内侧前额叶皮层和眶额皮层在吗啡成瘾中的作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毒品滥用是威胁人类生存的重大社会问题。吗啡是我国广泛滥用的毒品之一,对其作用机制的研究有助于更好的预防和治疗成瘾性疾病。前额叶皮层作为大脑的高级中枢在药物依赖及成瘾过程中发挥重要作用,但相关机制研究仍然十分有限。本论文从行为学,神经化学,分子生物学等多个水平研究了前额叶皮层的两个亚区—内侧前额叶皮层和眶额皮层在吗啡成瘾中的作用并对其机制进行了初步探讨。
     论文首先采用了条件性位置偏爱和行为敏化模型结合脑内兴奋毒性损毁技术,考察了内侧前额叶皮层和眶额皮层在吗啡引起的精神依赖中的作用。结果表明,内侧前额叶皮层损毁破坏了吗啡引起的小鼠条件性位置偏爱的形成,但对吗啡引燃的位置偏爱的重现无明显影响;而眶额皮层损毁不仅破坏了吗啡引起的小鼠条件性位置偏爱的形成,还能阻断吗啡引燃的位置偏爱的重现。
     在行为敏化实验中,吗啡(2.5,5,10 mg/kg)剂量依赖性的引起小鼠自主活动的增加和行为敏化的形成。停止给药后小鼠的行为敏化逐渐消退,并在再次给予吗啡后重新表达。内侧前额叶皮层损毁能抑制急性吗啡引起的小鼠自主活动增加,阻断吗啡多次给药形成的小鼠行为敏化,但对行为敏化的表达无影响;而眶额皮层损毁不仅能抑制急性吗啡引起的小鼠自主活动增加,破坏吗啡多次给药形成的小鼠行为敏化,还能阻断吗啡行为敏化的表达。以上结果表明,内侧前额叶皮层和眶额皮层参与了吗啡的急性中枢作用,并在一定程度上影响吗啡的奖赏和复吸,但内侧前额叶皮层和眶额皮层的作用存在一定差异。
     论文进一步采用免疫组织化学方法检测了吗啡急性给药,吗啡成瘾及成瘾后纳络酮催促戒断引起的内侧前额叶皮层和眶额皮层c-Fos蛋白的表达。结果显示,吗啡单次给药能够剂量依赖性的引起大鼠内侧前额叶皮层和眶额皮层Fos蛋白表达的增加,这种表达的增加在0.5—1小时最为明显,2小时后开始消退。吗啡成瘾后再次给药同样能够引起前额叶皮层和眶额皮层Fos蛋白表达的增加,应用纳络酮催促戒断后Fos蛋白的表达进一步增强。
     大量研究支持药物成瘾与学习记忆过程密切相关,本文考察了内侧前额叶皮层和侧眶额皮层损毁对学习记忆功能的影响以探讨其参与吗啡作用的内在机制。结果发现,内侧前额叶皮层损毁破坏了小鼠的短时工作记忆,而眶额皮层损毁对小鼠的工作记忆功能无明显影响。
     谷氨酸作为兴奋性氨基酸类神经递质在脑内广泛存在,除了中脑边缘多巴胺能系统,谷氨酸能系统在药物成瘾中也起到重要作用,此系统主要起源于前额叶皮层。本文采用脑内微透析结合高效液相技术研究了吗啡对内侧前额叶皮层和眶额皮层细胞外谷氨酸含量的影响。结果发现,吗啡单次给药能够显著降低大鼠内侧前额叶皮层细胞外谷氨酸含量,在给药后80—120分钟之内一过性的升高大鼠眶额皮层细胞外的谷氨酸含量;吗啡依赖大鼠内侧前额叶皮层和眶额皮层细胞外谷氨酸的基础含量显著降低,阿片受体阻断剂—纳络酮可翻转这一作用。提示,内侧前额叶皮层和眶额皮层参与吗啡的中枢作用,并可能与此部位的谷氨酸系统相关。
     为了寻求和研制有效的中药戒毒新药,本文结合本研究室前期的研究结果,采用行为学及脑内微透析技术,进一步研究了拟人参皂苷F11(PF11)抗吗啡成瘾的作用机制。结果表明,单独应用PF11对小鼠的自主活动无显著影响,但能拮抗单次吗啡引起的小鼠自主活动增加和多次吗啡给药引起的小鼠行为敏化。单独应用PF11不能引起小鼠前额叶皮层细胞外谷氨酸水平的显著变化,但可拮抗吗啡急性给药引起的小鼠前额叶皮层细胞外谷氨酸含量的降低及吗啡依赖小鼠前额叶皮层细胞外谷氨酸基础水平的降低。
     综上所述,前额叶皮层的两个主要亚区—内侧前额叶皮层和侧眶额皮层不同程度参与吗啡的急性作用,吗啡成瘾和戒断,这一作用可能与此部位的谷氨酸系统密切相关。拟人参皂苷F11能够拮抗吗啡引起的行为敏化和前额叶皮层细胞外谷氨酸含量的降低,提示其具有抗吗啡成瘾及依赖的作用。
Opiate abuse remains a major social problem in Asian countries. Opiateslike morphine are commonly used clinically to relieve pain and treat chronicdiarrhea. Repeated administration of morphine produces dependence andaddiction. However, the neurobiological mechanisms of morphine actions arestill not completely understood. A better understanding of the neuralmechanisms underlying morphine addiction could lead to more effectivetreatment strategies for addictive disorders. The prefrontal cortex hasimplicated in drug abuse in recent years. To further understand theneuromechanisms underlying morphine addiction, in the present study weinvestigated the pharmacological, biochemical and molecular alterations in thesubregions of the PFC, the medial prefrontal cortex (mPFC) and theorbofrontal cortex (OFC).
     Firstly, we employed animal models of addiction coupled with excitotoxicbrain lesion technique to investigate the roles of the mPFC and OFC inmorphine actions. The results showed that both mPFC and OFC lesionsprevented the acquisition of morphine induced conditioned place preference(CPP), but only OFC lesions destroyed drug priming induced reinstatement ofCPP in mice.
     In the behavioral sensitization tests, lesions of mPFC and OFC blockedthe hyperactivity induced by acute morphine and the induction of behavioralsensitization by repeated morphine. While only OFC lesions prevented theexpression of behavioral sensitization. These results suggested that the mPFCand OFC may involve in the acute morphine action and mediate, at leastpartially, morphine addiction and stress-induced relapse. This was also provedby the further studies using immunohistochemical methods that both acutemorphine treatment and naloxone-precipitated withdrawal significantly increased c-fos expression in mPFC and OFC.
     With the consideration of learning-based addiction theories, we alsoexamined the effects of mPFC and OFC lesions on the process of learning andmemory using spontaneous Y maze in this study. The results showed mPFClesions impaired the working memory, while OFC lesions has little effect on theworking memory, indicating the involvement of mPFC in morphine addictionpartially by its role in memory process.
     In addition to the mesocorticolimbic dopaminergic system, glutamate-mediated synaptic transmission also involves in the opiate abuse. The sourceof glutamate is shown to be glutamatergic afferents from the prefrontal cortex.In the present study, we investigated the effect of morphine on the extracellularlevels of glutamate in the mPFC and OFC in freely moving rats by using in vivomicrodialysis coupled with high performance liquid chromatography (HPLC).The results showed that acute morphine decreased the extracellular levels ofglutamate in the mPFC, while increased the extracellular levels of glutamate inthe OFC. Repeated morphine decreased the basal levels of glutamate in bothregions. Naloxone could reverse the decrease induced by repeated morphine,suggesting that the glutamatergic system in the two regions is involved in thecentral actions of morphine.
     In the present study, we also investigate the effects of Pseudoginsenoside-F11 (PF11) , an ocotillol-type saponin existing in American ginseng, onmorphine induced behavioral sensitivity and alternations in glutamate levels inthe medial prefrontal cortex on the base of our previous studies. As the resultsshown PF11 antagonized morphine-induced behavioral sensitivity anddecrease of glutamate in the mPFC. Therefore, it is demonstrated that PF11may block morphine-induced behavioral sensitivity via its effect, at leastpartially, on the glutamatergic system in the mPFC and also suggest thatnatural products, such as ginseng, might be potential candidates for theprevention and treatment of the neurological disorders induced by morphineabuse.
     In conclusion, the mPFC and OFC are differentially involved in the acutemorphine action and mediate, at least partially, morphine addiction and relapse.The mediation may relate to the glutamatergic system in these regions. Inaddition, PF11 might be a potential candidate for the prevention and treatmentof the neurological disorders induced by morphine.
引文
Akil H, Watson SJ, Young E, et al. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984, 7:223-255
    Alcaraz C, Vargas ML, Milanes MV. Chronic naloxone-induced supersensitivity affects neither tolerance to nor physical dependence on morphine at hypothalamus-pituitary-adrenocortical axis. Neuropeptides. 1996, 30, 29-36
    Alreja M, Aghajanian GK. Pacemaker activity of locus cocruleus neurons: W hole-cell recordings in brain slices show dependence on cAMP and protein kinase A. Brain Res. 1991,556:339-43
    
    Asaad WF, Rainer G, Miller EK. Neural activity in the primate prefrontal cortex during associative learning, Neuron. 1998, 21:1399-1407
    
    Baddeley A, Exploring the central executive, Q J Exp. Psychol, 1996, 49:5-28
    Baker DA, K McFarland, Lake RW, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nature neuroscience. 2003, 6:743-749
    Baker, DA, Xi, Z.X., Shen, H., Swanson, C.J. & Kalivas, P.W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 2002, 22:9134-9141
    Baldwin AE, Holahan MR, Sadeghian K, Kelley AE. N-methyl-d-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci. 2000,114:84-98
    Banks KE, Gratton A. Possible involvement of medial prefrontal cortex in amphetamine-induced sensitization of mesolimbic dopamine function. Eur J Pharmacol. 1995, 282:157-67
    Bardo MT. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol. 1998,12:37-67
    Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacol. 2000, 153: 31-43
    Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA, Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci. 2000, 20: 4311-4319
    Bell K, Duffy P, Kalivas PW. Context-specific enhancement of glutamate transmission by cocaine, Neuropsychopharmacology. 2000, 23:335-344
    Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000, 25:515-532
    Beyer CE, Steketee JD, Cocaine sensitization: modulation by dopamine D receptors in the rat medial prefrontal cortex. Cerebral Cortex. 2002, 12: 526-35
    Beninger RJ, Miller R. Dopamine D1-like receptor and reward-related incentive learning. Neurosci Biobehav Rev. 1998, 22: 335-345
    Bhargava HN, Ramarao P. The effect of Panax ginseng on the development of tolerance to the pharmacological actions of morphine in the rat. Gen Pharmacol. 1991, 22:521-525
    Bilecki W , Wawrzczak Bargiela, APrzewlocki R. Activation of AP-1 and CRE-dependent gene expression via μ-opioid receptor. J Neurochem. 2004, 90: 874-882
    Bjijou Y, Deurwaerdere PDe, Spampinato U, Stinus L, Cador M, D-amphetamine-induced behavioral sensitization: effect of lesioning dopaminergic terminals in the medial prefrontal cortex, the amygdala and the entorhinal cortex. Neuroscience. 2002,109:499-516
    Bontempi B, Sharp FR. Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 1997,17: 8596-8612
    Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. Conflict monitoring versus selection-for-attention in anterior cingulated cortex, Nature. 1999, 402 :179 -181
    Braun AR, Jaskiw GE, Vladar K, Sexton RH, Kolachana BS. Weinberger DR, Effects of ibotenic acid lesion of the medial prefrontal cortex on dopamine agonist-related behaviors in the rat, Pharmacol Biochem Behav. 1993, 46 :51-60
    Bret DS, Snyder SH. Nitric oxide a novel neuronal messenger. Neuron. 1992, 8: 3-11
    Bridge TP, Fudala PJ, Herbert S, et al. Safety and health policy considerations related to the use of buprenorphine/naloxone as an office-based treatment for opiate dependence. Drug and Alcohol Dependence. 2003, 70: Supplement 1, s79
    Brody AL, Mandelkern MA, London ED, et al. Brain metabolic changes during cigarette craving. Arch Gen Psychiatry. 2002, 59:1162-1172
    Brown VJ, Bowman EM, Rodent models of prefrontal cortical function, Trends Neurosci. 2002, 25: 340-343
    Bryant CD, Zaki PA, Carroll FI, Evans CJ, 2005. Opioids and addiction: Emerging pharmaceutical strategies for reducing reward and opponent processes. Clin Neurosci Res. 5:103-115
    Cadoni C, Chiara Gdi. Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and the dorsal caudate putamen in rats sensitized to morphine. Neurosci. 1999, 90:447-455
    Cador M, Bjijou Y, Stinus L. Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neurosci. 1995, 65:385-395
    Capriles N, Rodaros D, Sorge RE, Stewart, J. A role for the prefrontal cortex in stress and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacol. 2003, 168 :66-74
    Cha EY, Mouledous L, Harris JR, Weech MA and Gutstein HB. Nitroglycerin inhibits the development of morphine tolerance and dependence in rats. Pharmacol Biochem Behav. 2003, 74:551-557
    Chang JY, Zhang L, Janak P H, et al. Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Research. 1997,754:12-20
    Chao JR, Ni YG, Bolanos CA, et al. Characterization of the mouse adenylyi cyclase type VI II gene promoter: regulation by cAMP and CREB. Eur J Neurosci. 2002, 1284-1294
    Ciccocioppo R, Sanna PP, Weiss F. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstience: reversal by D1 antagonists. PNAS. 2001, 98:1976-1981
    Cole DG, Kobierski LA, Konradi C, Hyman SE. 6- Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons. Proc Natl Acad Sci USA 1994,91:9631-9635
    
    Collier Ho. Celluar site of opiate dependence. Nature. 1980, 283:625
    Conde F, Maire-Lepoivre E, Audinat E. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neural. 1995, 352:567-593.
    Coutinho-Netto J, Abdul-Ghani AS, Bradford HF. Morphine suppression of neurotransmitter release evoked by sensory stimulation in vivo, Biochem Pharmacol. 1982,31:1019-1023
    Daglish MR, Weinstein A, Malizia AL, et al. Functional connectivity analysis of the neur_a1 circuits Of opiate craving: "more" rather than "different". Neuroimage. 2003, 20:1964 -1970
    David V, Durkin TP, Cazala P. Rewarding effects matergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. European Journal of Neuroscience.1998,10:1394-1402
    Devine DP, Leone P, Pocock D, Wise RA. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther. 1993,266:1236-1246
    Di Chiara G, North RA. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992, 13:185-193
    Divac I, Mogensen J, Petrovic-minic B. Cortical projecitons of thalamic mediodoral nucleus in the rat. Definition of the prefrontal cortex. Acta Neurobiol Exp. 1993, 53:425-429
    Doherty MD, Gratton A. NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in the nucleus accumbens and ventral tegmental area. Synapse. 1997,26:225-234
    D'Souza DN, Harlan RE, Garcia MM. Sexual dimorphism in the response to N-methyl-D-aspartate receptor antagonists and morphine on behavior and c-Fos induction in the rat brain. Neurosci. 1999, 93:1539-1547
    Duman RS, Tallman JF, Nestler EJ. Acute and chronic opiate regu lation of adenylate cyclase in brain: Specific effects in locus cocruleus. J Pharrruwol Exp Ther. 1988, 246:1033-1039
    Duvauchelle CL, Ikegami A, Castaneda E. Conditioned increases in behavioral activity and accumbens dopamine levels produced by intravenous cocaine. Behav Neurosci. 2000, 114:1156-1166
    Enrico P, Mura MA, Esposito G, Serra P. Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric acid release in freely moving rats, Brain Res. 1998, 797:94-102
    Everitt BJ, Robbins TW. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behavior. Psychopharmacol. 2000, 153:17-30
    Ferbinteanu J, McDonald RJ. Dorsal/ventral hippocampus, fornix and conditioned place preference. Hippocampus. 2001, 11:187-200
    Ferrari A, Coccia CR, Bertolini A. Methadone-metabolism, pharmacokinetics and interactions. Pharmacol Res 2004, 50: 551
    Frankel PS, Garcia MM, Harlan RE. Infusion of beta-FNA into the thalamus attenuates morphine-induced c-Fos induction in the rat caudate putamen. Brain Res. 1999, 838: 222-226
    Franklin KBJ, Paxinos G, 1997. The Mouse Brain in Stereotaxic Coordinates (2nd Ed.), Academic, San Diego.
    
    Fuster JM, Executive frontal functions. Exp Brain Res. 2000, 133:66-70
    Gaffan D, Murray FA, Fabre-Thorpe M. Interaction of the amygdala with the frontal lobe in reward memory. Eur J Neurosci. 1993, 5:968-975
    Garcia MM, Anderson AT, Edwards R. Morphine induction of c-fos expression in the rat forebrain through glutamatergic mechanisms: role of non-n-methyl-D-aspartate receptors. Neurosci. 2003,119:787-794
    Gehring WJ, Willoughby AR. The medial frontal cortex and the rapid processing of monetary gains and losses, Science. 2002, 295:2279-2282
    Geofrey S, Matthew RR, Thomas AS. Orbitofrontal cortex decision-making and drug addiction. Trends Neurosci. 2006, 29:116-124
    Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996, 379:606-612.
    Goeders NE. A neuroendocrine role in cocaine reinforcement. Psychoneuro- endocrinol. 1997,22:237-259
    Goeder NE, Dworkin SI, Smith JE. Neuropharmacological assessment of cocaine self-adminstration into the medial prefrontal cortex. Pharmacol. Biochem. Behav. , 1986, 24:1429-1435
    Goeders NE, Smith JE. Cortical dopaminergic involvement in cocaine reinforcement. Science. 1983, 221:773-775
    Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002, 159:1642-1652
    Graham JH, Porrino LJ. Neuroanatomical substrates of cocaine self-administration. In: Hammer RP Jr (ed) Neurobiology of cocaine. CRC Press, Boca Raton. 1995: 3-14
    Graybiel AM, Moratalla R, Robertson HA. Proc Natl Acad Sci. USA, 1990, 87:6912-6916
    Groenewegen HJ, Berendse HW, Wolters JG Anthony HM. The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res. 1990, 85:95-118
    Grobin AC, Deutch AY. Dopaminergic regulation of extracellular γ-aminobutyric acid levels in the prefrontal cortex of the rat. J Pharmacol Exper Ther 1998, 285:350-357
    Grusser SM, Heinz A, Flor H. Standardized stimuliti assess drug craving and drug memory in addicts. J Neural Transm. 2000,107:715-720
    Grusser SM, Wrase J, Klein S. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology. 2004,175:296-302
    Guo M, Xu NJ, Li YT, Wu CF, Pei G. Morphine modulates glutamate release in the hippocampal CA1 area in mice. Neurosci Lett. 2005, 381:12-15
    Gutstein HB, Thome JL, Fine JL, Watson SJ, Huda Akil. Pattern of c-fos RNA induction in rat brain by acute morphine. Can.J. Physiol. Pharmacol. 1998, 76: 294-303
    Hakan RL, Henriksen SJ. Opiate influences on nucleus accumbens neuronal electrophysiology: dopamine and non-dopamine mechanisms, J Neurosci. 1989, 9:3538-3546
    Hao Y, Yang JY, Guo M, Wu CF. Morphine decreases extracellular Levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats. Brain Res. 2005, 1040:191-196
    Haracz JL, Belanger SA, MacDonall JS, Sircar R. Antagonists of N-methyl-D-aspartate receptors partially prevent the development of cocaine sensitization, Life Sci. 1995, 57:2347-2357
    Harris GC, Aston-Jones G. Enhanced morphine preference following prolonged abstinence: association with increased Fos expression in the extended amygdale. Neuropsychopharmacology. 2003, 28:292-299
    Hauser KF, Stiene-Martin A, Mattson MP, Elde RP. mu-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism. Brain Res. 1996,720:191-203
    Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens, Eur J Pharmacol. 1999, 372:143-155
    Heinz A, Siessmeier T, Wrase J. Correlation between dopamine D(2)receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry, 2004, 161:1783-1789
    
    Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog N eurobiol, 1996, 50: 83-107
    Hnasko TS, Sotak B N, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature. 2005, 438:854-857.
    
    Hope, B, Kosofsky, B, Hyman, SE, Nestler, EJ. Proc Nat Acad Sci. USA 1992, 89:5764-5768
    Hotsenpiller G, Giorgetti M, Wolf ME. Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci. 2001.14:1843-1855
    Hu XT, Ford K, White FJ. Repeated cocaine administration decreases calcineurin (PP2B) but enhances DARPP-32 modulation of sodium currents in rat nucleus accumbens neumns. Neumpsychopharmacology, 2005, 30: 916-926
    Hubner CB, Koob GF. The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Research. 1990, 508:20-29
    Huang NK, Tseng CJ, Wong CG, Tung CS. ffect of acute and chronic morphine on DOPAC and glutamate at subcortical DA terminals in awake rats, Pharmacol Biochem Behav. 1997,56:367-371
    Huda A, Meng F, Devine DP. Molecular and neuroanatomical properties of the endogenous opiate system: implications for treatment of opiate addiction. Seminars in neuroscience. 1997, 9:70-83
    Hugh M, Raymond FA, Xingbao Li, et al. Diferential brain activity in alcoholics and 8ocial drinkem to alcohol cues relationship to craving. Neuropsycbopharmacology. 2004, 29:39-402
    Huong NTT, Matsumoto K, Yamnsaki K, Duc NM, Nham NT, Watanabe H. Crude saponin extracted from Vietnamese ginseng and its major contituent majonoside-R2 attenuated the psychological stress-and foot shock stress. Induced antinociception in mice Pharmacol Biochem Behav 1995, 52:427-432
    Huong NTT, Matsumoto K, Yanaasaki K, Due NM, Nham NT, Watanabe H. Effects of majonoside-R2 tobarbital sleep and gastric lesion in psychologically stressed mice.Pharmacol Bioehem Behav 1996, 53:957-963
    Huong NTT, Matsumoto K, Yamasaki K, Duc NM, Nhanl NT, Watanabe H. Majonoside-R2, a major constituent of Vietnamese Ginseng,attenuates Opioid-induced antinociception. Pharmacol Biochem Behav. 1997, 57:285-291
    Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulated cortex. Nat Neurosci. 1999, 2:403-405
    Ikemoto M, Takita M, Imamura T, Inoue K. Increased sensitivity to the stimulants effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala. Nat Med. 2000, 6:910-915
    Iwamoto ET. Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat: influence of dopaminergic agonists and antagonists. J Pharmacol Exp Ther. 1981, 217:451-460
    Jacobs EH, Wardeh G, Smit AB, Schoffelmeer AN. Morphine causes a delayed increase in glutamate receptor functioning in the nucleus accumbens core. Eur J Pharmacol. 2005,511:27-30
    Jacobs S, Lomax P. Morphine and the electrophysiology of the cingulum Preliminary study. Proc West Pharmacol Soc. 1972, 15:12-15
    Jaskiw GE, Weinberge DRr. Ibotenic acid lesions of medial prefrontal cortex augment swim-stress-induced locomotion. Pharmacol Biochem Behav. 1992, 41:607-609
    Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992,12:483-488
    Kalivas PW. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend. 1995, 37:95-100
    Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res Rev. 1991,16 :223-244
    Kalivas PW. Eurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 1993, 18:75-113
    Kalivas PW, Pierce RC, Cornish J. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 1998,12:49-53
    Kivastik T, Vuorikallas K, Piepponen TP, Zharkovsky A, Ahtee L. Morphine- and cocaine-induced conditioned place preference: effects of quinpirole and preclamol. Pharmacol Biochem Behav. 1996, 54:371-375
    Kaplan GB, Leite-Morris KA, Joshi M, Shoeb MH, Carey RJ. Baclofen inhibits opiate-induced conditioned place preference and associated induction of Fos in cortical and limbic regions. Brain Res. 2003, 987:122-125
    Karreman M, Moghaddam B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J. Neurochem. 1996, 66:589-598
    Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 2002, 22:3306- 3311
    Kelz MB, Nestler EJ. Delta FosB: a molecular switch underlying long-term neural plasticity. Curr Opin Neurol. 2000,13:715-720
    Kieffer BL. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol, 1995,15: 615-635
    Kim HS, Hong YT, Jang CG. Effects of ginsenoside Rg1 and Rb1 on morphine-induced hyperactivity and reinforcement in mice. J Pharm Pharmacol. 1998, 50:555-560
    Kim HS, Jang CG, Lee MK. Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med. 1990, 56:158-63
    Kiyatkin EA, Wise RA, Gratton A. Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous heroin self-administration in rats. Synapse. 1993, 14:60-72
    Konradi C, Cole RL, Heckers S, Hyman SE. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci. 1994, 14:5623-5634
    Konradi C, Leveque JC, Hyman SE. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci. 1996, 16: 4231-4239
    Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992, 13:177-184
    Koyuncuoglu H, Nurten A, Yamantiurk P, Nurten R. The importance of the number of NMDA receptors in the development of supersensitivity or tolerance to and dependence on morphine. Pharmacol Res. 1999, 39:311-319
    Kratzer U, Spanagel R, Schmidt WJ, The effect of acamprosate on the development of morphine-induced behavioral sensitization in rats. Behav Pharmacol. 2003, 14:351-356
    Kringe Ibach Ml. The human orbitofronal cortex: link reward to hedonic expeicence. Neuroscience. 2005, 6:691-702
    Kuschinsky K, Hornykiewicz O. Effects of morphine on striatal dopamine metabolism: possible mechanism of its opposite effect on locomotor activity in rats and mice. Eur J Pharmacol 1974, 26:41-50
    Law-Tho D, Hirsch JC, Crepel F. Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neurosci Res 1994, 21:151-160
    Lee DE, Kim SJ, Zhuo M. Comparison of behavioral responses to noxious cold and heat in mice. Brain Res. 1999, 845:117-121
    Leite-Moris KA, Fukudome EY, KAPLAN GB. Opiate-induced motor stimulations regulated by gamma-aminobutyric acid type B receptors found in the ventral tegmental area in mice. Neurosci lett. 2002, 317:1119-1122
    
    Leshner AI. Addiction is a brain disease, and it matters. Science. 1997, 278:45- 47
    Li JX, Zhang Q, Liang JH. Valproate prevents the induction, but not the expression of morphine sensitization in mice. Behavioral Brain Research 2004,152:251-257
    Li Y, Wolf ME, Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav Brain Res. 1997, 84:285-289
    Li Y, Wolf ME, White FJ. The expression of cocaine sensitization is not prevented by MK-801 or ibotenic acid lesions of the medial prefrontal cortex. Behav Brain Res. 1999, 104:119-125
    Li Z, Wu CF, Pei G, Guo YY, Li X. Antagonistic effect of pseudoginsenoside-F11 on the behavioral actions of morphine in mice. Pharmacol Biochem Behav. 2000, 66: 595-601
    Li Z, Guo YY, Wu CF.Protective effects of Pseudoginsenoside-F11 on scopolamine-induce memory impairment in mice and rats. J Pharm Pharmacol. 1999, 51:435-440
    Li Z, Xu NJ, Wu CF, Xiong Y, Fan HP, Zhang WB, et al. Pseudoginsenoside-F11 attenuates morphine-induced signaling in Chinese hamster ovary-A cells. Neuro Report. 2001,12:1453-1456
    Liu J, Nickolenko J, Sharp FR. Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-Daspartate receptors. Proc Natl Acad Sci USA 1994, 91:8537-8541
    Liu X, Li Y, Zhou L, Chen H, Su Z, Hao W. Conditioned place preference associates with the mRNA expression of diazepam binding inhibitor in brain regions of the addicted rat during withdrawal. Brain Res Mol Brain Res. 2005, 137:47-54
    Lovenberg TW, Nichols DE, Nestler EJ, Roth RH, Mailman RB. Guanine nucleotide binding proteins and the regulation of cyclic AMP synthesis in NS20Y neuroblastoma cells: role of D1 dopamine and muscarinic receptors. Brain Res. 1991, 556:101-107
    Maaswinkel H, Gispen WH, Spruijt BM, Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res. 1996, 79:51-59
    Maldoredo R, Blendy JA, Tzavara E. Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science. 1996, 273: 657-659
    Manzoni OJ, Williams JT. Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J Neurosci 1999, 19:6629-6636
    Matthews RT, German DC. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience. 1984,11:617-625
    McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res. 1999, 101:129-152
    McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2003, 23:3531-3537
    McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2001, 21: 8655-8663
    Meunier M, Destrade C. Effects of radiofrequency versus neurotoxic cingulate lesions on spatial reversal learning in mice. Hippocampus. 1997, 7: 355-360
    Meunier M, Jaffard R, Destrade C. Differential involvement of anterior and posterior cingulate cortices in spatial discriminative learning in a T-maze in mice. Behav Brain Res, 1991,44: 133-143
    
    Miller EK, The prefrontal cortex and cognitive control, Nat Rev Neurosci. 2000,1: 59-65
    Miner LAH, Ostrander M, Sarter M. Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for executive dysfunction. J Psychopharmacol. 1997, 11:169-178
    Montaron MF, Deniau JM, Menetrey A. Prefrontal cortex input of the nucleus accumbens-nigra-thalamic circuit. Neuroscience. 1996, 71:371-382
    Moody CA, Frank RA. Cocaine facilitates prefrontal cortex self-stimulation. Pharmacol Biochem Behav. 1990, 35:743-746
    Mora F, Cobo M. The neurobiological basis of prefrontal cortex self-stimulation: a review and an integrative hypothesis. Prog Brain Res. 1990, 85:419-431
    Montaron MF, Deniau JM, Menetrey A. Prefrontal cortex input of the nucleus accumbens-nigra-thalamic circuit. Neuroscience 1996, 71:371-382
    Mosaddeghi M, Kapusta DR, Minor LD, Duan N, Paul D. Effects of k-opioid receptor agonists on stimulated phosphoinositide hydrolysis in rat kidney, Eur J Pharmacol. 1995,289:411-417
    Mucha RF, Iversen SD. Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacol. 1984, 82:241-247
    Mueller D, Stewart J. Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res. 2000,115:39-47
    Murase S, Grenhoff J, Chouvet G. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett. 1993, 157:53-56
    Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989,2:1547-1558
    Nakagawa T. Involvement of glial glutamate transporters in morphine dependence and naloxone-precipitated withdrawal. 2001,121:671-677
    Narita M, Aoki T, Ozaki S, Yajima Y, Suzuki T. Involvement of protein kinase Cgamma isoform in morphineinduced reinforcing effects. Neuroscience. 2001,103:309- 314
    Neisewander JL, Baker DA, Fuchs RA, Palmer A, Marshall JF. Fos protein expression and cocaine seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci. 2000, 20:798-805
    
    Nestler EJ. Total recall-the memory of addiction. Science. 2001, 292:2266-2267
    Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science. 1997, 278:58-63
    
    Nestler EJ. Molecular mechanisms of drug addiction. J Neurosci. 1992, 12:24-39
    Nicol B, Rowbotham DJ, Lambert DG. mu- and kappa-opioids inhibit K+ evoked glutamate release from rat cerebrocortical slices. Neurosci Lett. 1996, 218:79-82
    Nordahl TE, Salo R, Possin K, Gibson DR. Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: a preliminary proton MRS study. Magnetic resonance spectroscopy. Psychiatry Res. 2002,116:43-52
    O'Doherty JP. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol. 2004,14:769-776
    Oak JN, Oldenhof J, Van-Tol HH. The dopamine D(4)receptor, one decade of research. Eur J Pharmacol. 2000, 405:303 -327.
    Oh KW, Kim HS, Wagner GC. Ginseng total saponin inhibits the dopaminergic depletions induced by methamphetamine. Planta Med. 1997, 63:80- 81
    O'Malley SS, Jaffe AJ, Schottenfeld RS, Meyer RE and Rounsaville B. Naltrexone and coping skills therapy for alcohol dependence. Arch Gen Psychiatr. 1992,49:881-887
    Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans, Cerebral Cortex. 2000,10: 206-219
    Ostermeier AM, Schlosser B, Schwender D, Sutor B. Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons. Anesthesiology, 2000, 93:63-93
    Pan ZZ. μ-Opposing actions of the K-opioid receptor. Trends in pharmacological Sciences. 1998, 19: 94-98
    Parker LA, McDonald RV. Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmacol Biochem Behav. 2000, 66:559-561
    Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK, Pierce RC. Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci. 2002, 22:2916-2925
    Paxinos G, Watson C, The rat brain in stereotaxic coordinates. 2nd edn. Plenum. New York, NY. 1986
    Peakman MC, Colby C, Perrotti LI. Inducible brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine. Brain Res. 2003, 70:73-86
    Pechnick R, George R, Poland RE. Identification of multiple opiate receptors through neuroendocrine responses. I. Effects of agonists. J Pharmacol Exp Ther. , 1985, 232:163-169
    Pelchat ML, Johnson A, Chan R. Images of desire: food-craving activation during fMRI. Neuroimage. 2004, 23:1486-1493
    Piepponen TP, Kivastik T, Katajamaki J, Zharkovsky A, Ahtee L. Involvement of opioid mu 1 receptors in morphineinduced conditioned place preference in rats. Pharmacol Biochem Behav. 1997, 58:275-279
    Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine, Neuroscience. 1998, 82:1103-1114
    Pierce RC, Kalivas PW, A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants, Brain Res Rev. 1997, 25:192-216
    Pu L, Bao GB, Xu NJ, Ma L, Pei G. Hippocampal long-term potentiation is reduced by chronic morphine treatment and can be restored by re-exposure to opiates. J. Neurosci. 2002, 22:1914-1921
    Pudiak CM, Bozarth MA. L-NAME and MK-801 attenuate sensitization to the locomotor-stimulating effect of cocaine. Life Sci. 1993, 53:1517-1524
    Ramarao P, Bhargava HN. Antagonism of the acute pharmacological actions of morphine by Panax ginseng extract. Gen Pharmacol. 1990, 21:877-880
    Rainville P, Duncan GH, Price DD. Pain affect encoded in human anterior cingulate but not somatosensory cortex, Science. 1997, 277:968-971
    Ribeiro Do Couto B, Aguilar MA, Rodriguez-Arias M, Minarro J. Long-lasting rewarding effects of morphine induced by drug primings. Brain Res. 2005,1050:53-63
    Robbins TW, Everitt BJ. Drug addiction: bad habits adds up. Nature. 1999, 398: 567-570
    Robinson TE, Berridge KC, The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000, 95:S91-S117
    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993,18: 247-291
    Roberts AC, Robbins TW, Weiskrantz L. The prefrontal cortex: executive and cognitive functions, Oxford University Press, 1998, 221-242
    Sagar SM, Sharp FD, Curran T. Expression of c2fos protein in brain: metabolic mapping at the cellular level. Science. 1988, 240:13-28
    Sahraei H, Ghazzaghi H, Zarrindast MR, Ghoshooni H, Sepehri H, Haeri-Rohan A. The role of alpha-adrenoceptor mechanism(s) in morphine-induced conditioned place preference in female mice. Pharmacol Biochem Behav. 2004, 78:135-141
    Sakoori K, Murphy NP. Maintenance of conditioned place preferences and aversion in C57BL6 mice: effects of repeated and drug state testing. Behavioural Brain Research. 2005, 160: 34-43
    Sanchez CJ, Bailie TM, Wu W, Li N, Sorg BA. Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neurosci. 2003, 119:497-505
    Sarter M, Bodewitz G, Stephens DN. Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist P-carbolines. Psychopharmacology, 1988, 94: 491
    Sarkisova KY, Midzianovskaia IS, Kulikov MA. Dep ression2like behavioral alterations and c2fos exp ression in the dopaminergic brain regions inWAG/Rij ratswith genetic absence ep ilepsy. Behav Brain Res, 2003,144: 211 - 26
    Schenk S, Snow S, Sensitization to cocaine's motor activating properties produced by electrical kindling of the medial prefrontal cortex but not of the hippocampus, Brain Res. 1994,659:17-22
    Schultz W, Tremblay L, Hollerman JR. Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology. 1998, 37: 421-429
    Schoenbaum G, Roesch MR, Stalnaker TA. Orbitofrontal cortex decision -making and drug addiction. Trends Neurosci. 2006, 29:116-124
    Self DW, Nestler EJ. Relapse to drug-seeking: neural and molecular mechanisms. Drug and Alcohol Dependence. 1998, 51:49-60
    Self DW, Nestler EJ. Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcoh. Depen. 1998,51:49-60
    Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. European Journal of Pharmacology, 1999, 378:1-8
    Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992, 320:145-160
    Shaham Y, Stewart J. Effects of opioid and dopamine receptor antagonists on relapse induced by stress and re-exposure to heroin in rats, Psychopharmacol. 1996, 125:385-391
    Shalev U, Grimm JW, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev. 2002, 54:1-42
    Shaw-Lutchrnan SZ, Impey S, Storm D, et al. Regulation of CRE-mediated transcription in mouse brain byamphetamine. Synapse. 2003, 48:10-17
    Sharma SK, Klee WA, Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA, 1975, 72: 3092-3096
    Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci. 1997, 17: 2605-2614
    Shaham Y, Stewart J. Effects of restraint stress and intra-ventral tegmental area injections of morphine and methyl naltrexone on the discriminative stimulus effects of heroin in the rat. Pharmacol Biochem Behav. 1995, 51:491-498
    Sharp FR, Liu J, Nickolenko J, Bontempi B. NMDA and D1 receptors mediate induction of c-fos and junB genes in striatum following morphine administration: implications for studies of memory. Behav Brain Res 1995, 66:225-230
    Shidara M, Richmond BJ. Anterior cingulate: single neuronai signals related to degree of reward expectancy. Science. 2002, 296:1709-1711
    Shippenberg TS, Heidbreder C, Lefevour A. Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur J Pharmacol. 1996,299:33-39
    Shuster L, Webster GW, Yu G. Increased running response to morphine in morphine-pretreated mice. J Pharmacol Exp Ther 1975,192:64-72
    Simar MR, Saphier D, Goeders NE. Dexamethasone suppression of the effects of cocaine on adrenocortical secretion in Lewis and Fischer rats. Psychoneuroendocrinology. 1997,22:141-153
    Smolders I, Klippelk ND, Sarre S. Tonic GABAernic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. European Journal of Pharmacology. 1995, 284:83-91
    Smith S, Sharp T. Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection, J. Chromatogr. 1994, 652 :228-233
    Sonnenberg JI, Rauscher FJ , Morgan JI. Regulation of proenkephalin by Fos and Jun. Science. 1989, 246:1622 - 1625
    Sonnenberg JI, Macgregor - Leon PF, Curran T. Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron. 1989, 3:359
    Spnagel R, Aimeide OF, Bartl C. Endogenous K-opioid system in opiate withdrawal: role in aversion and accompanying changes in mesolimbic dopamine release. Psychopharmacology. 1994,115:121-127
    Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 1992, 89:2046-2050
    Swanson CJ, Kalivas PW. Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. Journal of Pharmacology and Experimental Therapeutics. 2000, 292:406-414
    Taber MT, Das S, Fibiger HC. Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area, J. Neurochem. 1995, 65:1407-1410
    Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, Motiei-Langroudi R, Tahaei SA, Ghahremani MH. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha (2)-adrenoceptors. Neuropsychopharmacol. 2006, 31:1722-1732
    Tao R, Auerbach S. Anesthetics block morphine-induced increases in serotonin release in rat CNS. Synapse. 1994,18:307-314
    Tanaka O, Yahara S. Dammarane saponins of leaves of Panax pseudo-ginseng subsp. Initalic Phytochemistry 1978, 17:1353-1358
    Timmerman W, Westerink BH. Brain microdialysis of GABA and glutamate: what does it signify? Synapse. 1997, 27:242-261.
    Todtenkopf MS, Mihalakopoulos A, Stellar JR. Withdrawal duration differentially affects C-Fos expression in the medial prefrontal cortex and discrete subregions of the nucleus accumbens in cocaine-sensitized rats, Neuroscience. 2002,114:1061-1069
    Tokuyama S, Oh KW, Kim HS, Takahashi M, Kaneto H. Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effect of methamphetamine in mice. Jpn J Pharmacol. 1992, 59:423-425
    Tong ZY, Overton PG, Clark D, Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res. 1995,674:63-74
    Tzschentke TM, Schmidt WJ. The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of the prelimbic medial prefrontal cortex. Brain Res. 1998, 795:71-76
    Tzschentke TM, Schmidt WJ. Effects of discrete quinolinic acid lesions of the rat infralimbic medial prefrontal cortex on drug-induced conditioned place preference. Behav Pharmacol., 1998a, 9:S87
    Tzschentke TM, Schmidt WJ. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine- and MK-801-, but not morphine- and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm. Behav Brain Res. 1998b, 97:115-127
    Tzschentke TM, Schmidt WJ. Functional heterogeneity of the rat medial prefrontal cortex: effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioural sensitization. Eur. J. Neurosci. 1999, 11:4099-4109
    Tzschentke TM, Schmidt WJ. Differential effects of discrete subarea-specific lesions of the rat medial prefrontal cortex on amphetamine- and cocaine-induced behavioural sensitization. Cereb Cort. 2000, 10, 488-498
    Ueda M, Sugimoto K, Oyama T, Kuraish Y, Satoh M. Opioidergic inhibition of capsaicin-evoked glutamate release from rat spinal dorsal horn slices. Neuropharmacology 1995, 34:303- 308
    Vezina P, Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res. 1993, 605:332-337
    Vezina P, Stewart J. The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of AMPH and morphine. Brain Res. 1989,499:108-120
    Ventura R, Alcaro A, Puglisi-Allegra S. Prefrontal Cortical Norepinephrine Release Is Critical for Morphine-induced Reward, Reinstatement and Dopamine Release in the Nucleus Accumbens. Cereb Cort. 2005, 15:1877-1886
    Vogt LJ, Sim-Selley LJ, Childers SR, Wiley RG, B.A. Vogt. Colocalization of μ-opioid receptors and activated G-proteins in rat cingulated cortex. Pharmacol Exper Ther. 2001, 299:840-848
    Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest, 2003, 111:1444-1451
    Volkow ND, Ting-Kai Li. Drug and alcohol: treating and preventing abuse, addiction and their medical consequences. Pharmacol Ther. 2005,108: 3-17
    Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cere Cortex. 2000, 10:318-325
    Walker JM, Thompson A, Frascella J. Opposite effects of μ and δ opiates on the firing-rate of dopamine cells in the substantia nigra of the rat. European Journal of Pharmacology. 1987,134:53-59
    Wang B, Luo F, Zhang WT, Han JS. Stress or drug priming induces reinstatement of extinguished conditioned place preference, NeuroReport 2000,11:2781-2784
    Wang T, French ED. L-gulutamate excitation of A10 dopamine neurons is preferentially mediated by activation of NMDA receptor: extra- and intracellular electrophysiological studies in brain slices. Brain Res. 1993, 627:299-306
    Wang HL, Xiang XH, Guo Y, Wu WR, Cao DY, Wang HS, Zhao Y. lonotropic glutamatergic neurotransmission in the ventral tegmental area modulates DeltaFosB expression in the nucleus accumbens and abstinence syndrome in morphine withdrawal rats. Eur J Pharmacol 2005, 527:94-104
    Wang Y, Joharchi N, Fletcher P J, et al. Further studies to examine the nature of dexfenfluramine-induced suppression of heroin self-administration. Psychopharmacology. 1995, 120:134-141
    White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction, Drug Alcohol Depend. 1998, 51:141-153
    White IM, Wise SP. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 1999, 126:315-335
    Wilson SJ, Sayette MA, Delgado MR, et al. Instructed smoking, expectancy modulates cue - elicited neu ral ac tivity: a preliminary study. J Nicotine Tob Res 2005, 7:637-645
    Wickelgren I. Getting the brain attention. Science, 1997, 278:35-37
    Wise RA. Addiction becomes a brain disease. Neuron, 2000, 26:27-33
    Wise RA, Leone P, Rivest R, et al. Elevations of nucleus accumbens dopamine and dopac levels during intravenous heroin self-administration. Synapse, 1995, 21:140-148
    Wolf ME. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 1998, 54:679-720
    Wright CI, Groenewegen HJ. Patterns of convergence and segregation in the medial nucleus accumbens of the rat: relationships of prefrontal cortical, midline thalamic and basal amygdaloid afferents, J. Comp. Neurol. 1995, 361:383-403
    Wu CF, Liu YL, Song M, Liu W, Wang JH. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacology, Biochemistry and Behavior 2003, 76:103-109
    Wu X, Jiang ZL, Chen YR. The antagonism of ginsenosides against hypoxic-ischemic brain damage is related to the inhibition of glutamte release. Acta Acadamiae Medicine Nantong 2000, 20:346-348
    Xie CW, Lewis DV. Opioid-mediated facitation of long-term potentiation at the lateral perforant path-dentate granule cell synapse. J Pharmacol Exp Ther. 1991, 256: 289-296
    Xi ZX, Stein EA. Baclofen inhibits heroin self-administration and mesolimbic dopamine release. Journal of Pharmacology and Experimental Therapeutics. 1999, 290:1369-1374
    Xi ZX, Stein EA. Increased mesolimbic GABA concentration blocks heroin self-administration behavior in rats. Journal of Pharmacology and Experimental Therapeutics. 2000, 294:613-619
    Xi ZX, Stein EA. Blockade of ionotropic glutamatergic transmission in the ventral tegmental area reduces heroin reinforcement in rat. Psychopharmacology. 2002, 164:144-50
    Xi ZX, Wu G, Stein EA. GABAergic mechanisms of heroin-induced brain activation assessed with function MRI. Magn Reson Med. 2002, 48:838-843
    Xu NJ, Bao L, Fan HP, Bao GB, Pu L, Lu YJ, Wu CF, Zhang X, Pei G. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci 2003, 23: 4775-4784
    You ZB, Chen YQ, Wise RA. Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic serf-stimulation. Neroupsychophamacology. 2001, 25;234-241
    Yan PG, Wu CF, Huang M, Liu W. Role of nitric oxide in ethanol-induced ascorbic acid release in striatum of freely moving mice, Toxicol Lett. 2003, 145:69-78
    Young ST, Porrino LJ, ladarola MJ. Proc Natl Acad Sci. USA 1991, 88:1291-1295
    Yang TT, Hung CF, Lee YJ, Su MJ, Wang SJ. Morphine inhibits glutamate exocytosis from rat cerebral cortex nerve terminals (synaptosomes) by reducing Ca2+ influx. Synapse 2004, 51:83-90
    Zarrindast MR, Azami BN, Rostami P, et al. Repeated administration of dopaminergic agents in the nucleus accumbens and morphine-induced place preference. Behav Brain Res. 2006, 169:248-55
    Zubieta JK, Gorelick DA, Stauffer R, Ravert HT, Dannals RF and Frost JJ. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nature Med. 1996, 2:1225-1229
    Zavala AR, Weber SM, Rice HJ. Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res. 2003, 990:157-164
    
    陈立,杨世杰,陈霞西.洋参茎叶皂甙单体PF11对心血管作用的初步观察.白求恩医科大 学学报.1995,21:20-22
    高源,粱爽,陈海生,王厚鹏.戒毒药物研究进展.药学实践杂志,2006,24:324-328
    郝伟.吗啡依赖的神经可塑性.国外医学神经病学分册,2003,30:68-70
    韩济生.神经科学原理.北京,北京医科大学出版社,1999,635
    韩济生,万有.“内吗啡肽”的发现是阿片肽研究的一次突破.生理科学进展.1997,28:237-239
    李树春,刘晓兰.刘燕,李峰.阿片类物质依赖与相关神经递质.中国药物依赖性杂志,2005.14:162—166
    刘惠芬,周文华,唐甩恩等.鞘内注射M受体和GDNF反义寡脱氧核苷酸抑制吗啡戒断大鼠蓝斑c-Fos表达.实验生物学报,2005,38:211—218
    刘梦光,肖丹,张玉萍等.早安口服液对海洛因成瘾者血管活性肽、P物质、生长抑素的影响.中国药物滥用防治杂志,2000,6:39
    刘胜,周文华,杨国栋.成瘾药物行为敏化及机制.中国药物滥用防治杂志.2004,10:337-339
    卢惠勤,兰树敏,王耕等.清君饮戒毒效应的实验研究.中国药物滥用防治杂志.1998,6:12
    善佐宁,王建,郑福山等.海洛因成瘾的快速脱瘾治疗.中华神经精神科杂志.1998,3:11
    王玢,罗非,韩济生.参与阿片奖赏效应的脑区及其纤维投射探讨.神经解剖学杂志,2000,16:273—276.
    汪海峰,张加雄,杨丽红,王庆芬,张临凤.中药戒毒的现状与展望.西南国防医药,2006,16:703-705
    王金辉,李铣.加拿大产西洋参茎叶的化学研究(Ⅰ)十一种三萜皂甙的分离鉴定.中国药物化学杂志.1997,7:130-132
    王世英.阿片肽研究的回顾和展望.生物学通报,2001,36:5-7
    杨世杰,陈霞,张文杰,钟国赣,孙成文,江岩.西洋参茎叶皂甙单体PF11对培养心肌动作电位的作用.中国药理学通报.1994,10:284-286
    佐藤公道.吗啡药理学研究进展.疼痛.2002,10:27—33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700