全脑缺血再灌注对海马抑制性突触功能的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸(γ-Aminobutyric Acid,GABA)是中枢神经系统主要的抑制性神经递质。GABA能的抑制作用在控制正常的神经回路功能和神经元的内在放电特性,以及调控谷氨酸能突触的活动中起重要作用。GABA能系统的异常可导致神经元的高兴奋性,从而导致再灌注损伤。海马CA1区对缺血敏感,但是,缺血-再灌注如何影响海马CA1区的抑制性突触功能,目前还不清楚。本文围绕海马与缺血-再灌注,应用电生理和免疫组织化学技术手段探讨了缺血-再灌注对海马抑制性突触功能的影响,并对其作用机制进行了研究。
     第一部分全脑缺血-再灌注对海马CA1区抑制性突触功能的影响
     目的观察全脑缺血-再灌注对海马CA1区抑制性突触功能的影响。方法成年雄性SD大鼠,体重200-250g,随机分为5组:(1)假手术组(sham);(2)缺血再灌注12小时组(is12h);(3)缺血再灌注24小时组(is24h);(4)缺血再灌注3天组(is3d)和(5)缺血再灌注7天组(is7d)共5组。用四动脉阻断法制作全脑缺血模型(10min),使用全细胞电压钳技术记录海马脑片CA1区锥体细胞的抑制性突触后电流(Inhibitory Postsynaptic Currents,IPSCs)。结果is12h组自发性抑制性突触后电流(Spontaneous Inhibitory Postsynaptic Currents,sIPSCs)和miniature抑制性突触后电流(miniature Inhibitory Postsynaptic Currents,mIPSCs)的频率明显降低,但sIPSCs和诱发性抑制性突触后电流(evoked Inhibitory Postsynaptic Currents,eIPSCs)的下降时间却明显延长。而且,GABA转运体抑制剂NO-711可使假手术组eIPSCs的下降时间明显延长,却不能使is12h组eIPSCs的下降时间进一步延长;再灌注24小时,IPSCs的频率和下降时间恢复正常;再灌注3天,sIPSCs和mIPSCs的频率明显增加,但IPSCs的幅值和动力学没有影响;再灌注7天,sIPSCs和mIPSCs的频率恢复正常,但sIPSCs的幅值降低,而mIPSCs的幅值却没有明显改变。结论全脑缺血-再灌注后,海马CA1区抑制性突触功能呈现动态变化,在再灌注损伤中起重要作用。
     为了进一步明确全脑缺血-再灌注后海马CA1区抑制性突触功能变化的机制,我们又进行了第二部分实验。
     第二部分全脑缺血-再灌注对海马CA1区GAD-65和GAT-1表达的影响及意义
     目的探讨全脑缺血-再灌注对成年大鼠海马CA1区谷氨酸脱羧酶(glutamicacid decarboxylase,GAD)同工酶GAD-65和γ-氨基丁酸转运体1(γ-AminobutyricAcid transport-1,GAT-1)表达的影响及意义。方法成年雄性SD大鼠,体重200-250g,随机分为5组:(1)假手术组(sham);(2)缺血再灌注12小时组(is12h);(3)缺血再灌注24小时组(is24h);(4)缺血再灌注3天组(is3d)和(5)缺血再灌注7天组(is7d)共5组。用四动脉阻断法制作全脑缺血模型(10min),应用免疫组织化学方法检测海马CAI区GAD-65和GAT-1的表达。结果与假手术组相比,is3d组GAD-65的表达明显增多;is12h组GAT-1的表达明显减少。结论GABA能中间神经元对缺血相对耐受,并且全脑缺血-再灌注12小时GAT-1表达的减少和再灌注3天GAD-65表达的增加可能都是机体的一种代偿机制,通过增强抑制性突触功能来减轻再灌注后的兴奋毒性。
     从以上两部分实验可以看出,GABA介导的抑制性突触功能在缺血-再灌注中起重要作用。再灌注12小时,突触前GABA能中间神经元的功能异常导致了缺血-再灌注损伤。再灌注3天,GABA能的增强可能是通过GAD-65的表达增多来实现的。但是,再灌注7天抑制性突触功能的降低可能是通过突触后的机制实现的。此外,再灌注12小时GAT-1表达的减少导致了IPSCs下降时间的延长。因此,再灌注12小时GAT-1表达的减少和再灌注3天GAD-65表达的增多可能都是代偿性的机制,通过增强抑制性突触功能来降低缺血后的兴奋毒性。
γ- Aminobutyric Acid(GABA) is the main inhibitory neurotransmitter in the CNS. Moreover, GABAergic inhibition plays a critical role in controlling normal circuit function, regulating the intrinsic burst-firing properties of neurons, and modulating the activation of glutamatergic synapses. Impairment in the GABAergic system can lead to neuronal hyperexcitability which contributes to ischemia-reperfusion injury. Although hippocampal CA1 area is one of the regions most sensitive to ischemic challenge, the effects of global cerebral ischemia-reperfusion on inhibitory synaptic function in hippocampal CA1 area of adult rats are still unclear. In this study, we investigated inhibitory synaptic function in hippocampal CA1 area of adult rats following global ischemia-reperfusion using electrophysiological and imrnunohistochemical techniques.
     Part one The effect of global ischemia-reperfusion on inhibitory synaptic function in hippocampal CA1 region
     Objective To observe the effects of global ischemia-reperfusion on inhibitory synaptic function in hippocampal CA1 region of adult rats. Methods All animals were randomly divided into five groups: sham-operation group (SH), ischemia-reperfusion 12 hours (is12h), ischemia-reperfusion 24 hours(is24h),ischemia-reperfusion 3 day (is3d) and ischemia-reperfusion 7 day (is7d) groups. Global Ischemic episode was achieved by 4-vessel occlusion for 10min. Inhibitory postsynaptic currents (IPSCs) were recorded from CA1 pyramidal cells in slices using whole-cell voltage-clamp. Results 12 hours after ischemia-reperfusion (is12h), spontaneous IPSCs and miniature IPSCs were less frequent but the decay-time constant for evoked and spontaneous IPSCs were significantly increased than in sham group. Furthermore, GABA transport inhibitors NO-711 prolonged evoked IPSC decay constant of sham CA1 pyramidal cells but had no effect on is12h neurons. 24 hours after ischemia-reperfusion (is24h), the frequency, amplitude, and the kinetics of IPSCs were normal. However, 3 days after ischemia-reperfusion (is3d), the spontaneous IPSCs and miniature IPSCs frequency were higher compared with sham rats. 7 days after ischemia-reperfusion (is7d), spontaneous IPSCs were smaller in amplitude than in sham rats. However, the amplitude, frequency, and the kinetics of miniature IPSCs were normal. Conclusion Our findings suggest that alteration of inhibitory synaptic function in hippocampal CA1 area of adult rats may play an important role in ischemia-reperfusion injury.
     Part two The effect of global ischemia-reperfusion on the expression of GAD65 and GAT-1 in hippocampal CA1 region
     Objective In order to examine the possible mechanisms of alteration of inhibitory synaptic function in hippocampal CA1 area after ischemia-reperfusion injury, we further do the second part of the experiment to investigate the expression of GAD-65 (glutamic acid decarboxylase 65, GAD-65) and GABA transporter 1 (GAT-1) in hippocampal CA1 area after global cerebral ischemia-reperfusion. Methods All animals were randomly divided into five groups: sham-operation group (SH), ischemia-reperfusion 12 hours (is12h), ischemia-reperfusion 24 hours(is24h), ischemia-reperfusion 3 day (is3d) and ischemia-reperfusion 7 day (is7d) groups. Global Ischemic episode was achieved by 4-vessel occlusion for 10min. ImmunohistochemiCA1 method was applied to observe the expression of GAD65 and GAT-1 in hippocampal CA1 region. Results ImmunohistochemiCA1 staining for GAT-1 and GAD-65 revealed a reduction in GABA transporter 1 (GAT-1) expression 12 hours after ischemia-reperfusion (is12h), and an enhancement of GAD-65 expression 3 days after ischemia-reperfusion (is3d).But, the expression of GAT-1 and GAD-65 in hippocampal CA1 area at 24 hours (is24h) and 7 days (is7d) after ischemia-reperfusion was similar to that of sham rats. Conclusion These results suggest that GABAergic interneurons were relatively resistant to ischemia-reperfusion injury. Furthermore, the decreased expression of GAT-1 12 hours after ischemia-reperfusion, and the elevated expression of GAD-65 3 days after ischemia-reperfusion could be the compensatory mechanisms to reduce the hyperexcitability associated with ischemia-reperfusion.
     These results suggest that alterations in GABA-mediated synaptic inhibition play an essential role after ischemia-reperfusion. 12 hours after ischemia-reperfusion, it is the dysfunction of presynaptic GABAergic interneurons contributes to the ischemia-reperfusion injury. 3 days after ischemia-reperfusion, the enhancement in GABAergic function could due to the increased expression of GAD-65. However, 7 days after ischemia-reperfusion, it is likely that postsynaptic alteration contributes to the reduced inhibition. Furthermore, the decreased expression of GAT-1 prolonged decay-time constant 12 hours after ischemia-reperfusion.Therefore, both the decreased GAT-1 expression 12 hours after ischemia-reperfusion and increased GAD-65 expression 3 days after ischemia-reperfusion could be compensatory mechanisms to reduce the hyperexcitability associated with ischemia-reperfusion.
引文
1. Hagberg H, Lehmann A, Sandberg M., Nystrom B, etl. Ischemia-induced shift of inhibitory and excitatoryamino acids from intra-to extracellular compartments. J Cereb Blood Flow Metab, 1985, 5: 413-419.
    2. Allen NJ, Rossi DJ, and Attwell D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci, 2004, 24: 3837-3849.
    3. Attwell D, Barbour B, and Szatkowski M. Nonvesicular release of neurotransmitter. Neuron, 1993, 11: 401-407.
    4. Szatkowski M and Attwell D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci, 1994,17: 359-365.
    5. Green AR, Hainsworth AH, and Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology, 2000, 39: 1483-1494.
    6. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev, 1985, 65: 101-148.
    7. Inglefield JR and Schwartz-Bloom RD. Optical imaging of hippocampal neurons with a chloride-sensitive dye: early effects of in vitro ischemia. J Neurochem, 1998, 70: 2500-2509.
    8. Chen Q, Moulder K, Tenkova T, etl. Excitotoxic cell death dependent on inhibitory receptor activation. Neurol Exp, 1999, 160: 215-225.
    9. Xu W, Cormier R, Fu T, etl. Slow death of postnatal hippocampal neurons by GABA(A) receptor overactivation. J Neurosci, 2000, 20: 3147-3156.
    10. Allen NJ and Attwell D. The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J Physiol, 2004, 561: 485-498.
    11. Zhan RZ, Nadler JV, and Schwartz-Bloom RD. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia. J Cereb Blood Flow Metab, 2006, 26: 112-124.
    12. Epsztein J, Milh M, Bihi RI, orquera IJ, etl. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. J Neurosci, 2006, 26: 7082-7092.
    13. Pulsinelli WA and Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke, 1979,10: 267-272.
    14. Kobayashi M, Wen X, and Buckmaster PS. Reduced inhibition and increased output of layer Ⅱ neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci, 2003, 23: 8471-8479.
    15. Borden LA, Murali Dhar TG, Smith KE, etl. Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol, 1994.269: 219-224.
    16. Buhl EH, Halasy K, and Somogyi P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature, 1994, 368: 823-828.
    17. Freund TF and Buzsaki G. Interneurons of the hippocampus. Hippocampus, 1996, 6: 347-470.
    18. Macdonald RL and Olsen RW. GABA_A receptor channels. Annu Rev Neurosci, 1994, 17: 569-602.
    19. Sieghart W. Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol Rev, 1995, 47: 181-234.
    20. Cherubini E and Conti F. Generating diversity at GABAergic synapses. Trends Neurosci, 2001, 24: 155-162.
    21. Collingridge GL, Gage PW, and Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol, 1984, 356: 551-564.
    22. Edwards FA, Konnerth A, and Sakmann B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J Physiol, 1990, 430: 213-249.
    23. Rudick CN, Gibbs RB, and Woolley CS. A role for the basal forebrain cholinergic system in estrogen-induced disinhibition of hippocampal pyramidal cells. J Neurosci, 2003, 23: 4479-4490.
    24. De KY and Mody I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABA_A receptor channels. J Neurophysiol, 1994, 71: 1318-1335.
    25. Otis TS, De KY, and Mody I. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci, 1994, 91: 7698-7702.
    26. Powell EM, Campbell DB, Stanwood GD, etl. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci, 2003, 23: 622-631.
    27. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, etl. Mice lacking Dlxl show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci, 2005, 8: 1059-1068.
    28. Jiang C, Agulian S, and Haddad GG, Cl~- and Na~+ homeostasis during anoxia in rat hypoglossal neurons: intracellular and extracellular in vitro studies. J Physiol, 1992, 448: 697-708.
    29. Katchman AN, Vicini S, andHershkowitz N. Mechanism of early anoxia-induced suppression of the GABA_A-mediated inhibitory postsynaptic current. J Neurophysiol, 1994, 71: 1128-1138.
    30. Calcagnotto ME, Paredes MF, Tihan T, etl. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci, 2005, 25: 9649-9657.
    31. Isaacson JS, Solis JM, and Nicoll RA. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron, 1993, 10: 165-175.
    32. Soudijn W. and van W. The GABA transporter and its inhibitors. Curr Med Chem, 2000, 7: 1063-1079.
    33. Thompson SM and Gahwiler BH. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol, 1992, 67: 1698-1701.
    34. Calcagnotto ME, Paredes MF, and Baraban SC. Heterotopic neurons with altered inhibitory synaptic function in an animal model of malformation-associated epilepsy. J Neurosci, 2002, 22: 7596-7605.
    35. Shinno K, Zhang L, Eubanks JH, etl. Transient ischemia induces an early decrease of synaptic transmission in CA1 neurons of rat hippocampus: electrophysiologic study in brain slices. J Cereb Blood Flow Metab, 1997, 17: 955-966.
    36. Kovalenko T, Osadchenko I, Nikonenko A, etl. Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses. Hippocampus, 2006, 16: 814-825.
    37. Bowery NG. GABA_B receptor: a site of therapeutic benefit. Curr Opin Pharmacol, 2006, 6: 37-43.
    38. Kulinskii VI and Mikhel'son GV. Additivity and independence of neuroprotective effects of GABA_A and GABA_B receptor agonists in complete global cerebral ischemia. Bull Exp Biol Med, 2000, 130: 772-774.
    39. Dave KR, Lange-Asschenfeldt C, Raval AP, etl. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res, 2005, 82: 665-673.
    40. Jackson-Friedman C, Lyden PD, Nunez S, etl. High dose baclofen is neuroprotective but also causes intracerebral hemorrhage: a quantal bioassay study using the intraluminal suture occlusion method. Exp Neurol, 1997, 147: 346-352.
    41. Kuramoto N, Wilkins ME, Fairfax BP, etl. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron, 2007, 53: 233-247.
    42. Saghatelyan AK, Snapyan M, Gorissen S, etl. Recognition molecule associated carbohydrate inhibits postsynaptic GABA(B) receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci, 2003, 24: 271-282.
    43. Kaupmann K, Huggel K, Heid J, etl. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature, 1997, 386: 239-246.
    44. Misgeld U, Bijak M, and Jarolimek W. A physiological role for GABA_B receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol, 1995, 46: 423-462.
    45. Nusser Z, Hajos N, Somogyi P, and Mody I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature, 1998, 395: 172-177.
    46. Brooks-KayalAR, Shumate MD, Jin H, etl. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med, 1998, 4: 1166-1172.
    47. Redecker C, Wang W, Fritschy JM, and Witte OW. Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab, 2002, 22: 1463-1475.
    48. Neumann-Haefelin T, Bosse F, Redecker C, etl. Upregulation of GAB&-receptor alphal- and alpha2-subunit mRNAs following ischemic cortical lesions in rats. Brain Res, 1999, 816: 234-237.
    49. Neumann-Haefelin T, Staiger JF, Redecker C, etl. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience, 1998, 87: 871-879.
    1. Hossmann K.A, Grosse R, Ophoff B. Recovery of monkey brain after prolonged ischemia. Electrophysiology and brain electrolytes. J Cereb Blood Flow Met Wb, 1986, 6:15-21
    2.叶怀冷.谷氨酸是哺乳动物中枢的一种神经递质.生理科学进展,1987,18(1):27-29
    3. Martin D. L, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem, 1993,60:395-407.
    4. Nyiri G, Stephenson F. A, T. F. Freund, et al. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience ,2003,119:347-363.
    5. Kogure K, Tanaka J, Araki T. The mechanism of ischemia-induced brain cell injury. The membrane theory. Neurochem Pathol, 1988,9:145-170.
    6. Hagberg H, LehmannA, Sandberg M, et al. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab, 1985,5:413-419.
    7. Frahm C, Haupt C, Witte O. W. GABA neurons survive focal ischemic injury. Neuroscience, 2004,127:341-346.
    8. McCormick D.A. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol, 1989, 62:1018-1027.
    9. Isokawa-Akesson M, Wilson C. L, Babb T. L. Inhibition in synchronously firing human hippocampal neurons. Epilepsy Res, 1989, 3:236-247.
    10. Otis T. S, L. O. Trussell. Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse. J Neurophysiol, 1996, 76:3584-3588.
    11. Deyn P. P. De, Marescau B, MacDonald R.L. Epilepsy and the GABA-hypothesis a brief review and some examples. Acta Neurol Belg, 1990, 90:65-81.
    12. Tasker J. G, Dudek F. E. Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy. Neurochem Res, 1991, 16:251-262.
    13. Johansen F. F, Diemer N. H. Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells. Acta Neurol Scand, 1991, 84:1-6.
    14. Lyden P. D, Lonzo L. Combination therapy protects ischemic brain in rats. A glutamate antagonist plus a gamma-aminobutyric acid agonist. Stroke, 1994, 25: 189-196.
    15. Mumford J. P, Cannon D. J. Vigabatrin. Epilepsia 35 Suppl, 1994, 5:S25-S28.
    16. Sabers A, Gram L. Pharmacology of vigabatrin. Pharmacol Toxicol, 1992, 70 237-243.
    17. Gale K. GABA and epilepsy: basic concepts from preclinical research. Epilepsia 33 Suppl, 1992, 5:S3-12.
    18. Green A. R, Hainsworth A. H, Jackson D. M. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology, 2000, 39:1483-1494.
    19. Schwartz-Bloom R. D, Sah R. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem, 2001, 77:353-371.
    20. Matsumoto N, Kumamoto E, Furue H, et al. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat. J Neurophysiol, 2003, 89:257-264.
    21. Green A. R, Cross A. J, Shape M. F, et al. The immediate consequences of middle cerebral artery occlusion on GABA synthesis in mouse cortex and cerebellum. Neurosci Lett, 1992, 138:141-144.
    22. Reetz A, Solimena M, Matteoli M, et al. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J, 1991, 10:1275-1284.
    23. Christgau S, Aanstoot H. J, Schierbeck H, et al. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol, 1992, 118:309-320.
    24. Christgau S, Schierbeck H, Aanstoot H. J, et al. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem, 1991, 266:23516.
    25. Kaufman D. L, Houser C. R, Tobin A. J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem, 1991, 56:720-723.
    26. Kang T. C, Park S. K, Hwang I. K, et al. Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Res, 2002, 944:10-18.
    27. Namchuk M, Lindsay L, Turck C. W. et al. Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. J Biol them, 1997,272:1548-1557.
    28. Tian N, Petersen C, Kash S, et al. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci USA, 1999,96:12911-12916.
    29.关新民主编.医学神经功能生物学.第一版.北京:人民卫生出版社,2002.125
    30. Benson D. L, Huntsman M. M, Jones E. G. Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. Cereb Cortex, 1994,4: 40-51.
    31. Evans J. E, A. Frostholm, andRotter A. Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges, J Comp Neurol, 1996,376:431-446.
    32. Morimoto K, Sato H, Yamamoto Y, et al. Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia, 1997,38:966-974.
    33. Ribak C. E, Tong W.M, Brecha N.C. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol, 1996,367:595-606.
    34. Saransaari P, Oja S.S. Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci, 1997, 15: 163-174.
    35. Chen X.W, Yi Y, Qiu Let al. Neuroprotective activity of tiagabine in a focal embolic model of cerebral ischemia. Brain Res, 2000, 87:475-77.
    36. Asada H, Kawamura Y, Maruyama K, et al. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys. Res. Commun, 1996, 229: 891-895.
    37. Kash S. F, Johnson R. S, Tecott L. R, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad Sci USA, 1997, 94:14060-14065.
    38. Kash S. F, Tecott L. H, Hodge C, et al. Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA, 1999, 96:1698-1703.
    39. Hensch T. K, Fagiolini M, Mataga N, et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 1998, 282 1504-1508.
    40. Heckers S, Stone D, Walsh J, et al. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia, Arch Gen Psychiatry, 2002, 59:521-529.
    41. Volk D. W, Austin M. C, Pierri J. N, et al. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry, 2000, 57: 237-245.
    42. Feldblum S, Ackermann R. F, Tobin A. J. Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron, 1990, 5: 361-371.
    43. Najlerahim A, Williams S. F, Pearson R. C, et al. Increased expression of GAD mRNA during the chronic epileptic syndrome due to intrahippocampal tetanus toxin. Exp Brain Res, 1992, 90:332-342.
    44. Neder L, Valente V, Carlotti C. G, et al. Glutamate NMDA receptor subunit R1 and GAD mRNA expression in human temporal lobe epilepsy. Cell Mol Neurobiol, 2002, 22:689-698.
    45. Esclapez M, Houser C. R. Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy J Comp Neurol, 1999, 412: 488-505.
    46. Houser C. R, Esclapez M. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res, 1996, 26: 207-218.
    47. Patz S, Wirth M. J, Gorba T, et al. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNAand protein expression in organotypic cultures of rat visual cortex. Eur J Neurosci, 2003, 18:1-12.
    48. Neumann-Haefelin T, Staiger J. F, Redecker C, et al. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience, 1998, 87:871-879.
    49. Mathern G. W, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology, 1999, 52:453-472.
    50. Nagga K, Bogdanovic N, Marcusson J. GABA transporters (GAT-1) in Alzheimer's disease. J Neural Transm, 1999, 106:1141-1149.
    51. Kang T. C, Kim H. S, Seo M. O, et al. The changes in the expressions of gamma-aminobutyric acid transporters in the gerbil hippocampal complex following spontaneous seizure. Neurosci Lett, 2001, 310:29-32.
    52. Lievens J. C, Woodman B, Mahal A, et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis, 2001, 8:807-821.
    53. Volk D, Austin M, Pierri J, et al. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry, 2001, 158:256-265.
    54. During M. J, Ryder K. M, Spencer D. D. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature, 1995, 376:174-177.
    55. Williamson A, Telfeian A. E, Spencer D. D. Prolonged GABA responses in dentate granule cells in slices isolated from patients with temporal lobe sclerosis. J Neurophysiol, 1995, 74:378-387.
    56. Simpson M. D, Cross A. J, Slater P, et al. Loss of cortical GABA uptake sites in Alzheimer's disease. J Neural Transm, 1988, 71:219-226.
    57. Sundman-Eriksson I, Blennow K, Davidsson P, et al. Increased [~3H]tiagabine binding to GAT-1 in the cingulate cortex in schizophrenia. Neuropsychobiology, 2002, 45:7-11.
    58. Hirao T, Morimoto K, Yamamoto Y, et al. Time-dependent and regional expression of GABA transporter mRNAs following amygdala-kindled seizures in rats. Brain Res Mol Brain Res, 1998, 54:49-55.
    59. Akbar M. T, Rattray M, Williams R. J, et al. Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat. Neuroscience, 1998, 85:1235-1251.
    60. Kuroda H, Baskin D. S, Matsui T, et al. Effects of dynorphinl-13 on opiate binding and dopamine and GABA uptake in stroked cat brain. Brain Res, 1986, 379: 68-74.
    61. Venables G. S, Miller S. A, Gibson G, et al. The effects of hyperglycaemia on changes during reperfusion following focal cerebral ischaemia in the cat. J Neurol Neurosurg Psychiatry, 1985, 48:603-669.
    62. Weinberger J, Cohen G. The differential effect of ischemia on the active uptake of dopamine, gamma-aminobutyric acid, and glutamate by brain synaptosomes. J Neurochem, 1982, 38:963-968.
    63. Kobayashi M, Wen X, Buckmaster P.S. Reduced inhibition and increased output of layer Ⅱ neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci, 200, 23:8471-8479.
    64. Bering R, Diemer N. H, Draguhn A, et al. Co-localization of somatostatin mRNA and parvalbumin in the dorsal rat hippocampus after cerebral ischemia. Hippocampus 1995, 5:341-348.
    65. Nitsch C, Goping G, Klatzo I. Preservation of GABAergic perikarya and boutons after transient ischemia in the gerbil hippocampal CA1 field. Brain Res, 1989, 49:5243-252.
    66. Arabadzisz D, Freund T. F. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia. Neuroscience, 1999:92:27-45.
    67. Bering R. Draguhn A, Diemer N. H, et al. Ischemia changes the coexpression of somatostatin and neuropeptide Y in hippocampal interneurons. Exp Brain Res, 1997, 115:423-429.
    68. Calcagnotto M. E, Paredes M. F, Tihan T, et al. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci, 2005, 25: 9649-9657.
    69. Graham S. H, Shiraishi K, Panter S. S, et al. Changes in extracellular amino acid neurotransmitters produced by focal cerebral ischemia. Neurosci Lett, 1990, 110: 124-130.
    70. Shimada N, Graf R, Rosner G, et al. Differences in ischemia-induced accumulation of amino acids in the cat cortex. Stroke, 1990, 21:1445-1451.
    71. Shuaib A, Ijaz M. S, Miyashita H, et al. GABA and glutamate levels in the substantia nigra reticulata following repetitive cerebral ischemia in gerbils. Exp Neurol, 1997, 147:311-315.
    72. Allen N. J, Rossi D. J, Attwell D. Sequentialrelease of GASA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci, 2004, 24:3837-3849.
    1. Hossmann K. A, Grosse, Ophoff B. Recovery of monkey brain after prolonged ischemia. Electrophysiology and brain electrolytes. J Cereb Blood Flow Met Wb, 1986;6:15-21
    2.叶怀冷.谷氨酸是哺乳动物中枢的一种神经递质.生理科学进展,1987,18(1):27-29
    3. Rothmos SM. Glutamate And The Pathophysiology of Hypoaic Ischemia Brain Damage. 1986,19:105
    4. Martin D. L, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain, J Neurochem, 1993,60: 395-407
    5. Nyi ri G, Stephenson FA, Freund TF, et al. Large variability in synaptic N-methyl-D-aspartatereceptor density on interneurons and a comparison with pyramidal cell spines in the rat hippocampus. Neuroscience, 2003, 119:347-63
    6. Kogure K. The mechanism of ischemia induced brain cell injury: the membrane theory. Neurochemical Pathology, 1988,915:213-219
    7.张萍.谷氨酸及其受体变化与神经细胞损害.国外医学神经病学神经外科分册,1995,22(40):182-185
    8. Selvatici R, Marino S, Piubello C, et al. Protein kinase C activty, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemia[J]. Neurosci Res, 2003,71:64 -71
    9. Shuaib A, Ihaz S, Hasan S, et al. Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulata damage in repetitive transient forebrain ischemia, Brain Res. 1992,590:13-17
    10 Shuaib A, Murabit M. A, Kanthan R, et al. The neuroprotective effects of gamma-vinyl GABA in transient global ischemia: a morphological study with early and delayed evaluations, Neurosci Lett. 1996,204: 1-4
    11. Gale K. GABA and epilepsy: basic concepts from preclinical research. Epilepsia 1992,33: S3-S12
    12. Johansen F.F, Diemer N.H. Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells, Acta Neurol. Scand, 1991, 84:1-6
    13. Lyden P. D, Lonzo L. Combination therapy protects ischemic brain in rats: a glutamate antagonist plus a GABA agonist. Stroke, 1994, 25:189-195
    14. Mumford J. P, Cannon D. J. Vigabatrin, Epilepsia, 1994, 35:S25-S28
    15. Sabers A, Gram L. Pharmacology of vigabatrin, Pharmacol. Toxicol, 1992, 70: 237-243
    16. Frahn C, Haupt C, Witte O. W. GABA neuron survive focal ischemic injury. Neuscience, 2004, 127:341-346
    17. Benson DL, Huntsman MM, Jones EG. Activety-dependent changes in GAD and preprotachykinin mRNA in visual cortex of adult monkeys[J]. cerebro cortex, 1994, 4:40-51
    18. Christgau S, Aanstoot H. J, Schierbeck H, et al. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. Cell Biol, 1992, 118:309-320
    19. Christgau S, Schierbeck H, Aanstoot H. J, et al. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. Biol Chem, 1991, 266:21257-21264
    20. Kaufman D. L, Houser C. R, Tobin A. J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Neurochem, 1991, 56:720-723.
    21. Reetz A, Solimena M, Matteoli M, et al. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J, 1991, 10:1275-1284.
    22. Kang Tae-Cheon, Park Seung-Kook, Hwang In-Koo, et al. spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Research, 2002, 944:10-18
    23. Namchuk M, Lindsay L, Turck C. W, et al. Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. Biol Chem, 1997 272:1548-1557.
    24. Ning Tian, Carl Petersen, Shera Kash, et al. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid realease. PNAS, 1999, 96:12911-12916
    25. Asada H, Kawamura Y, Maruyama K, et al. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun, 1996 229: 891-895
    26. Kash S. F, Johnson R. S, Tecott L. H, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Nat1 Acad Sci USA, 1997, 94:14060-14065
    27. Kash S. F, Tecott L. H, Bodge, C. Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid. decarboxylase. Proc Nat1 hcad Sci USA, 1999, 96: 1698-1703
    28. HenschT. K, Fagiolini M, Mataga N, et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 1998, 282:1504-1508
    29.关新民主编.医学神经功能生物学.第一版.北京:人民卫生出版社,2002.125
    30. Heckers S, Stone D, Walsh J, et al. Differential hippocampal expression of glutamic acid decarboxylase65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry, 2002, 59:521-529
    31. Yolk DW, Austin MC, Pierri JN, et al. Decreased glutamic acid decarboxylase67 messenger RNA expressionin a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry, 2000, 57: 237-245
    32. Feldblum S, Ackermann RF, Tobin AJ. Long-term increase of Glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron, 1990, 5:361-371
    33. Najlerahim A, Williams SF, Pearson RC, et al. Increased expression of GAD mRNA during the chronic epileptic syndrome due to intrahippocampal tetanus toxin. Exp Brain Res, 1992, 90:332-342
    34. Neder L, Valente V, Carlotti CG Jr, et al. Glutamate NMDA receptor subunit R1 and GAD mRNA expression in human temporal lobe epilepsy. Cell Mol Neurobiol, 2002, 22:689-698
    35. Esclapez M, Houser CR. Up-regulation of GAD65 and GAD67 inremaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J Comp Neurol, 1999, 412: 488-505
    36. Houser CR, Esclapez M. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrentseizures. Epilepsy Res 26:207-218
    37. Patz S, Wirth MJ, Gorba T, et al. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex. EurJ Neurosci, 2003, 18:1-12
    38. Gerfen C. R, Wilson C. J. The basal ganglia, in: A. Bjoklund, T. Hofelt, L. W. Swanson (Eds.), Handbook of Chemical Neuroanatomy: Integrated Systems of the CNS, Vol. 12, Elsevier, Amsterdam, 1996, pp. 369-466
    39. Domann R, Hagemann G, Craemer M, et al. Electrophysiological changes in the surrounding brain tissue of photochemically induced cortical infarts in the rat. Neurosci Lett, 1993, 155:69-72
    40. Mittmann T, Lrhmann Hi, Schnoidt-kastne R et al. Lesion-induced transient suppression of inhibitory function in rat neocortex in vitr. Neuroscience, 1994, 4:891-906
    41. Lyden PD, Hedges B. Protective effect of synaptic inhibition during cerebral ischemia in rats and rabbits. Stroke, 1992, 23:1463-1469
    42. Madden KP. Effect of γ-aminobutyric acid modulation in neuronal ischemia in rabbits. Stroke, 1994, 25:2271-2275
    43. Lal S, Shuaib, Sijaz. Baclofen is cytoprotective to cerebral ischemia in gerbils. Neurochem Res, 1995, 20:115-119
    44. Morrisett RA, Mou DD, Lewos DV. GABA-B receptor-mediated inhibition of N-methyl-d aspartate component of synaptic transmission in the rat hippocampus. J neurosci, 1991,11:203-209
    45. Patrick D, Lyden ND, Brends Heeges RS. Protective effect of synaptic inhibition during cerebral ischemia in rats and rabbits. Stroke, 1992,23:1463-1469
    46. Sternau L L, David Lust W, Ricci A J, et al. Role for γ-aminobutyric acid in selective vulnerability in gerbils. Stroke 1989;20:281-287
    47.潘永惠,赵庆杰,王德生,等.γ-羟基丁酸对大鼠局部脑缺血再灌流损伤的保护作用.中国临床神经科学,2000,5(3):172-174
    48. Wang X, Shimizu—Sasamata M, Moskowitz MA, et al. Profiles of glutamate GABA efflux in core versus peripheral zones of focal cerebral ischemia in mice. Neurosci Lett, 2001,313:121
    49. Matsumoto N, Kumemoto, Fueue H, et al. GABA-Mediated Inhibition Of Glutomate Release During ischemia Substantia Glelanosa Of Adult Rat. J Neurophysio, 2003, 29(1): 257-264
    50. Saransaari P, Oja SS. Enhanced GABArelease in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci, 1997, 15(2):163-174
    51. Graham SH, Shiraishi K, Panter SS, et al. Changes in extracellularamino acid neurotransmitters produced by focal cerebral ischemia. Neurosci Lett, 1990, 110(1-2); 124-30
    52. Shimada N, Graf R, Rosner G , et al. Differences in is—chemia induced accumulation of amino acid in the cat cortex. Stroke, 1990,21(10): 1445-51
    53. Shuaib A, Ijaz MS, Miyashita H, et al. GABA and glutamatelevels in he substantia nigra reticulation following repeatitive cerebral ischemia in gerbils. Exp Neurol, 1997,147(2): 311-315
    54. Green A. R, Cross A. J, Shape M. F, et al. The immediate consequences of middle artery occlusion on GABA synthesis in mouse cortex and cerebellum, neurosci Lett. 1992,138(1): 141-144
    55. Niels CD. Glutamate uptake. Progress In Neurobiology, 2001, 65 (1):1-105
    56. Saransarri P, Oja SS. Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developingmice under celldamaging conditions. Neurochem Res, 1998, 23(4):563-570
    57. Grondahl TO, Berg-Johnsen J, Langmoen IA. Chloride influx during cerebral energy deprivation. Neurol Res, 1998, 20(2): 131-136
    58. Fukuda A, Muramatsu K, Okabe A. Changes in intracellular Ca~(2+)-induced by GABAAreceptor activation and reduction in Cl~- gradient in neonatal rat neocortex. J Neurophysiol, 1998, 79(1):439-446
    59. Haugstad TS, Karlsen HE, Krajtci P, et al. Efflux of gamma-aminobutyric acid caused in ion concentration and cell swelling simulating the effect of cerebral ischemia. Acta Neurochir(Wien), 1997, 139(5):453-463
    60. Lo EH, Pierce AR, Matsumoto K, et al. Alteration in K~+ evoked profiles of neurotransmitter and neuromodulator amino acids after focal ischemia-reperfusion. Neuroscience, 1998, 83(2):449-458
    61. Phillis JW, Song D, O' Regan MH. Inhibition by amino channel blocker of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex. Brain Res, 1997, 758(1-2):9-16
    62. Kakane H, Yao H, Ibayashi S, et al. Protein kinase C modulates ischemia-induced amino acids release in the striatum of hypertensive rats. Brain Res, 1998, 782(1-2):290-296
    63. Kahn RA, Panah M, Kiffel S. Modulation of ischemic excitatory neurotransmitter and gamma-aminobutyricacid release during global temporary cerebral ischemia by local nitric oxide synthase inhibition. Anesth Analg, 1997, 84(5):1004-1010
    64. O' Regan MH, Song D, Vanderheide SJ, et al. Free radicals and the ischemia evoked extracellular accumulation of amino acids in rat cerebral cortex. Neurochem Res, 1997, 22(3):273-280
    65. Ribak C. E, Tong W. M., Brecha N. C. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Com Neurol 1996, 367 : 595-606
    66. NeumannHaefelin T, Staiger FJ, Redecker C, et al. Immuno-histochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience, 1998, 87 (4):871-879
    67. Morimoto K, Sato H, Yamamoto Y, et al. Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia, 1997;38(9): 966-974
    68. Evans J. E, Frostholm A, Rotter A. Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges. J Comp Neurol, 1996, 376(3): 431-446
    69. Jin XP, Huang F, Yang N, et al. GABA transporter 1 transcriptional starting site exhibiting tissue specific difference. Cell Res, 2001, 11(2):161-163
    70. Soudijn W, van Wijngaarden I. The GABA transporter and its inhibitors[J]. Curr Med Chem, 2000, 7(10):1063-1079
    71. Kanner BI. Sodium-coupled neurotransmitter transport: structure, function and regulation[J]. J Exp Biol, 1994, 196:237-249
    72. Halonen A. Pitkanen V. Saano P. J, et al. Effects of vigrabatrin (GVG) on the neurotransmission-relatedamino acids and on GABA and benzodiazepine receptor binding in rats. Epilepsia 32 (1991) 242-249
    73. Sheikh, D. L. Martin. Elevation of brain GABA levels with vigabatrin (gamma-vinyl GABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. J Neurosci Res 52 (1998) 736-741
    74. Muth TR, Ahn J, Caplan MJ. The GABA transporter and its inhibitors. J Biology Chemistry, 1998, 273(40): 25616-25627.
    75. Deken SL, Beckman ML, Boos L, et al. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci, 2000, 3 (10):998-1003
    76. Bennett ER, Su H, Kanner BI. Mutation of arginine 44 of GAT-1, a(Na~+- Cl~-)-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange[J]. J Biol Chem, 2000, 275(44):34106-34113
    77. Mathern G. W, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology, 1999, 52:453-472
    78. Nagga K, Bogdanovic N, Marcusson J. GABA transporters (GAT-1) in Alzheimer's disease J Neural Transm, 1999, 106:1141-1149
    79. Kang T. C, Kim H. S, Se M. O, et al. The changes in the expressions of gammaaminobutyric acid transporters in the gerbil hippocampal complex following spontaneous seizure. Neurosci Lett, 2001, 310: 29-32
    80. Lievens J. C, Woodman B, Mahal A, et al. Impaired glutamate uptake in the r6 Huntington's disease transgenic mice. Neurobiol, Dis, 2001, 8:807-821
    81. Volk D, Austin M, Pierri J, et al. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreasedexpression in a subset of neurons. Am J Psychiatry, 2001, 158:256-265
    82. During MJ, Ryder KM, Spencer DD. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature, 1995, 376:174-177
    83. Williamson A, Telfeian AE, Spencer DD. Prolonged GABA responses in dentate granule cells in slices isolated from patients with temporal lobe sclerosis. J Neurophysiol, 1995, 74:378-387
    84. Simpson MD, Cross AJ, Slater P, et al. Loss of cortical GABA uptake sites in Alzheimers disease. J Neural Transm, 1988, 71:219-226
    85. Nagga K, Bogdanovic N, Marcusson J. GABA transporters (GAT-1) in Alzheimer's disease. J Neural Transm, 1999, 106:1141-1149
    86. Sundman-Eriksson I, Blennow K, Davidsson P, et al. Increased [(3)H]tiagabine binding to GAT-1 in the cingulated cortex in schizophrenia. Neuropsychobiology, 2002, 45:7-11
    87. Hirao T, Morimoto K, Yamamoto Yet al. Time-dependent and regional expression of GABA transporter mRNAs following amygdala-kindled seizures in rats. Brain Res Mol Brain Res, 1998, 54:49-55
    88. Akbar MT, Rattray M, Williams RJ, et al. Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat. Neuroscience, 1998, 85:1235-1251
    89. Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology, 2000, 39:1483-1494
    90. Schwartz-Bloom RD, Sah R. gamma-Aminobutyric acid(A) neurotrans mission and cerebra] ischemia. J Neurochem, 2001, 77:353-371
    91. Chen XW, Yi Y, Qiu L, et al. Neuroprotective activity of tiagabine in a focal embolic model of cerebral ischemia. Brain Res, 2000, 874:75-77
    92. Kuroda H, Baskin DS, Matsui T, et al. Effects of dynorphinl-13 on opiate binding and dopamine and GABA uptake in stroked cat brain. Brain Res, 1986, 379:68-74
    93. Venables GS, Miller SA, Gibson Get al. The effects of hyperglycaemia on changes during reperfusion following focal cerebral ischaemia in the cat. J Neurol Neurosurg Psychiatry, 1985, 48:663-669
    94. Weinberger J, Cohen G. The differential effect of ischemia on the active uptake of dopamine, gamma-aminobutyric acid, and glutamate by brain synaptosomes. J Neurochem, 1982, 38:963-9
    95. Bamard EA, skolnick P, Olsen RW, et al. Subtypes of γ-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev, 1998; 50:291
    96. Rudolph U, Crestani F, Mohler H et al. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci, 2001, 22:188—194
    97. Mohler H, Crestani F, Rudolph U, et al. GABA(A)-receptor subtypes: a new pharmacology. Curr Opin Pharmacol, 2001, 1:22—25
    98. Centonze D, Saulle E, Pisani A, et al. Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia. Brain, 2001, 124: 1855—1865
    99. Hall ED, Fleck TJ, Oostveen JA. Comparative neuroprotective of the benzo receptor full agonist forebrain ischemia model. Bain Res, 1998, 798(1-2):325-329
    100. Hall ED, Andrus PK, Fleck TJ, et al. Neuroprotective properties of benzodiazepine receptor, partial agonist PNU-101017 in the gerbil forebrain ischemia model. J Cereb Blood FlowMetab, 1997, 17(8):875-83
    101. Inglefield JR, Wilson CA, Schwartz-BloomRD. Effect of transient cerebral ischemia on gamma-aminobutyric acid A receptor alpha 1-subunit-immunoreactive interneurons in the gerbil CA1 hippocampus. Hippocampus, 1997, 7(5):511-523
    102. Schwartz-Bloom RD, McDonough KJ, Chase PJ, et al. Long-term neuroprotection by benzodiazepine: full versus partial agonists after transient cerebral ischemia in the gerbil. J Cereb Blood Flow Metab, 1998, 1815:548-558
    103. Heiss WD, Graf R, Fujita T, et al. Early detection of irreversibly damaged ischemic tissue by flumazenil positron emission tomography in cats. Stroke, 1997, 28(10):2045-2051
    104. Mielke JG, Wang YT. Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABAA receptors following oxygen-glucose deprivation in cultured cortical neurons. J Neurochem, 2005. 92: 1103-1113
    105. Redecker C, Wang W, Fritschy JM, et al. Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats:mediation by NMDA-dependent processes. J CerebBlood Flow Metab, 2002, 22:1463-75
    106. Li H, Siegel RE, Schwartz RD. Rapid decline of GABAA receptor subunit mRNA expression in hippocampua following transient cerebral isehemia in the gerbil. Hippoeampus, 1993; 3(4): 527
    107. Neumann-Haefelin T, Staiger JF, Redecker C, et al. Immunohistochemical evidence for drsregulation of GABAergic system ipsilateral to photoche Ⅱ dcaUy induced cotdcal infactions in rats. Neuroscicnce, 1998; 87(4): 871
    108. Neumann-Haefelin T, Bosse F, Redeckcr C, et al. Upregulafion of GABA'-receptor alphal-and alphal2-subunit mRNAs folowing ischernic cortical lesions in rats. Brain Res, 1999; 815(1): 23
    109. Buddle M, Eberhardt E, Ciminello LH, et al. Microtubuleassociated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Res, 2003, 978:38-50
    110. Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol, 1994, 6:161-72
    111. Petrini EM, Zacchi P, Barberis A, et al. Declusterization of GABAA receptors affects the kinetic properties of GABAergic currents in cultured hippocampal neurons. J Biol Chem, 2003, 278:16271-9
    112. Qu M, Mittmann T, Liuhmumn HJ, et al. Long-term changes of ionotropic Glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain[J]. Neuroscience, 1998, 85(1): 29
    113. InglefieId JR, Wilson CA, Schwartz-Bloom RD. Effect of transient cerebral ischemia on γ-aminobutyric acid receptor a_1-subunit- immunoreactive interneurons in the gerbil Cal Hippocampus. HippOcampus, 1997, 7:511
    114. Inglefield JR, Schwartz-BloomRD. Optical imaging of hippocampal neurons with a chloride-sensitive dye: early effects of in vitro ischemia. J Neurochem, 1998, 70:2500-9
    115. Galeffi F, Sah R, Pond BB, et al. Changes in intracellular chloride after oxygenglucose deprivation of the adult hippocampal slice:effect of diazepam. J Neurosci, 2004, 24:4478-88
    116. Chen Q-X, Wong RKS. Suppression of GABAA receptor responses by NMDA application in hippocampal neurons acutely isolated from the adult guinea-pig. J Physiol, 1990, 420:207-21
    117. Galeffi F, Pond BB, Zhan RZ, et al. Changes in expression of the K~+/Cl~- cotransporter, KCC2, in the rat hippocampus after transient global ischemia. Soc Neurosci Abstr, 2004, 229:13
    118. Yan Y, Dempsey RJ, Flemmer A, et al. Inhibition of Na~+-K~--Cl~- cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res, 2003, 961:22-31
    119. Yan Y, Dempsey RJ, Sun D. Na~+-K~-- Cl~-cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab, 2001, 21:711-21
    120. Su G, Haworth RA, Dempsey RJ, et al. Regulation of Na~+ - K~+- Cl~- cotransporter in primary astrocytes by dibutyryl cAMP and high [K~+]. Am J Physiol, 2000, 279: 1710-21
    121. Sun D, Murali SD. Stimulation of Na~+-K~+-Cl~- cotransporter in neuronal cells by excitatory neurotransmitter glutamate. Am J Physiol, 1998, 275:C772-9
    122. Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of a putative K-Cl cotransporter in the rat brain. J Biol Chem, 1996, 271:16245-52
    123. Jarolimek W, Lewen A, Misgeld U. A furosemide sensitive K~+-Cl~- cotransporter counteracts intracellular Cl~- accumulation and depletion in cultured rat midbrain neurons. J Neurosci, 1999, 19:4695-704
    124. Kakazu Y, Akaike N, Komiyama S, et al. Regulation of intracellular chloride by co-transporters in developing lateral superior olive neurons. J Neurosci, 1999, 19:2843-51
    125. DeFazio RA, Keros S, Quick MW, et al. Potassium-coupled chloride cotransport controls intracellularchloride in rat neocortical pyramidal neurons. J Neurosci, 2000, 20:8069-76
    126. Fukuda A, Muramatsu K, Shimano Y, et al. Changes in intracellular Ca~(2+) induced by GABAA receptor activation and reduction in Cl~- gradient in neonatal rat neocortex. J Neurophysiol, 1998; 79(1): 439
    127. Mittmann T, Qu M, Zilles K, et al. Long-term cellular dysfunction after focal cerebral ischemia: in vitro analyses. Neuroscience 1998; 85:15
    128. Sah R, Ahrens R, Galeffi F, et al. Modulation of the GABA_A-gated chloride channel by reactive oxygen species[J]. Sco Neurosci Abstract, 2001, 27, 538
    129. Renu Sah, Rochelle D, Schwartz-Bloom. Optical imaging reveals elevated intracellular chloride in hippocampalpyramidal neurons after oxidative stress[J]. J Neurosci, 1999; 19(21): 9209
    130. Levkovitz Y, Avignone E, Groner Y, et al. Upregulation of GABA neurotransmission suppresses hippocampal excitability and prevents long-term potentiation in transgenic superoxide dismutase-overexpressing Mice. J Neurosci, 1999, 19(24): 10977
    131. Castel H, Jegou S, Tonon MC, et al. Regulation of the GABA (A) receptor by nitric oxide in frog pituitary malenotrophs. Endocrinology, 2000, 141(9): 34-51
    132. Bie BH, Zhao IQ. Nitric oxide inhibits GABA-evoked currentin dorsal ganglion neuron via PKG-dependent pathway. Brain Res Bull, 2001, 55(3): 335
    133. Stem JE, ludwig M. NO inhibits supraoptic oxytocin and vasopressin neurons via activation GABAergic synaptic inputs. Am J Physiol Regul Integr Comp Physiol, 2001, 280(6): 1815
    134. Castel H, Vaudry H. Nitric oxide directly activates GABA(A) receptor function though a cGMP/protein kinase—independent pathway in pituitary melanotrophs. Neuronendocrinol. 2001, 13(8): 695
    135. Nobutoshi H, Jie W, Hitoshl I, et al. Rundown of the GABA_A response under experimental ischemia in acutely dissociated CA1 pyramidal neuron of the rat. J Physiol, 1997, 500(3): 673
    136. Galeffi F, Sinnar S, Schwartz RD. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slices after in vitro ischemia. J Neurochem, 2000, 75(3): 1242
    137. Schwartz-Bloom RD, Sah R. Aminobutyric acidA neurotransmission and cerebral ischemia. J Neurochem, 2001, 77:353-71
    138. Sah R, Galeffi F, Ahrens R, et al. Modulation of the GABAA-gated chloride channel by reactive oxygen species. J Neurochem, 2002, 80: 383-91
    139. Enz R, Cutting GR. Identification of 70 amino acids important for GABA(C) receptor rhol subunit assembly. Brain Res, 1999, 846(2):177-185
    140 Greka A, Lipton SA, Zhang D. Expessing of GABAC receptor land 2 subunits during development of the mouse retina. Err J Neurosci, 2000, 12(10):3575-3582.
    141. Ekema CM, Zheng W, LU L. Interaction of GABA receptor/Channel rho(1) and gamma(2) subunit. Invest opththalmol Vis Sci, 2002, 43(2):2326-2333
    142. Zhang W, Xie W, Zhang J, et al. Function of gamma-aminobutyric acid receptor/channel rhol subunits in spinal cord. JBiol CHem, 2003, 278948):48321-9
    143. Aulfo MT, Angelo D, Richardo M, GABAρ~1/GABAα~1 receptor chimeras to study receptordesensitization. Proc Natl Acad sci USA, 2000, 97(2): 3562-6
    144. Filippova N, Wotring VE, Weiss DS. Evidence that the TM_1-TM_2 loop contributes to the ρ~1receptor Pore. J BIOL CHem, 2004, 279(20): 20906-14
    145. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol, 1982, 11:491-8
    146. Kirino T. Delayed neuronal death in the gerbilhippocampus following ischemia. Brain Res, 1982, 239:57-69
    147. Pefito CK, Feldmann E, Pulsinelli WA, et al. Delayed hippocampal damage in humans followingcardiorespiratory arrest. Neurology, 1987, 37:1281-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700