苗深花,等.溶液pH值及电极材料对肾上腺素红电合成的影响.精细化工,1998,15:306-309.
    [36]何星存,李平,莫金垣.用修饰电极导数伏安法同时测定多巴胺和肾上腺素.分析测试学报, 2000,19(1):19-21.
    [37]梁汝萍,邱建丁,黄婷婷,等.同时测定多巴胺和肾上腺素的大环镍膜修饰电极.分析测试学报,2002,21(6):31-34.
    [1] J S Wilkes, M J Zaworotko. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, 1992, 13: 965-967.
    [2]张素梅.新型离子液体的制备及表征[博士学位论文].上海:华东师范大学图书馆,2005.
    [3] Davis J H. Task-specificionicliquids. Chem Lett, 2004, 33(9): 1072-1077.
    [4]刘伟山,陶国宏,何玲,等.功能化的离子液体:手性离子液体的合成与应用.有机化学,2006,26(8):1031-1038.
    [5] P Wasserscheid, W Keim.Ionicliquids-new“solutions”for transition metal catalysis. Angew Chem Int Ed, 2000,39: 3772-3789.
    [6] D B Zhao, M Wu, Y Kou, etal. Ionic liquids: applications in catalysis. Catal Today, 2002, 74: 157-189.
    [7] J S Wilkes. A Short History of Ionic Liquids-from Molten Salts to Neoteric Solvents.Green Chem, 2002, 4(2): 73-80.
    [8] R Sheldon. Catalytic reactions in ionic liquids.Chem Commun, 2001: 2399-2407.
    [9] F Endres. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chem Phys Chem, 2002, 3: 144-154.
    [10] H Nakagawa, S Izuchi, K Kuwana, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc, 2003, 150 (6): A695-A700.
    [11]刘卉,陶国宏,邵元华,等.功能化的离子液体在电化学中的应用.化学通报,2004,11:795-800.
    [12]寇元,杨雅立.功能化的酸性离子液体.石油化工,2004,33(4):297-301.
    [13] Zhao D B, Fei Z F, Geldbach T J, etal. Allyl-functionalised ionic liquids:Synthesis, characterization, and reactivity. Helvetica Chim Acta, 2005, 88: 665-675.
    [14]王强,梁洪泽,包伟良.功能化离子液体的制备及其在合成中的应用.应用化学,2007,24(2):117-122.
    [15]李雪辉,赵东滨,费兆福,等.离子液体的功能化及其应用.中国科学B辑化学,2006,36(3):181-196.
    [16] Breslow R, Dong S D. Biomimetie reactions catalyzed by cyclodextrins and their derivatives. Chem Rev, 1998, 98: 1997-2011.
    [17] Uekama k, Hirayama F, Irie T. Cyclodextrin Drug Carrier Systems. Chem Rev, 1998, 98: 2045.
    [18]张稳,霍萃萌,赵永德.环糊精季铵化的吡啶类离子液体的合成和表征.化学研究,2007,18(3):24-26.
    [19]孙伟,高瑞芳,焦奎.离子液体在分析化学中应用研究进展.分析化学,2007,35(12): 1813-1819.
    [1]王琦.电化学分析法测定抗坏血酸的研究与应用[硕士学位论文].济南:山东师范大学图书馆, 2004.
    [2]万其进,喻玖宏,王刚,等.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸.高等学校化学学报,2000,21(11):1651-1654.
    [3]吴婧,刘国东,黄杉生,等.2-氨基吡啶修饰电极的电化学性质及对抗坏血酸的测定.分析化学,2001,29(10):1140-1143.
    [4]中国药典,1990,二部,643.
    [5] Liu Z, Wang Q, Mao L, et al. Highly sensitive spectrofluorimetric determination ofascorbic acid based on its enhancement effect on a mimetic enzyme- catalyzed reaction.Anal Chim Acta, 2000, 413: 167-173.
    [6] Chen Z L, Hayashi K, Iwasaki Y, et al. On Line Monolithic Enzyme Reactor Fabricated by Sol-Gel Process for Elimination of Ascorbic Acid While Monitoring Dopamine. Electroanal, 2005, 17: 231-238.
    [7] Zhang W, Cao X, Xie Y, et al. Simultaneous determination of the monoamine neurotransmitters and glucose in rat brain by microdialysis sampling coupled with liquid chromatography-dual electrochemicaldetector. J Chromatogr B, 2003, 785: 327-336.
    [8] Xu F, GaoM N, ShiG F, et al. Sensitive determination of dopamine poly ( aminobenzoic acid ) modified electrode and the app lication toward an expermi ental parkinsonian anmi almodel. Talanta, 2001, 55: 329-336.
    [9]宋永芳,王碧兰,徐翠凤.库仑滴定及其在药物分析中的应用.药物分析杂志,1981,1(3):194.
    [10] S P Arya, M.Mahajan, p.Jain. Non-spectrophotometric methods for the determination of Vitamin C, Analytica Chimica Acta, 2000, 417: l-14.
    [11] F.sahbaz,G.Somer. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Food Chem,1992,44(2): 141-146.
    [12] Zhiqing Gao and Ari Ivaska, Voltammetric and Amperometric Determination of Ascorbic Acid at A Chemically Modified Carbon Fibre Microele. Talanta, 1993, 3(40): 399-403.
    [13]卓海通,高允生.反相高效液相色普法安培检测器快速测定人血清中维生素C含量.色谱,1989,6(7):375-376.
    [14]董绍俊,化学修饰电极在分析化学中的作用.分析化学,1988,16(10):951-960.
    [15]池其金,董绍俊.酶直接电化学与第三代生物传感器.分析化学,1994,22(10):1065-1072.
    [16]封满良,吕九如.铜-鲁米诺化学发光法测定抗坏血酸.分析化学,1995,23(1):70-72.
    [17]王娜,袁若,柴雅琴,等.甲苯胺蓝修饰电极的电化学性质及对抗坏血酸的测定.分析实验室,2005,24(12):44-46.
    [18] Sun Y X, Ye B X, Zhang W M, etal. Simultaneous Determination of Dopamine and Ascorbic-Acid at Poly(Neutral Red) Modified Electrodes. Anal Chim Acta, 1998, 363: 75-80.
    [19]孙元喜,周谷珍,孙涛.聚中性红膜修饰电极的电分析性能研究-多巴胺与抗坏血酸的同时分析.武陵学刊,1998,19(3):44.
    [20]徐静娟,方惠群,陈洪渊.硫堇衍生化自组装膜修饰金电极的电化学性质及其对抗坏血酸的电催化氧化.高等学校化学学报,1997,18(5):706-709.
    [21] Gao Z Q, Zha T X, Wang G Q. Voltammetric and amperometric determination of ascorbic acid at a chemically modified carbon fibre microele. Talanta, 1993, 40 (3):399-403.
    [22]邓子峰,朱仲良,杨正炜,等.二茂铁修饰青椒籽碳糊电极测定抗坏血酸.分析化学,1999,27(3):323-326.
    [23] Chidsey C. E. D., Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface. Science, 1991, 251: 919-922.
    [24]吴婧,刘国东,钟桐生,等.抗坏血酸在2-氨基吡啶修饰电极上的电催化氧化及其应用.分析科学学报,2001,17(6):456.
    [25]卢小泉,吕宝强,薛中华,等.4-巯基吡啶自组装修饰金电极的电化学性质及对抗坏血酸的测定.分析化学,2003,31(6):686-688.
    [26]孙登明,顾海鹰,愈爱民,等.聚碱性品红修饰电极的制备及应用.高等学校化学学报,1997,18:376-380.
    [27] Chen Hongyuan, Yu Aimin, Zhang Haili. Electrocatalytic Oxidation of Dopamine at the Polyglycine Chemicallly Modified Cabon Fiber Burrdle Electrode and its Voltammetric Resolution with Uric Acid. Fresenius J Anal Chem, 1997,358: 863-864.
    [28] Lei Zhang, Xiangqin Lin. Covalent modification of glassy carbon electrodes with glycine for voltammetric separation of dopamine and ascorbic acid. Fressenius J Anal Chem, 2001, 370: 956-962.
    [29]万其进,喻玖宏,王刚,等.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸.高等学校化学学报,2000,21:1651-1654.
    [30]赵红,张玉忠,袁倬斌.聚2-吡啶甲酸修饰电极伏安法测定多巴胺.分析化学,2001,29(10):1157.
    [31] Yu Aimin, Chen Hongyuan. Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode. Analytica Chimica Acta, 1997, 344: 181-185.
    [32]林祥钦,晋冠平,崔华.聚L-谷氨酸/石墨充蜡修饰电极测定多巴胺.分析化学,2002,30(3):271-275.
    [33]赵红,张玉忠,袁倬斌.多巴胺在聚异烟酸修饰玻碳电极上的电化学行为.药学学报,2002,37(6):454-457.
    [34]焦奎,罗细亮,孙伟,等.聚天青A修饰玻碳电极的电化学特性及其对亚硝酸根的电催化性能.分析试验室,2002,21(2):88-91.
    [35]孙元喜,周谷珍,陈远道,等.多巴胺在聚中性红修饰碳纤维微电极上的电化学行为.分析测试学报,2001,20(6):28-31.
    [36]杨秋霞,马玉荣,何畏,等.维生素B_1的电化学聚合及催化作用.分析化学,2001,29(6):71.
    [37] Yu Aimin, Chen Hongyuan. Electrocatalytic oxidation and determination of ascorbic acid at poly (glutamic acid) chemically modified electrode. Anal Chim Acta, 1997, 344: 181-185.
    [38] Sun Yuanxi, Ye Baoxian, Zhang Wuming, etal. Simultaneous determination of dopamine and ascorbic acid at poly (neutral red) modified electrodes. Anal Chim Acta, 1998, 363: 75-80.
    [39] Wang J, Golden T, Peng T Z. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Anal Chem, 1997, 59: 740-744.
    [40] Gao Z, Siow K S, Ng A, etal. Determination of Ascorbic Acid in a Mixture of Ascorbic Acid and Uric Acid at Chemically Modified Glassy Carbon Electrodes. Anal Chim Acta, 1997, 343: 45-57.
    [41] Manzamares M I, Solis V, Derossi R H. Effect of cyclodextrins on the electrochemical behaviour of ascorbic acid on platinum electrodes in acidic and neutral solutions. J Electroanal Chem, 1997, 430: 163-168.
    [42] Murthy A S N, Sharma J. Benzoquinone modified electrode for sensing NADH and ascorbic acid. Talanta, 1998, 45: 951-956.
    [43] Liu G D, Li Z Q, Huan S S, etal. Electrocatalytical oxidation of ascorbic acid at a ... polymer modified electrode and analytical application. Anal Lett, 2000, 33(2): 175-192.
    [44]吴海珍,何勤聪,韦朝海,等.邻氯硝基苯降解菌OCNB-1的分离鉴定与降解质粒[J].华南理工大学学报(自然科学版),2008,36(3):83-88.
    [45] Pitter P. Determination of Biological Degradability of Organic Substances. Water Res, 1976, 10: 231-235.
    [46] Stover E L, Kincannon D F. Biological Treatability of Specific Organic Compounds Found in Chemical Industry Wasterwater. J.WPCF, 1983, 55(1): 97-100.
    [47]张洪林.难降解有机物的处理技术进展.水处理技术,1998,24(5):259-264.
    [48]赵德明,史惠祥.Fe-C微电解法+H2O2组合工艺处理对氯硝基苯废水.城市环境与城市生态, 2002,15(1):32-34.
    [49]杨小南.气相色谱法同时测定废水中的微量硝基苯及硝基氯代苯三种同分异构体.氯碱工业, 1999,(6):38-40.
    [50] TravlosG S, Mahler J, Ragan H A, et al. Thirteen-week inhalation toxicity of 2-and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam ApplToxi-col, 1996, 30(1): 75-92.
    [51] SukKH, DianneK A, John G B, et a.l. In vitro nephroto-xicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats. Toxicology Letters, 2002, 129: 133-141.
    [52]徐根良,徐秀珠.环境中痕量特殊有机污染物的高效液相色谱测定.浙江大学学报(自然科学版),1999,33(3):323-327.
    [53]孙润泰,陈敏,于波,等.气相色谱法测定水源水中硝基氯苯类化合物结果分析.中国卫生工程学,2002,1(3):149.
    [54] Li Q, Minami M, Inagaki H. Acute and subchronic immunotoxicity ofp-nitrochlorobenzene in mice (Ⅰ): Effect on naturalkiller, cytotoxicT-lymphocyte activities andmitogen-stimulated lymphocyte proliferation.Toxicology, 1998, 127(1): 223-232.
    [55]陈忠林,沈吉敏,李学艳,等.臭氧化去除水中对硝基氯苯动力学及机理.化工学报,2006, 57(10):2439-2444.
    [56]徐腾娇,陈忠林,沈吉敏,等.臭氧氧化降解水中对硝基氯苯的效能与机制.水处理技术, 2007,33(1):27-30.
    [57]吕植孝,吕腊梅.工业废水中对硝基氯苯的比色测定.医药工业,1987,18(1):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700