利用短乳杆菌制备γ-氨基丁酸相关过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸(γ-aminobutyric acid,简称为GABA)是一种天然存在的非蛋白质氨基酸,为哺乳动物中枢神经系统中重要的抑制性神经递质,具有降血压、治疗癫痫、镇静安神、增强记忆、控制哮喘、调节激素分泌、促进生殖、活化肝肾等多种生理功能,其制备和应用广受人们的关注与重视。
     本文系统地研究了利用短乳杆菌生物法制备GABA的过程及相关工艺。论文在建立γ-氨基丁酸分析方法的基础上,从自然界选育得到了一株GABA高产菌株;通过对摇瓶培养条件和发酵罐培养条件的优化,提高了GABA的发酵产量;采用游离细胞和固定化细胞对催化合成GABA的反应条件进行了优化。此外,对短乳杆菌细胞内催化合成γ-氨基丁酸唯一的关键限速酶—谷氨酸脱羧酶进行了分离纯化,并对其酶学性质进行了初步的研究。
     首先,建立了GABA的定性和定量方法,纸层析和薄层层析法用于GABA定性分析,高效液相色谱法(HPLC)用于GABA定量分析。采用HPLC定量分析GABA时,以丹磺酰氯作柱前衍生剂,样品的pH高于7.5以及衍生化时间超过20min,衍生化反应稳定;GABA浓度(C)在0.1~2mM之间与峰面积(A)线性关系良好,线性方程为A=313.242·C+8.314,相关系数R为0.9997,GABA的加标回收率为95.30%~106.34%。
     其次,从未灭菌的新鲜牛奶中筛选到一株产GABA的菌株,记为hjxi-01,发酵72h后GABA的产量6.9g/L。根据菌株hjxj-01的菌落形态以及生理生化特性,鉴定为短乳杆菌Lactobacillus brevis hjxj-01。以Lactobacillus brevis hjxj-01为出发菌株,经UV和~(60)Coγ-射线反复诱变处理,以含不同浓度的GABA梯度平板进行筛选,得到一株高产GABA的突变株Lactobacillus brevis hjxj-08119,发酵72hGABA的产量17g/L,比野生菌株产量提高了140%,此高产突变株遗传性状稳定,传代12次,菌株未出现回复突变情况。高产突变株Lactobacillus brevis hjxj-08119已在中国微生物菌种保藏管理委员会(CGMCC)保藏,保藏编号为CGMCCNO.1306。
     第三,利用Plackett—Burman设计对影响Lactobacillus brevis hjxj-08119发酵生产GABA的15种相关因素进行了效应评价,筛选出具有显著正效应的三个因素:葡萄糖、MnSO_4·4H_2O和L-谷氨酸钠(L-MSG),其他因素对GABA产量无显著影响。然后对具有显著正效应的三个因素进行进一步考察,确定了三个因素的取值范围,以Hybrid设计得到的实验数据作为人工神经网络(ANN)训练样本,建立BP(back propagation)神经网络模型,粒子群(PSO)算法对建立的ANN模型进行全局寻优,得到最佳培养基组成为(g/L):葡萄糖17.6,酵母膏15,蛋白胨5,乙酸钠3,MgSO_4·7H_2O 0.03,MnSO_4·4H_2O 0.02,NaCl 0.001,FeSO_4·7H_2O 0.001,L-MSG73.3,初始pH6.8,发酵温度30℃,250mL三角瓶中的装液量为50mL/250mL。在此发酵条件下,GABA的发酵产量达到33.42g/L,较突变株Lactobacillus brevishjxi-08119的发酵产量17g/L提高了97%。
     第四,在3.7升发酵罐中对GABA发酵的操作条件(溶氧和pH控制)以及补料进行研究。结果表明,好氧发酵有利于菌体生长,最大菌体干重可达2.78g/L,而厌氧发酵则有利于产物GABA的生成,发酵72h后GABA的浓度达到23.94g/L。在兼性厌氧条件下,不同pH控制方式下对GABA分批发酵的影响有较大差异,控制pH为5.0时GABA产量最高,达到40.73g/L(72h)。对控制pH5.0的GABA发酵过程进行分析,基于Logistic方程和改进的Luedeking-Piret方程,分两阶段建立控制pH5.0发酵生产GABA的动力学模型,该模型能较好地预测细胞生长、底物消耗以及GABA合成过程。对GABA的补料发酵进行了初步研究,经过四次补料,GABA的最终浓度达到76.36g/L,分别比摇瓶发酵、厌氧发酵以及控制pH5.0的发酵产量提高了128.6%、219%和87.5%。
     第五,运用ANN模型结合PSO算法对游离短乳杆菌细胞催化合成GABA的反应条件进行了优化,得到的最优催化反应条件为:收集发酵60h的短乳杆菌细胞进行催化,缓冲体系为25mL柠檬酸—磷酸氢二钠缓冲液(100mM,pH4.23),反应液中包括120mM L-MSG,0.83g/L FeSO_4·7H_2O,10μM 5'-磷酸吡哆醛(PLP),2.68g DCW/L,在40℃恒温静置反应5h。在得到的最佳催化条件下,进行了四次实验验证,得到GABA的平均产量为9.34±0.22g/L,预测结果(9.4g/L)与实验情况吻合较好。对响应面(RSM)模型和ANN模型的预测性能进行了比较,结果表明,ANN模型的预测性能稍优于RSM模型。
     第六,对利用海藻酸钙胶珠包埋短乳杆菌细胞催化合成γ-氨基丁酸的反应特性进行了研究。优化的胶珠中细胞密度为11.2g细胞干重(DCW)/L,反应最适的pH和温度分别为pH4.4和40℃;细胞经固定化后,温度稳定性显著提高。固定化连续进行10批次催化反应后(共80h),GABA的产率仍在50%以上,并且胶珠仍保持较好的完整性。
     最后,对Lactobacillus brevis hjxj-08119细胞中的谷氨酸脱羧酶(GAD)进行了分离纯化,建立了有效分离纯化GAD的工艺流程,即“溶菌酶处理——→French press细胞破碎——→30%~90%硫酸铵分级盐析——→Q Sepharose FF离子交换层析——→Sephacryl S-200凝胶过滤层析——→Resource Q离子交换层析”。整个工艺活性收率为16.95%,纯化倍数为43.78,比活达到了3.94U/mg(蛋白),由SDS-PAGE得到的GAD分子量约为62kD。对纯化后GAD的酶学性质进行了初步研究,最适反应温度为37℃,最适反应pH为4.4,PLP对酶活力无显著激活作用,酶最大反应速度V_(max)为6.59U/mg,常数K_m为8.22mM。
Gamma-aminobutyric acid (GABA), a four-carbon nonprotein amino acid, serves as a major inhibitory neurotransmitter in mammalian nervous systems. GABA has several physiological functions such as hypotensive activity, treatment of epilepsy, tranquilizing and allaying excitement, enhancing memory, controlling asthma, regulating hormone secretion, promoting reproduction and activating liver and kidney function. Preparation and application of GABA are concerned.
    Preparation of GABA by Lactobacillus brevis was studied in detail in this dissertation. Based on determination of GABA analytical method, GABA-producing mutant strain was bred; the fermentation conditions in shake flask and fermenter were optimized; biosynthesis of GABA using free and immobilized Lactobacillus brevis cells was investigated. Furthermore, purification and characterization of glutamate decarboxylase(GAD) which is a unique enzyme synthesizing GABA were studied.
    First, paper and thin-layer chromatography were used as qualitative analysis of GABA, and high performance liquid chromatography(HPLC) as quantitative determination of GABA. With Dansyl chloride (DNS-Cl) as pre-column derivatization, derivatization reaction was stable when pH of sample was higher than 7.5 and reaction time exceeded 20 min. Peak area (A) had good linearity with GABA concentration(C) when GABA concentration ranged from 0 to 2 mM. The regression equation was A=313.242·C+8.314 and correlation coefficient was 0.9997. Average recoveries were in the range of 95.30%~106.34%.
    Second, a GABA-yielding strain (hjxj-01) was isolated from fresh milk without pasteurization, and GABA production reached 6.9 g/L after 72h fermentation. The strain hjxj-01 was named as Lactobacillus brevis according to its colony morphology as well as physiological and biochemical properties. Applying ultraviolet and ~(60)Co γ-ray to mutagenize Lactobacillus brevis hjxj-01, a mutant strain hjxj-08119 was selectively bred by GABA resistance selection. After 72h fermentation, the mutant strain gave a GABA output of 17 g/L, 140% higher than that of the parent strain (hjxj-01). After 12 generation, the mutant strain had stable yield of GABA and no reverse mutation. The mutant strain is kept China General Microbiological Culture Collection Center (CGMCC) as Lactobacillus brevis CGMCC NO.1306.
    Third, artificial neural network (ANN) and particle swarm optimization (PSO) were used to optimize GABA production by Lactobacillus brevis CGMCC NO.1306 in shake flask. Firstly, glucose, sodium glutamate(L-MSG) and MnSO_4·4H_2O, which influenced
    GABA production positively were screened from 15 related factors by using Plackett-Burman design. The reasonable ranges of these three factors were determined by single factor experiment. Then experimental samples of hybrid design were selected for training ANN, and the ANN was modeled. Finally, based on the ANN model, the optimized condition was predicted by particle swarm optimization(PSO) algorithm. The optimal medium composition in shake flask was determined as follows (g/L): glucose 17.6, yeast extract 15, peptone 5, CH_3COONa 3, MgSO_4·7H_2O 0.03, MnSO_4·4H_2O 0.02, NaCl 0.001, FeSO_4·7H_2O 0.001, L-MSG 73.3. The fermentation should be performed at 30℃, pH 6.8, and medium volumetric ratio 20%. After 72h fermentation, the yield of GABA reached 33.42 g/L, 97% higher than fermentaion conditions before optimization.
    Fourth, the effects of operation conditions (aeration and pH) on GABA batch fermentation by Lactobacillus brevis hjxj-08119 in a 3.7 liters stirred fermenter were investigated. The results showed that operation conditions (dissolved oxygen and pH) had the significant effects on GABA production. The aerobic cultivation was advantageous to high level of dry cell weight (2.78 g/L), but the anaerobic cultivation was advantageous to GABA accumulation that GABA yield reached 23.94 g/L at 72h. To assess the effects of pH on GABA production, three batch processes with pH control at 4.5, 5.0 and 5.5 respectively, were conducted in facultative anaerobic cultivation. The yield of GABA was the highest at pH 5.0 and reached 40.73 g/L at 72h. The kinetic models for two stages were established based on the Logistic and modified Luedeking-Piret equations involving cell growth, product formation and substrate consumption for GABA fermentation process with pH control at 5.0. The parameters of the models were obtained by using Matlab 6.0 software with experimental data and the models. With the evaluated models parameters, the calculated values of the models and experimental data are in a good agreement. The fed-batch fermentation of GABA was preliminarily studied. After four times L-MSG addition, the yield of GABA reached 76.36 g/L at 108h, and the yield which fed-batch fermentation significantly enhanced GABA yield were 128.6%, 219% and 87.5% respectively higher than shake flask fermentation, anaerobic fermentation and fermentation with pH control at 5.
    Fifth, ANN and PSO were applied to the biotransformation of L-MSG to GABA catalyzed by the free cells of Lactobacillus brevis hjxj-08119. The modeled maximum GABA yield reached 9.4 g/L under the following optimal conditions: 25 mL Na_2HPO_4-citric acid buffer (100 mM, pH 4.23), 120 mM L-MSG, 0.83 g/L
    FeSO_4·7H_2O, 10 μM 5'-pyridoxal phosphate(PLP), the resting cells obtained from a 60-h culture broth, 2.68 g dry cell weight (DCW)/L and without agitation at 40℃ for 5 h. The average value of the four experimentally tested GABA yield was 9.34±0.22 g/L compared with a value of 9.4 g/L by ANN coupling PSO. The prediction capacity between ANN and response surface methodology (RSM) was compared. The results demonstrated a slightly higher prediction accuracy of ANN compared to RSM.
    Sixth, by entrapping the Lactobacillus brevis cells into Ca-alginate gel beads, the biotransformation conditions of L-MSG to GABA were optimized with the immobilized cells. The optimal cell density in gel beads, reaction pH and temperature were 11.2 g DCW/L, 4.4 and 40℃ respectively. GABA yield still reached more than 50% and Ca-alginate gel beads kept integrity after ten-time recycling (80 h) of the immobilized cells.
    Finally, effective isolation and purification procedure of GAD from Lactobacillus brevis hjxj-08119, including lysozyme treatment, French press disruption, 30~90% saturation (NH_4)_2SO_4 fractional precipitation, Q Sepharose FF anion-exchange chromatography, Sephacryl S-200 gel filtration chromatography and Resource Q anion-exchange chromatography, was brought forward. Using this protocol, the purified GAD was demonstrated to possess electrophoretic homogeneity via SDS-PAGE. The purification fold, activity recovery and specific activity of GAD were 43.78, 16.95% and 3.94 U/mg(protein), respectively. The molecular weight of the purified GAD was estimated to be approximately 62 kDa via SDS-PAGE. The optimum pH and temperature of the purified GAD were 4.4 and 37℃, respectively. The V_(max) and K_m value of the GAD enzyme from Lineweaver-Burk plot was found to be 6.59 U/mg and 8.22 mM. PLP had little effect on the regulation of its activity.
引文
1. Barrett G C, Elmore D T. Amino acids and peptides. Cambridge University Press.1998.
    2.吴显荣.非蛋白质氨基酸的结构与功能.氨基酸杂志.1989,3:25-27.
    3.李英,王霞,杨帆.非蛋白氨基酸的功能和药物作用研究进展.上海应用技术学院学报.2003,3(3):194-198.
    4.孙斌,罗毅.帕金森病的现代药物治疗.医药导报.2005,24(2):85-90.
    5. Kmjevic K. Chemical nature of synaptic transmission in vertebrates. Physiol Rev. 1974, 54: 419-540.
    6.王大慧,韦萍,欧阳平凯.D-色氨酸研究进展.化工进展.2002,21(2):103-105.
    7.沈同,王镜岩.生物化学(第二版),上册.中国北京:高等教育出版社.1990.
    8. Randall K J, Toshio L, Abraham G, George R S. Antitumor Activity of N-(Phosphonacetyl)-L-aspartic acid, a transition-state inhibitor of aspartate transcarbamylase. Cancer Res. 1976, 36(8): 2720-2725.
    9.张英,王树英,丁霄霖.羟化赖氨酸清除活性氧自由基能力的研究.无锡轻工大学学报.1998,17(3):58-61.
    10. Anaka K, Akutsu H, Ozaki Y. Molecular conformations of g-aminobutyric acid and g-amino-β-hydroxybutyric acid in aqueous solution. Bulletin of the Chemical Society of Japan. 1978, 51(9): 2654-2658.
    11. Ham N S. NMR studies of solution conformations of physiologically active amino acids. Jerusalem Symposia on Quantum Chemistry and Biochemistry. 1974, 7: 261-268.
    12.李向平.发酵液中γ-氨基丁酸提取工艺的研究.浙江大学硕士学位论文,杭州,2006.
    13. Roberts E, Frankel S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem. 1950, 187: 55-63.
    14. Udenfriend S. Identification of γ-aminobutyric acid in brain by the isotope derivative method. J Biol Chem. 1950, 187: 65-69.
    15. Awapara J, Landua A J, Fuerst R. Free γ-aminobutyric acid in brain. J Biol Chem. 1950, 187: 35-39.
    16. Krnjevic K, Schwartz S. Is γ-Aminobutyric acid an inhibitory transmitter? Nature. 1966, 211: 1372-1374.
    17.叶惟泠.γ-氨基丁酸的发现史.生理科学进展.1986,17(2):187-189.
    18. Defelipe J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex, 1993, 3(4): 273-289.
    19. Horie H, Rechnitz G A. Enzymatic flow injection determination of gamma-aminobutyric acid. Anal Lett. 1995, 28(2): 259-266.
    20. Defeudis F V. γ-Aminobutyric acid and cardiovascular function. Experientia. 1983, 39(8): 845-848.
    21. Omori M, Yano T, Okamoto J. Efeect of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rat. Nippon Nogeikagaku Kaishi. 2002, 49(6): 409-415.
    22.林智,大森正司.γ-氨基丁酸茶成分对大鼠血管紧张素Ⅰ转换酶(ACE)活性的影响.茶叶科学.2002,22(1):43-46.
    23. Kohama Y, Matsumoto S, Mimura T, Tanabe N, Inada A, Nakanishi T. Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull. 1987, 35(6): 2484-2489.
    24. Kazami D, Ogura N, Fukushi T, Tsuji K, Anazawa M, Maeda H. Antihypertensive effect of Japanese taste seasoning containing γ-aminobutyric acid on mildly hypertensive and high-normal blood pressure subjects and normal subjects. Nippon Shokuhin Kagaku Kaishi. 2002.49(6): 409-415.
    25. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr. 2004, 92(3): 411-417.
    26.杨立川.高γ-氨基丁酸与癫病.国内外医学神经病学外科学分册.1993,16(3):19-20.
    27. Perry T L, Hansen S. Amino acid abnormalities in epileptogenic foci. Neurology. 1981, 31: 872-876.
    28.岡田忠司.GABA富化胚芽生理机能.食品开发.2001,36(6):7-9.
    29.张新定,裘明德.γ-氨基丁酸系统与癫痫.兰州大学学报(医学版).2006,32(1):93-96.
    30.赵健.中国化学药品大全.新时代出版社.1999.
    31.许建军,江波,许时婴.食品工业科技γ-氨基丁酸—一种新型的功能食品因子.2003,24(1):109-110.
    32.张晖,姚惠源,姜元荣.富含γ-氨基丁酸保健食品的研究与开发.食品与发酵工业.2002,28(9):69-72.
    33.陆月明.氨基丁酸对呼吸系统的作用.国外医学:呼吸系统分册.1996,16(2):78-80.
    34.徐传伟,夏应和.γ-氨基丁酸控制哮喘急性发作临床疗效观察.滨州医学院学报.1999,22(2):181.
    35.包华琼,王新庄.氨基丁酸(GABA)的生殖生理作用.动物医学进展.2002,23(3):39-40.
    36.卢春蓉,林英华,焦西英,鞠躬.大鼠垂体前叶GABA能神经纤维支配的电镜研究.中国神经科学杂志.2001,17(1):37-42.
    37. She Q X, Yuan Y Y, Roldan E R. γ-Aminobutyric acid(GABA) induces the acrosome reaction in human spermatozoa. Mol Hum Rep rod. 1997, 3: 677-683.
    38. Erdo S L, Rosdy B, Szporny L. Higher GABA concent rat ions in fallopain tube than in brain of rat.J Neurochem. 1982, 38: 1174-1176.
    39. Roldan E R S, Murase T, Shi Q X. Exocytosis in spermatozoa in response to progestorene zona pellueida. Science. 1994, 266: 1578-1581.
    40. Shi Q X, Roldan E R S. Evidance that a GABA_A-like receptor is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa. Biol Reprod. 1995, 52: 373-381.
    41.王春年,袁玉英.γ-氨基丁酸诱发人精子项体反应及其对若干离子转运影响的研究.生殖与避孕.1996,16(2):118-121.
    42.陈亮,姚兰春,倪江,边淑玲,朱辉,张玮.γ-氨基丁酸对精子顶体酶活性的影响.中华男科学.2002,8(5):326-328.
    43.杨藻宸.药理学和药物治疗学(上册).北京:人民卫生出版社.2000,487-503.
    44.茅原纮,杉浦友美.近年GABA生理机能研究.脑机能改善作用、高血压作用中心.食品开发.2001,36(6):9-13.
    45.郭晓娜,朱永义,朱科学.生物体内GABA的研究.氨基酸和生物资源.2003,25(2):70-72.
    46.翁旭初,匡培梓,陈双双.γ-氨基丁酸系统与记忆:行为药理学研究进展.心理学动态.1996,2:19-22.
    47. Adeghate E, Ponery A S. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell. 2002, 34: 1-6.
    48. Hagiwara H, Seki T, Ariga T. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem. 2004, 68: 444-447.
    49. Leventhal A G, Wang Y, Pu M, Zhou Y, Ma Y. GABA and its agonists improved visual cortical function in senescent monkey. Science. 2003, 300: 812-815.
    50.岡田忠司.GABA富化胚芽生理机能.食品开发.2001,36(6):7-9.
    51. Spoerri P E, Srivastava N, Vernadakis A. Ethanol neurotoxicity on neuroblast-enriched cultures from three-day-old chick embryo is attenuated by the neuronotrophic action of GABA. Int J Devl Neuroscience. 1995, 13(6): 539-544.
    52.徐叔云,陈敏章,王振刚.临床药物指南(修订版).安徽科学技术出版社.1994.
    53.津志田藤二郎.强化降血压茶的研制.国外农学-茶叶.1987,4:36-37.
    54.杨昌军,宛晓春,黄继轸.γ-氨基丁酸茶(Gabalon Tea)的研究现状.茶业通报.2004,26(1):13-15.
    55.金丰秋,金其荣.富含γ-氨基丁酸的桑茶的生理功能.中国食品添加剂.2002,1:42-43.
    56.杨海霞,朱祥瑞,陆洪省.桑叶保健制品开发利用研究进展.科技通报.2003,19(1):72-76.
    57. Saikusa T, Horino T, Mori Y. Accumulation of γ-Aminobutyric Acid(Gaba) in the Rice Germ During Water Soaking. Biosci. Biotech. Biochen. 1994, 58(12): 2291-2292.
    58. Cavazza, Claudio. Composition comprising L-carnitine or an alkanoyl L-carnitine and long-chain alkanols. US: 6328996.
    59.谢广发,戴军,赵光鳌,帅桂兰,李莉.黄酒中的 γ-氨基丁酸及其功能.中国酿造.2005,3:49-50.
    60.贾兰齐,江焕峰.γ-氨基丁酸类似物的合成新进展.有机化学.1999,19(4):356-363.
    61.刘治军,胡欣.促智药奥拉西坦的临床和基础研究.中华神经外科疾病研究杂志.2005,4(3):286-288.
    62. Hamandi K, Sander J W. Pregabalin: a new antiepileptic drug for refractory epilepsy. Seizure. 2006, 15(2): 73-78.
    63.李良铸,李明晔.最新生化药物制备技术.北京:中国医药科技出版社.2001,p79-80.
    64.蒋振晖,顾振新.高等植物体内γ-氨基丁酸合成、代谢及其生理作用.植物生理学通讯.2003,39(3):249-254.
    65.白松,林向阳,阮榕生,郑丹丹,刘玉环,何承云.γ-氨基丁酸的分布和制备.现代食品科技.2005,21(2):202-205.
    66. Sawai Y, Yamaguchi Y, Miyana D, et al. Cycling treatment of anaerobic and aerobic ncubation increases the content of γ-aminobutyric acid in tea shoots. Amino Acids. 2001, 20: 331-334.
    67.白木与志也.γ-酪酸效率的蓄积方法.茶叶研究报告.1998,87(增刊):128-129.
    68. Yoshiya S. Method of accumulation of γ-aminobutyric acid in tea: JPO9205989, Kanagana Pretecture. 1997.
    69.张晖,姚惠源,姜元荣.大米胚芽研究开发新进展.中国油脂.2002,27(3):81-84.
    70. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B: Enzymatic. 2000, 10: 67-79.
    71.赵景联.固定化大肠杆菌细胞生产 γ-氨基丁酸的研究.生物工程学报.1989,5(2):124-128.
    72.章汝平,何立芳.用后道味精母液提取谷氨酸后的废液生产 γ-氨基丁酸.长沙电力学 院学报(自然科学版).1998,13(4):433-435.
    73.林少琴,吴若红.壳聚糖固定谷氨酸脱梭酶的研究.药物生物技术.2005,12(2):101-105.
    74. Kohama Y, Matsumoto S, Mimura T, Tanabe N, Inada A and Nakanishi T. Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull, 1987, 35(6): 2484-2489.
    75.孙佰申.红曲霉发酵及某些生理活性物质的研究.浙江工业大学硕士学位论文,中国杭州,2004.
    76. Wang J J, Lee C L, Pan T M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol. 2003, 30(11): 669-676.
    77. Su Y C, Wang J J, Lin T T. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol. 2003, 30(1): 41-46.
    78. Takahashi T, Furukawa A, Hara S, Mizoguchi H. Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing. J Biosci Bioeng. 2004, 97(6): 412-418.
    79.杨胜远,陆兆新,吕风霞,别小妹.γ-氨基丁酸的生理功能和研究开发进展.食品科学.2005,26(9):546-551.
    80. Komatsuzaki N, Shima J, Kawamoto S. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22: 497-504.
    81. Nomura M, Kimoto H, Someya Y. Production of γ-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci. 1998, 81(6): 1486-1491.
    82. Yokoyama S, Hiramatsu J I, Hayakawa K. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng. 2002, 93(1): 95-97.
    83.许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究.江南大学博士学位论文,无锡,2004.
    84.钟环宇,许建军,江波.利用响应面分析法优化γ-氨基丁酸发酵培养基.无锡轻工大学学报.2004,23(3):19-22.
    85.刘清,姚惠源,张晖.生产γ-氨基丁酸乳酸菌的选育及发酵条件优化.氨基酸和生物资源.2004,26(1):40-43.
    86.崔晓俊,江波,冯骉.乳酸菌SK 005发酵产GABA(γ-氨基丁酸)的条件优化.食品研究与开发.2005,26(6):64-69.
    87. Kumar S, Punekar N S, SatyaNarayan V, Venkatesh K V. Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate(GABA) shunt in Aspergillus niger. Biotechnol Bioeng. 2000, 67: 575-584.
    88. Streeter J G, Thompson J F. Anaerobic accumulation of γ-aminobutyric acid and alanine in adish leaves(Raphanus sativus L.). Plant physiol. 1972, 49: 572-578.
    89. Streeter J G, Thompson J F. In vivo and in vitro studies on γ-aminobutyric acid metabolism with the radish plant (Raphanus sativus L.). Plant physiol. 1972, 49: 579-584.
    90. Tsushida T, Murai T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions. Agr Biol Chem. 1987, 51: 2865-2871.
    91. Shelp B J, Bown A W, Mclean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999, 4: 446-451.
    92.许建军,江波,许时婴.Lactococcus lactis 谷氨酸脱羧酶的分离纯化及部分酶学性质.无锡轻工大学学报.2004,23(3):79-83.
    93. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem. 1997, 61: 1168-1171.
    94. Higuchi T, Hayashi H, Abe K. Exchange of glutamate and γ-aminobutyrate in a Lactobaciilus strain. J Bacteriol. 1997, 179(10): 3362-3364.
    95. Wigge B, Kore S, Gardestroem P. The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation. Plant Physiol. 1993, 88: 10-18.
    96.顾振新,蒋振晖.食品原料中 γ-氨基丁酸(GABA)形成机理及富集技术.食品与发酵工业.2002,28(10):65-69.
    97.张伟国,钱和.氨基酸生产技术及其应用.北京:中国轻工业出版社.1997,p160-234.
    98.黄美娥,于华忠,曹庸.蕨菜叶、茎中γ-氨基丁酸的提取分离及含量测定.氨基酸和生物资源.2004,27(1):77-78.
    99.林少琴,吴若红,邹开煌,程开.米胚芽中 γ-氨基丁酸的分离提取及鉴定.食品科学.2004,25(1):76-78.
    100.王文,冯骉.超滤技术在GABA发酵液分离纯化过程中的应用.江苏大学学报:自然科学版.2005,26(1):5-8.
    101. Fonda M L. L-glutamate decarboxylase from bacteria. Methods Enzymol. 1985, 113: 11-16.
    102. Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. J Biol. Chem. 1991, 266: 5135-5149.
    103.许建军,江波,许时婴.谷氨酸脱羧酶(GAD)研究进展.食品工业科技.2004,7:131-133.
    104. Baum G, Chen Y, Arazi T, Mclean M D. A plant glutamate decarboxylase containing a calmodulin binding domain cloning, sequence, and functional analysis. J Biol Chem. 1993, 268: 19610-19617.
    105. Yuan T, Vogel H J. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase-a novel calmodulin-peptide interaction motif. J Biol Chem. 1998, 273: 30328-30335.
    106. Foerster C W, Foerster H F. Glutamic acid decarboxylase in spores of bacillus megaterium and its possible involvement in spore germination. J bacterial. 1973, 114: 1090-1098.
    107. Nepom G, Quinn A, Sercarz E, Wilson D B. How important is GAD in the etiology of spontaneous disease in human and murine type 1 diabetes? J Autoimmun. 2003, 20(3): 193-194.
    108. Pihoker C, Givima L K, Hampe C S, Lernmark A. Autoantibodies in diabetes. Diabetes. 2005, 54(suppl 2): S52-S61.
    109.石佩,郭丽琴.谷氨酸脱羧酶抗体测定在糖尿病分型诊断中的应用.中国老年学杂志.2000,20:182-183.
    110.马明浩,汪洋,金明飞,吴自荣.谷氨酸脱羧酶与 Ⅰ 型糖尿病发病机制.生命的化学.2006,26(1):60-62.
    111.柳林,吕文山.高纯度GAD的制备及对诊断 Ⅰ-型糖尿病的价值.国外医学内分泌学分 0.2001,21(3):151-154.
    112. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology. 1999, 145: 1375-1380.
    113.杨金奎,陈家伟,何戎华.从猪脑中提取纯化谷氨酸脱羧酶的研究.中华内分泌代谢杂志.1999,15(4):236-239.
    1.陈希贤,李东,吕建新.高效液相色谱法测定人脑脊液中 γ-氨基丁酸和谷氨酸.色谱.1997,15(3):237-239.
    2.沈佐君,王治国,李小鹏,胡翠华,杨树德.反相高效液相色谱法测定血清中 γ-氨基丁酸.生物化学与生物物理进展.1998,25(6):543-547.
    3.谭力,刘放南,张旭松.人胃粘膜中 γ-氨基丁酸和谷氨酸含量的高效液相色谱法测定.色谱.2004,22(2):131-133.
    4.刘惠文.高效液相色谱法测定南瓜粉中的 4-氨基丁酸.色谱.2001,19(6):532-533.
    5. Marquez FJ, Quesada AR, Sanchez-Jimenez F, et al. Determination of 27 dansyl amino acid derivatives in biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr. 1986, 380: 275-283.
    6.任红波.氨基酸分析仪快速测定糙米中的 γ-氨基丁酸.杂粮作物.2003,23(4):246-247.
    7.孙玮,潘峰,张正治.氨基酸快速分析法测定高原低氧大鼠下丘脑 γ-氨基丁酸的含量.氨基酸与生物资源.2002,24(1):60-63.
    8.赵长琦,李广民,王军.中药红芪中降压有效成分氨基丁酸的薄层扫描测定.西北大学学报(自然科学版).1995,25(3):277-278.
    9.邓康,罗健.薄层扫描法测定小鼠脑内 4 种神经递质的含量.西北药学杂志.2000,15(4):150-151.
    10.朱珠.递质氨基酸的毛细管电泳.安培检测.分析测试学报.1999,18(4):36-38.
    11.胡红焱,杨树德.细菌荧光法酶生物发光分析法测定血清 γ-氨基丁酸.临床检验杂志.1998,16(2):67-70.
    12.张晖,徐永,姚惠源.纸层析法定量测定米胚芽中的 γ-氨基丁酸.无锡轻工大学学报.2004,23(2):101-103.
    13.李建武.生物化学实验原理和方法.中国北京:北京大学出版社.1994,p23-26.
    14.闫淑莲,赵光,刘永利.反相高效液相色谱.丹磺酰氯柱前衍生法的氨基酸分析测定.首都医科大学学报.2003,24(3):338-339.
    15.邓福华,梅乐和,黄俊,夏江,盛清,钟春龙,姚善泾.发酵液中 γ-氨基丁酸含量的高效液相色谱法测定.材料科学与工程学报.2005,23(Special):100-102.
    16.张惟杰.糖复合物生化研究技术(第二版).中国杭州:浙江大学出版社,1999.
    17.李建武.生物化学实验原理和方法.中国北京:北京大学出版社,1994.
    18. LaemmLi U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 277: 680-683.
    19. Bio-RAD Mini-Proten(?) 3cell Instruction Manual.
    20.汪家政,范明.蛋白质技术手册.中国北京:科学出版社,2001.
    21. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem. 1997, 61: 1168-1171.
    1.许建军,江波,许时婴.生物合成 γ-氨基丁酸的乳酸菌的筛选.食品科技.2002,10:7-9.
    2.徐冬云,周立平,童振宇,陈小林.产 γ-氨基丁酸乳酸菌的分离及筛选.中国食品添加剂.2006,2:105-109.
    3.刘清,姚惠源,张晖.生产 γ-氨基丁酸乳酸菌的选育及发酵条件优化.氨基酸和生物资源.2004,26(1):40-43.
    4.崔晓俊,江波,冯骉.乳酸菌SK 005发酵产GABA(γ-氨基丁酸)的条件优化.食品研究与开发.2005,26(6):64-69.
    5.钟环宇,许建军,江波.利用响应面分析法优化 γ-氨基丁酸发酵培养基.无锡轻工大学学报.2004,23(3):19-22.
    6. Komatsuzaki N, Shima J, Kawamoto S. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22: 497-504.
    7.凌代文.乳酸细菌分类鉴定及实验方法.中国轻工业出版社.1999.
    8. Sneath P, Holt J. Bergey's Manual of Systemaic Bacteriology. 1986.
    9. Plackett R L, Burman J P. The design of optimum multifatorial experiment s. Biometrika. 1946, 37: 305-325.
    10.胡升,梅乐和,姚善泾.响应面法优化纳豆激酶液体发酵.食品与发酵工业.2003,29(1):13-17.
    11. Williams K R. Comparing screening designs. Ind Eng Chem. 1963, 55(6): 29-32.
    12.黄华江.实用化工计算机模拟—MATLAB在化学工程中的应用.化学工业出版社2004.
    13. Wames M R, Glassey J, Montague G A, Kara B. Application of radial basis function and feedforward artificial neural networks to the Escherichia coli fermentation process. Neurocomputing. 1998, 20: 67-82.
    14. Vlassides S, Ferrier J G, Block D E. Using historical data for bioprocess optimization: modeling wine characteristics using artificial neural networks and archived process information. Biotechnol Bioeng. 2001, 73: 55-68.
    15. James S, Legge R, Buddman H. Comparative study of black-box and hybrid estimation methods in fed-batch fermentation. J Process Control. 2002, 12: 113-121.
    16. Fang B S, Chen H W, Xie X L, Wan N, Hu Z D. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochem. 2003, 38: 979-985.
    17. Desai K M, Vaidya B K, Singhal R S, Bhagwat S S. Use of an artifical neural network in modeling yeast biomass and yield of β-glucan. Process Biochem. 2005, 40: 1617-1626.
    18.宋晓峰,陈德钊,胡上序,肖家治 刘福洲.基于优进策略的遗传算法对重油热解模型参数的估计.高校化学工程学报.2003,17(4):411-417.
    19.俞欢军,张丽平,陈德钊,宋晓峰 胡上序.复合粒子群优化算法在模型参数估计中的应用.高校化学工程学报.2005,19(5):675-680.
    20. Kennedy J, Eberhart R C. Particle swarm optimization. Proc IEEE Int Conf on Neural Networks. Piscataway, NJ: IEEEPress, 1995: 1942-1948.
    21. Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, 1995: 39-43.
    22.熊勇,陈德钊,胡上序.基于旋转曲面变换PSO算法的神经网络用于胺类有机物毒性分类.分析化学,2006,34(3):316-320.
    23. Shi YH, Eberhart R. A modified particle swarm optimizer. In: IEEE world congress on computational intelligence, 1998, p69-73.
    24.梅乐和,黄俊,夏江.产 γ-氨基丁酸的短乳杆菌及其用途.ZL20051004918,2006.
    25.夏江.产 γ-氨基丁酸的乳酸菌菌株选育及其发酵条件优化.浙江大学硕士学位论文,杭州,2006.
    26. Choueiki M H, Mount-Campbell C A. Training data development with the D-optimality criterion. IEEE Transactions on Neural Networks. 1999, 10(1): 56-63.
    27. Cohn D A. Neural-networks exploration using optimal experimental design. Neural Netw. 1996, 9: 1071-1083.
    28. Berkholz R, Rohlig D, Guthke R. Data and knowledge based experimental design for fermentation process optimization. Enzyme Microb Technol. 2000, 27: 784-788.
    1. Takahashi T, Furukawa A, Hara S, Mizoguchi H.. Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing. J Biosci Bioeng. 2004, 97(6): 412-418.
    2. Komatsuzaki N, Shima J, Kawamoto S. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22: 497-504.
    3.许建军,江波,许时婴.生物合成 γ-氨基丁酸的乳酸菌的筛选.食品科技.2002,10: 7-8.
    4.刘清,姚惠源,张晖.生产 γ-氨基丁酸乳酸菌的选育及发酵条件优化.氨基酸和生物资源.2004,26(1):40-43.
    5.崔晓俊,江波,冯骉.乳酸菌SK 005发酵产GABA(γ-氨基丁酸)的条件优化.食品研究与开发.2005,26(6):64-69.
    6.梅乐和,黄俊,夏江.产γ-氨基丁酸的短乳杆菌及其用途.ZL20051004918,2006.
    7.夏江.产 γ-氨基丁酸的乳酸菌菌株选育及其发酵条件优化.浙江大学硕士学位论文,杭州,2006.
    8. Shelp B J, Bown A W, Mclean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999, 4:446-451.
    9. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase.J Mol Catal B: Enzymatic. 2000, 10: 67-79.
    10. Kumar S, Punekar N S, SatyaNarayan V, Venkatesh K V. Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng. 2000, 67: 575-584.
    11. Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol. 1997, 179(10): 3362-3364.
    12. Fonda M L. L-glutamate decarboxylase from bacteria. Methods Enzymol. 1985, 113: 11-16.
    13. Small P L, Waterman S R. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coll. Trends Microbiol. 1998, 6:214-216.
    14. Bailey J E, Olilis D F. Biochemical engineering fundamentals. 2nd ed, New York: McGrawl-Hill Book Company, 1986, pp382-408.
    15. Luedeking R, Piret E L. A kinetic study of the lactic acid fermentation, batch process at controlled pH. Journal of Biochemical and Microbiological Technology and Engineering. 1959, 1(4): 393-412.
    1. Montgomery D C. Design and Analysis of Experiments(3nd ed). New York: John Wiley & Sons, 1991.
    2.胡升,梅乐和,姚善泾.响应面法优化纳豆激酶液体发酵.食品与发酵工业.2003,29(1): 13-17.
    3.黄华江.实用化工计算机模拟—MATLAB在化学工程中的应用.化学工业出版社.2004.
    4. Warnes M R, Glassey J, Montague GA, et al. Application of radial basis function and feedforward artificial neural networks to the Escherichia coli fermentation process. Neurocomputing. 1998, 20: 67-82.
    5. Vlassides S, Ferrier J G, Block D E. Using historical data for bioprocess optimization: modeling wine characteristics using artificial neural networks and archived process information. Biotechnol Bioeng. 2001, 73: 55-68.
    6. James S, Legge R, Buddman H. Comparative study of black-box and hybrid estimation methods in fed-batch fermentation. J Process Control. 2002, 12:113-121.
    7. Fang B S, Chen H W, Xie X L, Wan N, Hu Z D. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochem. 2003, 38: 979-985.
    8. Desai K M, Vaidya B K, Singhal R S, Bhagwat S S. Use of an artifical neural network in modeling yeast biomass and yield of β-glucan. Process Biochem. 2005, 40:1617-1626.
    9. Komatsuzaki N, Shima J, Kawamoto S. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22: 497-504.
    10. Nomura M, Kimoto H, Someya Y. Production of γ-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci. 1998, 81(6): 1486-1491.
    11. Ueno Y, Hayakawa K, Takahashi S,, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem. 1997, 61: 1168-1171.
    12. Tsuchiya N, Nishimura K. Method for producing γ-aminobutyric acid. JP 159612. 2004.
    1.俞俊棠,唐孝宣.生物工艺学.华东化工学院出版社,上海,1991.
    2.赵景联.固定化大肠杆菌细胞生产 γ-氨基丁酸的研究.生物工程学报.1989,5(2):124-128.
    3.章汝平,何立芳.用后道味精母液提取谷氨酸后的废液生产 γ-氨基丁酸.长沙电力学院学报(自然科学版).1998,13(4):433-435.
    4.林少琴,吴若红.壳聚糖固定谷氨酸脱梭酶的研究.药物生物技术.2005,12(2):101-105.
    5.孙佰申.红曲霉发酵及某些生理活性物质的研究。浙江工业大学硕士学位论文,杭州,2004.
    6. Wang J J, Lee C L, Pan T M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol. 2003, 30(11): 669-676.
    7. Su Y C, Wang J J, Lin T T. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol. 2003, 30(1): 41-46.
    8. Takahashi T, Furukawa A, Hara S, et al. Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing. J Biosci Bioeng. 2004, 97(6): 412-418.
    9.杨胜远,陆兆新,吕风霞,别小妹.γ-氨基丁酸的生理功能和研究开发进展.食品科学.2005,26(9):546-551.
    10. Komatsuzaki N, Shima J, Kawamoto S. Production of ~,-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22: 497-504.
    11. Nomura M, Kimoto H, Someya Y. Production of γ-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci. 1998, 81 (6): 1486-1491.
    12. Yokoyama S, Hiramatsu J I, Hayakawa K. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng. 2002, 93(1): 95-97.
    13.许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究.江南大学博士学位论文,无锡,2004.
    14. Crank J. The Mathematics of Diffusion, 2nd ed., Oxford University Press, London, 1959.
    15.柴燚.中空海藻酸钙微胶囊的性质及其固定化枯草杆菌生产纳豆激酶的研究.浙江大学硕士学位论文,杭州,2004.
    16. Hasegawa Y, Adachi S, Matsuno R. Asymmetric reduction ofacetophenone by immobilized Hansenula capsulata cells. J Ferment Bioeng. 1998, 85: 322-327.
    17. Chen KC, Wu JY, Yang WB, Hwang SCJ. Evalution of effective diffusion coefficient and intrinsic kinetic parameters on azo dye biodegradation using PVA-immobilized cell beads. Biotechnol Bioeng. 2003, 83:821-832.
    18. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B: Enzymatic. 2000, 10: 67-79.
    19. Kumar S, Punekar N S, SatyaNarayan V, Venkatesh K V. Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng. 2000, 67: 575-584.
    1. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B: Enzymatic. 2000, 10: 67-79.
    2.石佩,郭丽琴.谷氨酸脱羧酶抗体测定在糖尿病分型诊断中的应用.中国老年学杂志.2000,20:182-183.
    3.马明浩,汪洋,金明飞,吴自荣.谷氨酸脱羧酶与Ⅰ型糖尿病发病机制.生命的化学.2006,26(1):60-62.
    4. Fonda M L. L-glutamate decarboxylase from bacteria. Methods Enzymol. 1985, 113:11-16.
    5. Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. JBiol Chem. 1991, 266:5135-5149.
    6.许建军,江波,许时婴.Lactococcus lactis谷氨酸脱羧酶的分离纯化及部分酶学性质.无锡轻工大学学报.2004,23(3):79-83.
    7. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem. 1997, 61: 1168-1171.
    8. Braford M M. A rapid and sensitive method for the quantitation of microgram quantitied of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254.
    9. LaemmLi U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 277: 680-683.
    10. Johnson B S, Singh N K, Cherry J H, Locy R D. Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry. 1997, 46(1): 39-44.
    11. Matsumoto T, Yamaura M, Funatsu M. Improved purification and spectroscopic properties of squash glutamate decarboxylase. Biosci Biotechnol Biochem. 1996, 60(5): 889-890.
    12. Tong J C, Mackay I R, Chin J, Law R H P, Fayad K, Rowley M J. Enzymatic characterization of a recombinant isoform hybrid of glutamic acid decarboxylase (rGAD67/65) expressed in yeast. JBiotechnol. 2002, 97(2): 183-190.
    13. Wu J Y, Matsuda T, Roberts E. Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem. 1993, 248(9): 3029-3034.
    14. Tsuchiya K, Nishimura K, Iwahara M. Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. FoodSci. Technol. Res. 2003, 9(3): 283-287.
    15. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology, 1999, 145: 1375-1380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700