生物活性小分子的电化学检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极始于1975年,是目前最为活跃的电化学和电分析化学的前沿领域之一。修饰电极应用到电化学分析方法具有分析速度快,操作简便易行,成本低,试剂用量少,检测灵敏度高、具有更好的选择性等优点,现今受到广泛使用。修饰电极的一个重要应用是通过利用修饰物质的电催化活性以达到提高测定灵敏度和选择性的目的。如人体内多巴胺(DA)、尿酸(UA)及抗坏血酸(AA)等生物活性小分子的测定,目前对其研究受到了广大科研工作者的极大重视。
     本论文主要从以下几个方面开展研究工作:
     1.多巴胺在L-半胱氨酸修饰玻碳电极上的电化学行为及测定的研究
     以L-半胱氨酸作为电极表面修饰剂,制得聚L-半胱氨酸修饰电极,并探讨了修饰剂浓度、pH值和循环周数等条件对修饰电极的性能的影响,研究了DA在此修饰电极上的电化学行为及其伏安测定。实验表明,在最优实验条件下研制的修饰电极对DA有较好的电催化响应电流,灵敏度有较大的提高,其氧化峰电流与浓度在1.0×10-6~1.0×10-3 mol/L范围呈现出良好的线性关系,其线性回归方程Ipa(μA)=-9.8038logC(DA)+59.4098,相关系数R2=0.9923。最低检出限可以达到1.0×10-7mol/L(S/N=3).
     2.L-谷氨酸修饰玻碳电极测定尿酸的电化学研究
     以L-谷氨酸为电极修饰剂,用于对玻碳电极进行循环扫描修饰,通过循环伏安法(CV)对比研究了UA在裸玻碳电极和聚L-谷氨酸修饰玻碳电极表面的电化学行为,运用线性扫描伏安法(LSV)测定了UA的线性范围和最低检出限,同时对修饰电极的稳定性和重现性进行了探讨研究。实验结果显示,聚L-谷氨酸修饰玻碳电极对UA的电化学氧化反应具有较明显的电催化作用,当响应信号/噪声比值(S/N)为3时,UA的检测限可以达到1.0×10-6mol/L.通过对UA测试条件的优化,得出了UA的氧化峰电流与其浓度在2.5×10-6~1.0×10-3mol/L范围内呈现出较好的线性关系,其线性回归方程为Ipa(μA)=-149.9583+25.5 log C(UA),相关系数R2=0.9948。该实验结果与同类修饰电极测定UA作对比,具有制备简捷,响应灵敏,线性范围宽,检出限低,抗干扰能力强的特点,可望应用于尿液中的UA的测定及相关研究。
     3.肉桂酸修饰电极在AA存下对UA的研究测定
     采用恒电位沉积方法在玻碳电极表面制备肉桂酸修饰电极,通过CV法对比研究了尿酸(UA)在裸玻碳电极和肉桂酸修饰玻碳电极表面的电化学行为,研究表明UA在肉桂酸修饰玻电极上具有良好的电化学响应,在1.0×10-3mol/L的高浓度AA共存的情况下,该修饰电极可用于UA的测定,实验考察了检测UA的最佳条件,结果表明UA的氧化峰电流与其浓度在2.0×10-6~2.0×10-4 mol/L范围内呈现出较好的线性关系,其线性回归方程为Ipa(μA)=22.4948 +0.2195 logC(UA),相关系数R2=0.9902,检测限为1.0×10-6mol/L,可望应用于血液中UA含量的快速测定。
Chemically modified electrodes (CME) originated in 1975 is one of the foremost fields of electrochemistry and electroanalytical chemistry at present. Nowadays, CME has been widely used in electrochemical analysis because of its fast analysis speed, simple and easy operation, low cost, low reagent consumption, high sensitivity, good selectivity, and other advantages. An important application of CME is applying the electrocatalytic activity of the modifer into the increase in sensitivity and selectivity of analysis. Detection of bioactive small molecules such as dopamine (DA), uric acid (UA), and ascorbic acid (AA) has attracted a wide interest.
     The main research works of this thesis are the following aspects: Part 1 Electrochemical behavior and determination of dopamine at L-cysteine modified glassy carbon electrode
     The L-cysteine modified electrode was prepared with L-cysteine as the electrode surface modifier and the influence of experimental conditions containing the concentration of modifier, pH value and number of scan round on the performance of the modified electrode was discussed detailedly. Furthermore, electrochemical behavior of dopamine at the modified electrode was studied. The results showed that the modified electrode prepared under the optimum experimental conditions had large electrochemical response. The oxidation peak current presented a good linear relationship in the concentration range of 1.0×10-6~1.0×10-3mol/L with the linear regression equation of Ipa (μA)=-9.8038 logC(DA)+59.4098 (R2=0.9923) and the detection limit of 1.0×10-7 mol/L at signal to noise ratio of 3.
     Part 2 Voltrammetric detection of uric acid at the poly (L-glutamic acid) modified glassy carbon electrode
     The glassy carbon electrode was modified with L-glutamic acid modifier and electrochemical behavior of uric acid (UA) at the bare electrode and modified electrode were investigated by cyclic voltammetry. The experimental results showed that the poly (L-glutamic acid) modified glassy carbon electrode has been demonstrated to have obvious electrocatalytical function to electrochemical oxidation reaction of UA. Based on the optimization of UA test conditions, it is concluded that the oxidation peak current has a good linear relationship in the UA concentration range of 2.5 x 10-6~1.0 x 10-3 mol/L with the linear regression equation for Ipa(μA)=-149.9583+25.5 log C(UA) and correlation coefficient of R2=0.9948. The detection limit for UA is 1.0 x 10-6 mol/L at signal to noise ratio of 3. The experimental results, compared with similar modified electrodes, demonstrated the characteristics of simple preparation, wide linear range and low detection limit. It is expected that the modified electrode will be applied to detect UA in urine and related research.
     Part 3 Electrocatalytic behavior and selective detection of uric acid in the presence of ascorbic acid at the cinnamic acid modified glass carbon electrode
     Under the optimized conditions of electrode preparation, the glassy carbon electrode was modified by constant potential deposition with cinnamic acid modifier. The electrochemical behavior of UA at the bare electrode and cinnamic acid modified electrode was investigated by cyclic voltammetry and the detection of UA was accomplished in the case of high concentration (1.0 x 1O-3 mol/L) of A A coexistence and the stability and reproducibility of the electrode were studied. The experimental results showed that cinnamic acid modified electrode has obvious electrochemical activity to oxidation of UA and the detection limit of 1.0 x 10-6 mol/L at signal to noise ratio of 3. Under the optimum conditions, the oxidation peak current had a good linear relationship in the UA concentration range of 2.0 x 10-6~2.0 x 10-4 mol/L with the linear regression equation of Ipa(μA)=22.4948+0.2195 logC(UA) and correlation coefficient of R2=0.9902. A new electrochemical method for the determination of UA was developed.
引文
[1]Lane R F,Hubbard A T. J Phys. Chem,1973,77:1401-1411.
    [2]董绍俊,车广礼,谢远武.化学修饰电极[M].科学出版社,2003:28-30
    [3]李亚男,霍丽华,左霞,等.酞菁钴及其衍生物修饰电极对分子氧的电催化还原[J].应用化学,2009,26(12):1471-1475.
    [4]沈宇.三种新型化学修饰电极的制备及其应用[D].陕西:西北大学,2009.
    [5]Angelo A C D.Electrocatalysis of hydrogen evolution reaction on Pt electrode surface-modified by S-2 chemisorption[J]. International Journal of Hydrogen Energy,2007,32:542-547.
    [6]Marinovic V,Marinovic S,Jovanovic M,et al.The electrochemical reduction of trinitrotoluene on a platinum wire modified by chemisorbed acetonitrile[J].Journal of Electroanalytical Chemistry,2010,648:1-7.
    [7]Rassaei L,Sillanpaa M,Marken F.Modified carbon nanoparticle-chitosan film electrodes:Physisorption versus chemisorption[J]. Electrochimica Acta,2008,53: 5732-5738.
    [8]叶淑玉,郭渡,陆天虹等.分析化学.1991,19:612.
    [9]周国清.二种化学修饰电极电催化活性的研究与应用[D].重庆:西南大学,2008.
    [10]方程,周性尧,自组装膜研究进展及其在传感器技术中的应用[J].分析科学报,2003,19(1):81-85.
    [11]霍莉,丁克强,左卫霞,等.自组装膜的研究应用新进展[J].河北师范大学学(自然科学版),2003,27(6):608-612
    [12]廖文利.化学修饰电极的制备及应用研究[D].重庆:西南大学,2009.
    [13]Zaba B N,Wilkinson M C,Taylor D M,et al.1987,213:49.
    [14]Zhang X,Bard A J. J Phys. chem.1988,92:5566
    [15]李富友,余军华,张宝文,等.含不同链长的三个卟琳LB膜修饰电极的光电响应研究[J].化学学报,2006,64(4):301-305.
    [16]董慧民,郑浩,王淑洁等.杯芳烃LB膜修饰电极及其识别性能[J].化学通 报,2006,2:127-129.
    [17]Guaus E,Errachid A,Torrent-Burgues J. Voltammetric response of a glassy carbon electrode modified by a Langmuir-Blodgett film of a thiomacrocyclic compound[J].Journal of Electroanalytical Chemistry,2008,614:73-82.
    [18]Zheng H,Yan Z N,Dong H M,et al. Simultaneous determination of lead and cadmium at a glassy carbon electrode modified with Langmuir-Blodgett film of p-tert-butylthiacalix arene[J]. Sensors and Actuators B,2007,120:603-609.
    [19]Yin F,Shin H K,Kwon Y S. Direct electrochemistry of hemoglobin immobilized on gold electrode by Langmuir-Blodgett technique[J]. Biosensors and Bioelectronics,2005,21:21-29.
    [20]Wang F,Wu Y J,Liu J X,et al. DNA Langmuir-Blodgett modified glassy carbon electrode as voltammetric sensor for determinate of methotrexate[J]. Electrochimica Acta,2009,54:1408-1413.
    [21]Li L J,Yu L B,Chen Q F,et al. Determination of Ferulic Acid Based on L-Cysteine Self-assembled Modified Gold Electrode Coupling Irreversible Biamperometry[J]. Chinese Journal of Analytical Chemistry,2007,35(7):933-937.
    [22]Pedrosa V A,Paixao T R,Freire R S,et al. Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe[J]. Journal of Electroanalytical Chemistry,2007,602:149-155.
    [23]Yantasee W,Lin Y H,Fryxell G E,et al. Simultaneous detection of cadmium,copper,and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS)[J]. Analytica Chimica Acta,2004,502:207-212.
    [24]Liu Y,Chu Z Y,Jin W Y.A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode[J]. Electrochemistry Communications,2009,11:484-487.
    [25]Zhang S S,Tan Q Q,Li X M,et al. Recognition and detection of ssDNA using 2-mercaptobenzothiazole self-assembled monolayer modified gold electrode[J].Sensors and Actuators B,2008,128:529-535.
    [26]Shervedani,Abdolhamid H M,AsgharA F. Sensitive determination of iron(Ⅲ) by gold electrodemodified with 2-mercaptosuccinic acid self-assembled monolayer [J]. Analytial Chimical Acta,2007,601 (2):164-171.
    [27]Yang P H,Wei W Z,Tao C Y Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbelectrode[J].Analytica Chimica Acta,2007,585(2):331-336.
    [28]Wang S F,Xie F,Hu R F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen[J]. Sensors and Actuators B,2007,123(1):45-500.
    [29]Yang L J,Xiong H Y,Zhang X H,et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon-coated nickel modified electrode[J]. Biosensors and Bioelectronics,2011,in press.
    [30]Lu T L,Tsai Y C.Electrocatalytic oxidation of acetylsalicylic acid at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified glassy carbon electrodes[J]. Sensors and Actuators B,2010,148(2):590-594.
    [31]Huang J L,Tsai Y C. Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode[J].Sensors and Actuators B,2009,140(1):267-272.
    [32]Adams R N. Anal. Chem.1958,30:1476.
    [33]Hasanzadeh M,Nezhad K G,Shadjou N,et al.Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids [J]. Analytical Biochemistry,2009,389(2): 130-137.
    [34]刘盛辉,何品刚,方禹之.分析化学,1996,,24(11):1301-1304.
    [35]Yang M,Kong R Y C,KazmiN.Chem. Lett.1988,(3):257-258.
    [36]Hyun C Y,Hake-Sung K.Anal. Chem.2000,72(5):922-926.
    [37]Shankaran D R,Narayanan S S.Amperometric sensor for thiosulphate based on cobalt hexacyanoferrate modified electrode[J].Sensors and Actuators B: Chemical,2002,86(2-3):180-184.
    [38]任旺.聚合物膜修饰电极的研制及其应用[D].重庆:西南大学.2006.
    [39]Tian L,Chen L,Liu L,et al,Electrochemical determination of ascorbic acid in fruits on a vanadium oxide polypropylene carbonate modified electrode,Sensors and Actuators B:Chemical,2006,113(1):150-155.
    [40]韩素芳,陈咏梅,万平玉,等.顺序化学沉积法制备PB/MWNTs复合修饰电极及电化学性能研究[J].现代化工,2007,7(1):246-250.
    [41]闵红,曲云鹤,卫银银,等Au-TiO2纳米粒子修饰电极用于有机磷农药对硫磷的直接电化学检测的研究[J].化学传感器,2007,27(2):20-25.
    [42]刘登友,罗启枚,王辉宪,周华.基于碳纳米管修饰石墨电极测定槲皮素[J].化学传 感器,2010,30(1):60-65.
    [43]朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H202的研究[J].高等学校化学学报,2004,25(9):1637-1641.
    [44]Seet H L,Li X P,Lee K S.et.al.Nanocrystalline grain size control for Ni80Fe20/Cu micro-composite wires by different electrodeposition methods[J],2009,42(3): 442-445.
    [45]林景升.中国科学:化学,,2010,40(10):1509-1514.
    [46]X. Li et al. Sensors and Actuators B:chemical,2010,47:241-47.
    [47]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995.
    [48]李海英,张浩力,张锦,等.新型偶氮苯硫醇的衍生物自组膜的制备及结构表征[J].物理化学学报,1999,15(3):198
    [49]廖文利.化学修饰电极的制备及其应用研究[D].重庆:西南大学,2009.
    [50]Li L J,Yu L B,Chen Q F,et al. Determination of Ferulic Acid Based on L-Cysteine Self-assembled Modified Gold Electrode Coupling Irreversible Biamperometry[J]. Chinese Journal of Analytical Chemistry,2007,35(7):933-937.
    [51]Hu G Z, Liu Y C, Zhao J,et al. Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode[J]. Bioelectro chemistry,2006,69:254-257.
    [52]唐明宇.化学修饰电极电催化及电流型生物传感器的研究[D].重庆:西南大学,2007.
    [53]兰国华.几种化学修饰电极的构建及其在生命与环境检测中的应用[D].湖南:湖南大学化学化工学院,2010.
    [54]Cao L X,Yan P S,Sun K N,et al.Tailor-made gold brush nanoelectrode ensembles modified with L-cysteine for the detection of daunorubicine[J]. Electrochimica Acta,2008,53:8144-8148.
    [55]Li M Y,Huang S S,Zhu P S,et al.A novel DNA biosensor based on ssDNA/Cyt c/L-Cys/GNPs/Chits/GCE[J]. Electrochimica Acta,2009,54:2284-2289.
    [56]李军.膜化学修饰电极的研究与应用[D].山东:山东师范大学,2006.
    [57]Yang QYuan R,Chai Y Q. A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/1-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode[J]. Colloids and Surfaces B: Biointerfaces,2008,61:93-100.
    [58]马心英,傅佑丽.氨基酸化学修饰电极的研究与应用[J].曲阜师范大学学 报,2006,32(4):91-94.
    [59]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18(4):337-343.
    [60]李容,蒋晓丽,池永明,何晓英.聚L-酪氨酸修饰电极上的电化学行为及测定[J].分析测试学报,2010,29(5):502-506.
    [61]梁汝萍,邱建丁,蔡沛祥.多巴胺在聚L-天冬氨酸修饰电极上的催化氧化及鉴定[J].中山大学学报(自然科学版),2003,42(1):119-122.
    [62]孙登明,朱庆仁,魏庆云.聚L-半胱氨酸修饰电极的制备及测定多巴胺[J].中国公共卫生,2004,20(5):544-545.,
    [63]孙登明,朱庆仁,张振新,张再好.聚L-色氨酸修饰电极的制备及对多巴胺的测定[J].分析实验室,2003,22(6):6-8.
    [64]孙登明,马伟,吴云.聚L-异白氨酸修饰电极的制备及对多巴胺的测定[J].应用化学,2006,23(11):1214-1217.
    [65]马伟,孙登明,顾响.聚L-丝氨酸电极的制备及测定制剂中的多巴胺[J].中国卫生检验杂志,2005,15(12):1421-1423.
    [66]马伟,孙登明.聚L-精氨酸修饰电极存在下同时测定多巴胺和肾上腺素[J].分析化学,2007,35(1):66-70.
    [67]马伟,孙登明.聚L-苏氨酸修饰电极对多巴胺和肾上腺素的电催化氧化[J].物理化学学报,2007,23(3):332-336.
    [68]丁荣昌,董文举,冯久菊.尿酸在聚L-苯丙氨酸修饰电极上的伏安测定[J].应用化学,2009,26(7):822-825.
    [69]郭朝中,李忠彬,陈昌国等.铜离子在聚L-谷氨酸修饰玻碳电极上的电化学行为研究[J].重庆文理学院学报:自然科学版,2010,29(4):41-44.
    [70]贾晶晶.膜化学修饰电极的研究与应用[D].山东:山东师范大学,2007.
    [71]杜秋香.氨基酸修饰玻碳电极及在药物分析中的应用[D].江苏:扬州大学,2008.
    [72]Davis D G, Blanco E. An electrochemical study of the oxidation of L-cysteine[J] Journal of Electroanalytical Chemistry,1966,12(3):254-260.
    [73]孙登明,张振新,马伟,王磊.聚L-酪氨酸修饰电极的制备及对多巴胺的测定[J].分析实验室,2005,24(7):28-31.
    [74]孙登明,由文颖.聚L-谷氨酸修饰电极的制备及对多巴胺的测定[J].分析科学学报,2005,21(5):530-532.
    [75]孙登明,田相星,马伟.银掺杂聚L-酪氨酸修饰电极同时测定多巴胺、肾上腺素和抗坏血酸[J].分析化学,2010,38(12):1742-1746.
    [76]常文贵,袁海涛.L-半胱氨酸修饰电极测定测定维生素C的方法研究[J].饮料工业,2006,9(9):33-36.
    [1]Neubold C, Kalcber K, Diewald W, et al. Voltammetric determination of nitrate with a modified carbon paste electrode[J]. Electroanalysis,1994(6):227-236
    [2]Gerhardt G A, Gezanagy O G,Moghaddam B, et al. Nafion-coated electrode with high selectivity for CNS electrochemistry[J]. Brain Research,1984,290:390-395
    [3]Rice M E,Oke A, Bradberry C W, et al.Simultaneous voltammetric and chemical monitoring of dopamine release in situ[J].Brain Reseach,1985,340:151-155
    [4]吴康兵,易洪朝,胡胜水,等.表面活性剂存在下雌激素的直接电化学分析[J].高等学校化学学报,2001,22:1658-1660
    [5]Zen J M, Chen P J. A selective voltammetric method for uric acid and dopamine detection usingclay-modified electrode[J]. Anal. Chem.1997,69:5087-5093
    [6]Davis J J, Coles R J, Hill A O. Protein electrochemistry at carbon paste electruodes[J]. J.Electroanal. Chem.1997,440:279-282
    [7]Britto P J, Santhanam K S V, Ajayan P M. Carbon paste electrode for oxidation if dopamine.Bioelectrochem[J]. And Bioenergetics.1996,41:121-125
    [8]邹冈.基础神经药理学[M].北京:科学出版社,1999,203-205
    [9]吴霞,童裳伦,苏本玉等.荧光光度法测定多巴胺[J].分析化学,1999,27(9):1069
    [10]陈亚红,田丰收,曹丽娟.酶催化动力学光度法测定盐酸多巴胺[J].药物分析杂志,2010,(02)
    [11]龙云,李东辉,冯建章,童沈阳.利用荷移反应分光光度法测定针剂中的多巴胺[J].分析化学,1997,(08)
    [12]王怀友,孙悦,唐波.分光光度法测定多巴胺[J].分析试验室,2003,(01)
    [13]杜凌云,王术皓,等.流动注射协同化学发光法测定盐酸多巴胺[J].分析试验室,2005,(07)
    [14]李丽清,孟兆珂,吕九如.流动注射化学发光法测定多巴胺[J].泰山医学院学报,1998,(02)
    [15]阮国红,邬春华,等高效液相色谱法测定多巴胺-β-羟化酶活性.[J].复旦学报(医学版),2009,(03)
    [16]马曾燕,李将渊,向伟.聚毗咯/多壁碳纳米管修饰电极对多巴胺的测定[J].化学研究与应用,2008,(12)
    [17]樊雪梅,王书民,赵夏,董文举.聚对氨基苯磺酸修饰电极差分脉冲伏安法测定多巴胺[J].理化检验(化学分册),2010,(08)
    [18]连靠奇.神经递质多巴胺与小分子药物的电化学分析研究[D].河北大学,2005.
    [19]程若娟,万其进,王秀文,余芬等.多巴胺在聚牛磺酸膜上的伏安行为及选择测定[J].武汉工程大学学报,2008,(04)
    [20]赵红,张玉忠,袁倬斌.聚2-吡啶甲酸修饰电极伏安法测定多巴胺[J].分析化学, 2001,(10).
    [21]陈伟,林新华,黄丽英,罗红斌.聚溴酚蓝修饰电极对多巴胺的电催化作用及伏安测定[J].分析试验室,2005,,(05).
    [22]陈贤光,张素娟,欧阳良琪,邹小勇.L-半胱氨酸自组装电极循环伏安法测定多巴胺[J].分析实验室,2007,(04)
    [23]孙登明,马伟.用聚L-缬氨酸修饰电极循环伏安法测定药剂中的多巴胺[J].中国卫生检验杂志,2005,(07)
    [24]孙登明,朱庆仁,张振新,张再好.聚L-色氨酸修饰电极的制备及对多巴胺的测定[J].分析试验室,2003,(06)
    [25]马伟,孙登明,张振新,任振华.聚L-白氨酸修饰电极伏安法测定痕量多巴胺的研究[J].分析试验室,2005,(11)
    [26]马心英,傅佑丽.氨基酸化学修饰电极的研究与应用[J].曲阜师范大学学报(自然科学版),2006,(04).
    [27]孙登明,朱庆仁,魏庆云.聚L-半光氨酸修饰电极的制备及测定多巴胺[J].中国公共卫生,2004,(05)
    [1]朱英,许会彬.血清尿酸与高血压及心血管病死亡率的关系[J].泰山卫生,2006,26(2):26-27.
    [2]张青莲.探讨高尿酸血症与急性脑血管病的关系[J].临床与实践,2010,14:36-37.
    [3]薛丽,张爱伦.高尿酸血症与心脑血管疾病研究进展[J].医学综述杂志,2006,8(12):90-91.
    [4]胡东达,潘根富,甘毅,等.缺血性脑卒中患者尿酸的临床意义[J].实用心脑 肺血管病杂志,2008,16(1):42-43.
    [5]冯晓晶,张加玲.分光光度法测定血清中尿酸含量[J].中国医疗前沿,2011,(01).
    [6]戴新华,徐锐锋,张春梅,等.血清中尿酸的测定方法及其研究进展[J].现代仪器分析,2006,(4):83-86.
    [7]丁萍,关鲁雄,秦旭阳,等.尿酸检测方法及进展[J].娄底师专学报,2004,4(2):7-9.
    [8]管敏娅.高效液相色谱法测定尿中马尿酸的方法探讨[J].中国公共卫生,2003,(09).
    [9]郭卫荣,吴建军.高效液相色谱法检测三羟乙基异氰尿酸酯的纯度[J].氨基酸和生物资源,2010,34(3):73-75.
    [10]于世林.高效液相色谱方法及应用.[M]北京:化学工业出版社,2000.
    [11]Nakaminami T, Ito S I, Kuwabata S. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer[J].Anal Chem,1999,71(10):1928-1934.
    [12]S. K. Cunningham and T. V. Keaveny. A two-stage enzymatic method for determination of uric acid and hypoxanthine/xanthine.Clinica Chimica Acta,1978, 86 (2):217-221.
    [13]Cai X, Kalcher K, Neuhold C, Ogorevc B. An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes.Talanta,1994,41(3):407-413.
    [14]J. M. Zen, Y. J. Chen, C. T. Hsu, Y. S. Ting. Poly (4-vinylpyridine)-coated chemically modified electrode for the detection of uric acid in the presence of a high concentration of ascorbic acid.Electroanalysis,1997, (9):1009.
    [15]刘杰,平建峰,吴坚.正弦波伏安法检测尿酸的研究[J].传感技术学报,2009,22(8):1083-1087.
    [1]Nishioka K, Mikanagi. Hereditary and environmental factors influencing on the serum uric acid throughout ten years population study in Japan. Ady Exp Med Biol 1980; 122A:155-159
    [2]朱英,许会彬.血清尿酸与高血压及心血管病死亡率的关系[J].泰山卫生,2006,26(2):26-27.
    [3]张青莲.探讨高尿酸血症与急性脑血管病的关系[J].临床与实践,2010,14:36-37.
    [4]戴新华,徐锐锋,张春梅,等.血清中尿酸的测定方法及其研究进展[J].现代仪器分析,2006,(4):83-86.
    [5]丁萍,关鲁雄,秦旭阳,等.尿酸检测方法及进展[J].娄底师专学报,2004,4(2):7-9.
    [6]任旺;张英;丁杰PCA/GC电极同时测定尿酸(UA)和抗坏血酸(AA)[J].电化学,2005,15(3):345-349.
    [7]张军,邓培红,匡云飞.二茂铁修饰碳黑微电极同时测定多巴胺和抗坏血酸[J].分析试验室,2004,23(8):67-69.
    [8]马艳蓉,高作宁.聚亚甲基蓝修饰金电极对过量抗坏血酸存在下尿酸的测定[J].分析测试学报,2008,27(2):139-142.
    [9]黄燕生,陈静,许兵.在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺 [J].化学通报,2006,(9):656-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700