催产素对甲基苯丙胺精神依赖的拮抗作用研究及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以甲基苯丙胺为代表的精神兴奋剂的滥用已经成为一个严重的社会问题,其精神依赖性是其泛滥的重要原因。催产素是一种垂体神经肽,具有多方面的生理功能。近年来的研究认为它可以作为一种神经调质参与调节学习记忆,应激以及多种药物成瘾的中枢神经系统作用。目前,催产素对甲基苯丙胺精神依赖性方面的作用及其机制研究尚无文献报道。本论文从行为学,神经化学和分子生物学三个水平研究了催产素在甲基苯丙胺精神依赖性中的作用并对其相关机制进行了初步探讨。
     本文首先采用了自主活动测定,行为敏化和条件性位置偏爱模型结合脑室给药技术,考察了催产素在甲基苯丙胺引起的精神依赖中的作用。在行为敏化实验中,甲基苯丙胺可以使小鼠自主活动增加并形成稳定的行为敏化,停止给药后再次给予甲基苯丙胺敏化可得以表达。脑室注射催产素可以剂量依赖性的抑制甲基苯丙胺引起的小鼠自主活动增加,抑制行为敏化的转化和表达,而对形成没有显著性影响。在甲基苯丙胺诱导的条件性位置偏爱实验中,催产素可以显著抑制其形成,加速其消退并抑制由于束缚应激引起的重现,但对于条件性位置偏爱的表达和药物激发引起的重现没有明显作用。催产素对上述行为学效应的影响均可被其受体拮抗剂阿托西班所阻断,提示催产素的作用是通过其位于中枢神经系统的受体来发挥的。
     论文进一步采用高效液相的方法检测脑内与成瘾密切相关的单胺神经递质系统(多巴胺能,5-羟色胺能)变化。实验结果表明,催产素可以通过影响纹状体和伏隔核的多巴胺代谢调节甲基苯丙胺引起的小鼠自主活动增高。纹状体和伏隔核内的多巴胺通路参与了甲基苯丙胺引起的行为敏化,并且,催产素可以调节该通路中多巴胺的代谢抑制甲基苯丙胺行为敏化的转化和表达,而前皮层和海马中多巴胺,5-羟色胺及其代谢产物的含量变化不是引起小鼠行为改变的主要原因。以上结果进一步阐明了奖赏通路在甲基苯丙胺精神依赖性方面的重要作用。
     谷氨酸作为兴奋性氨基酸类神经递质在脑内广泛存在。除了中脑边缘多巴胺能系统,谷氨酸能系统在药物成瘾中也起到重要作用,此系统主要起源于前额叶皮层。因此本文采用在体脑内微透析结合高效液相技术研究了催产素对甲基苯丙胺引起小鼠前额叶皮层内细胞外谷氨酸含量变化的影响,同时实验还检测了两种抑制性氨基酸牛磺酸和γ-氨基丁酸的含量。研究发现催产素可以抑制单次注射甲基苯丙胺以及束缚应激引起的成瘾消退小鼠内侧前额叶皮层细胞外谷氨酸含量升高,但对于药物激发引起的谷氨酸升高没有显著抑制作用。此外,单独脑室注射催产素可以引起前额叶皮层内牛磺酸和γ-氨基丁酸含量升高,而谷氨酸含量变化不大,结果提示急性给予催产素后前额叶皮层可能呈现一种抑制状态。
     近几年来关于药物成瘾与学习记忆相关性的研究日渐深入,尤其是皮层和海马等与学习记忆相关的脑区中谷氨酸的受体和转运体在成瘾中的作用也成为研究热点。本文采用免疫印迹(Western Blotting)实验方法检测了催产素对甲基苯丙胺引起小鼠前额叶皮层和海马内谷氨酸受体NMDAR1亚型和转运体GLT1亚型表达含量变化的影响。研究表明急性给予甲基苯丙胺及其激发复吸时均可以显著增加前额叶皮层内NMDAR1蛋白的含量,而戒断时前额叶皮层内NMDAR1含量显著下降。催产素可以显著拮抗甲基苯丙胺引起的NMDAR1水平的变化。另一方面,急、慢性给予甲基苯丙胺及其激发复吸时均可以显著增加海马内GLT1蛋白的含量,催产素可以进一步增加急性和慢性给予甲基苯丙胺时海马内GLT1的水平。催产素自身对前额叶皮层和海马部位NMDAR1和GLT1含量没有显著性影响。结果提示,催产素可以通过调节谷氨酸受体和转运体两方面的作用,削弱甲基苯丙胺对谷氨酸含量变化的影响,以直接或间接达到调节兴奋性氨基酸在成瘾中的作用。
     综上所述,脑室注射催产素可以通过调解中枢奖赏系统中多巴胺的代谢,氨基酸系统中细胞外谷氨酸,牛磺酸和γ-氨基丁酸水平,以及前额叶皮层和海马中谷氨酸受体和转运体的表达来调节甲基苯丙胺精神依赖引起的行为学变化,并且催产素是通过其位于中枢的受体来产生作用的。
Methamphetamine (MAP), a psychostimulant, is abused in all of the world, which remains a major social problem. MAP-induced psychological dependence is the main reason of its abuse. Accumulated data have shown the neuroactive properties of oxytocin (OT), a neurohypophyseal neuropeptide, and its capable of reducing the abuse potential of drugs. The present study investigated the effects of OT on MAP-induced behavioral changes in mice and its possible mechanisms of action.
     First of all, locomotor activity (LA), behavioral sensitization (BS) and conditioned place preference (CPP) models were used to investigate the effects of OT on the behavioral changes induced by MAP in mice. The results showed that intracerebroventricular administration of OT had no effect on locomotor activity in naive mice, but inhibited, in a dose-dependent manner, the hyperactivity induced by acute administration of MAP. OT inhibited the acquisition, facilitated the extinction of MAP-induced CPP and abolished the reinstatement of CPP induced by restraint stress significantly. Moreover, OT blocked the transfer and expression of BS. However, OT had no effect on the development of BS, the expression and the reinstatement of CPP induced by MAP challenge. These effects of OT could be attenuated by atosiban (Ato), a selective OT receptor antagonist, which suggests that OT inhibits drug-seeking behaviors induced by MAP via its receptor.
     As well known, the mesocorticolimbic dopaminergic system plays a key role in MAP dependence. The high-performance liquid chromatography (HPLC) with electronic detection system was employed in the study to determine the dopamine (DA) and serotonin (5-HT) turnover ratios in prefrontal cortex (PFC), hippocampus, striatum and nucleus accumbens (NAc) of mice. The results showed that OT significantly inhibited the DA turnover ratios in striatum and NAc in acute or chronic MAP-treated mice. These results suggest that OT inhibits the MAP-induced alteration of DA turnover in mesolimbic region of mice.
     In addition to the mesocorticolimbic dopaminergic system, glutamate (Glu)-mediated synaptic transmission also involves in the psychostimulant abuse. PCF is the origin of the glutamatergic efferents. In the present study, the extracellular Glu levels in the medial prefrontal cortex (mPFC) were determined by using microdialysis coupled to a HPLC with fluorescence detection system. The results indicated OT markedly inhibited the increase of extracellular Glu levels in mPFC of mice induced by acute administration of MAP and restraint stress in CPP mice, but not that induced by MAP priming. Furthermore, OT increased the taurine (Tau) and gamma-aminobutyric acid (GABA) levels in mPFC of naive mice, which suggested that mPFC was in the inhibitory status after OT administration.
     Previous studies have suggested that glutamatergic receptors (NMDAR1 subunit) and transporters (GLT1 subunit) are mainly involved in the addiction of drug abused. The present studies by using Western blotting method detected the expression of NMDAR1 and GLT1 in PFC and hippocampus after acute and chronic MAP administration. The results showed that OT significantly inhibited the increased NMDAR1 levels in PFC induced by acute MAP and MAP-challenging relapse and markedly attenuated the decreased NMDAR1 levels in PFC induced by MAP withdrawal. Moreover, OT increased the elevated GLT1 levels in hippocampus after acute and chronic MAP administration. No significant differences of NMDAR1 and GLT1 expression in hippocampus and PFC of mice were observed after treated with OT alone. The results indicate that OT attenuates the changes of glutamatergic neurotransmission induced by MAP partially via NMDAR1 and GLT1.
     In conclusion, although the mechanisms underlying the OT effect are not clear enough, it appears that the ability of OT to modulate MAP-induced psychological dependent behavior is closely related to the effects of the neuropeptide on dopaminergic neurotransmission in the mesolimbic regions and the glutamatergic neurotransmission of the brain. In addition, the present results implicated that OT might be a potential candidate for the prevention and treatment of the neurological disorders induced by amphetamine-like compounds.
引文
Achat-Mendes C, Anderson KL, Itzhak Y. Impairment in consolidation of learned place preference following dopaminergic neurotoxicity in mice is ameliorated by N-acetylcysteine but not D1 and D2 dopamine receptor agonists. Neuropsychopharmacology. 2007, 32(3):531-41.
    Ago Y, Nakamura S, Uda M, Kajii Y, Abe M, Baba A, Matsuda T. Attenuation by the 5-HT1A receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in mice. Neuropharmacology. 2006, 51 (4):914-922.
    Amalric M, Cline EJ, Martinez JL Jr, Bloom FE, Koob GF. Rewarding properties of β-wndorphin as measured by conditioned place preference. Psychopharmacology. 1987, 91(1): 14-19.
    Amir S, Solomon M, Amit Z. The effect of acute and chronic naloxone administration on motor activation in the rat. Neuropharmacology, 1979,18(2); 171-173.
    Anagnostaras SG, Schallert T, Robinson TE. Memory processes governing amphetamine-induced psychomotor sensitization. Neuropsychopharmacology, 2002, 26(6): 703-715.
    Aragon CM, Trudeau LE, Amit Z. Effect of taurine on ethanol induced changes in openfield locomotor activity. Psychopharmacology(Berl). 1992, 107(2-3): 337-340.
    Armstrong BD, Noguchi KK. The neurotoxic effects of 3,4- methylenedioxymethamphetamine (MDMA) and methamphetamine on serotonin, dopamine, and GABA-ergic terminals: an in-vitro autoradiographic study in rats. Neurotoxicology. 2004, 25(6): 905-914.
    Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A. 1997,15;94(8):4155-4160.
    Avena NM, Hoebel BG. Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacol Biochem Behav. 2003, 74(3): 635-639.
    Babbini M, Davis WM. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol. 1972, 46(2): 213-224.
    Baddeley A, The fractionation of working memory. Proc Natl Acad Sci U S A. 1996, 93(24): 13468-13472.
    Badiani A, Anagnostaras SG, Robinson TE. The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl). 1995,117(4): 443-452.
    Baptista T, Teneud L, Contreras Q, Burguera JL, Burguera M, Hernandez L. Effects of acute and chronic lithium treatment on amphetamine-induced dopamine increase in the nucleus accumbens and prefrontal cortex in rats as studied by microdialysis. J Neural Transm Gen Sect. 1993, 94(2): 75-89.
    Bardo MT, Rowlett JK , Harris MJ. Conditional place preference using opiate and stimulant drugs: a meta-analysis. Neuroscience and Biobehavioral Reviews,1995,19(1): 39-51.
     Bennett BA, Hollingsworth CK, Martin RS, Harp JJ. Methamphetamine-induced alterations in dopamine transporter function. Brain Res. 1998, 782(1-2): 219-227.
    Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000, 25(3): 515-532.
    Bjijou Y, De Deurwaerdere P, Spampinato U, Stinus L, Cador M. D-amphetamine-induced behavioral sensitization: effect of lesioning dopaminergic terminals in the medial prefrontal cortex, the amygdala and the entorhinal cortex. Neuroscience. 2002, 109(3): 499-516.
    
    Blander A, Hunt T, Blair R, Amit Z. Conditioned place preference: an evaluation of morphine's positive reinforcing properties Psychopharmacology (Berl). 1984;84(1): 124-127.
     Bortolotto ZA, Fitzjohn SM, Collingridge GL. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol. 1999, 9(3): 299-304.
    Bosch OJ, Sartori SB, Singewald N, Neumann ID. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress. 2007,10(3):261-270.
    Brady AM, Glick SD, O'Donnell P. Changes in electrophysiological properties of nucleus accumbens neurons depend on the extent of behavioral sensitization to chronic methamphetamine. Ann N Y Acad Sci. 2003, 1003:358-363.
    
    Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron. 1992, 8(1): 3-11.
    
    Brown VJ, Bowman EM. Rodent models of prefrontal cortical function. Trends Neurosci. 2002, 25(7): 340-343.
    Buijs RM, Van Heerikhuize JJ. Vasopressin and oxytocin release in the brain-a synaptic event. Brain Res. 1982,252(1): 71-76.
    Bureau MH, Olsen RW. Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur. J. Pharmacol. 1991, 207:9-16.
    Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hokfelt T, Herrera-Marschitz M. Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem. 2002, 83(3): 645-654.
    Cador M, Bjijou Y, Stinus L. Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience. 1995, 65(2): 385-395.
    Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacol(Beri). 2003, 168(1-2): 66-74.
    Carlezon WA Jr, Boundy VA, Haile CN, Lane SB, Kalb RG, Neve RL, Nestler EJ. Sensitization to morphine induced by viral-mediated gene transfer. Science. 1997, 277(5327): 812-814.
    Carter CS. Oxytocin and sexual behavior. Neurosci Biobehav Rev. 1992, 16(2): 131-144.
    Caruso S, Agnello C, Campo MG, Nicoletti F. Oxytocin reduces the activity of N-methyl-D-aspartate receptors in cultured neurons. J Endocrinol Invest. 1993, 16(11): 921-924.
    Chen PC, Lao CL, Chen JC. Dual alteration of limbic dopamine D1 receptor-mediated signalling and the AM/GSK3 pathway in dopamine D3 receptor mutants during the development of methamphetamine sensitization. J Neurochem. 2007 ,100(1): 225-241.
    Churchill L, Swanson CJ, Urbina M, Kalivas PW. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J Neurochem. 1999,72(6): 2397-2403.
    Conde F, Maire-Lepoivre E, Audinat E, Crepel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol. 1995, 352(4):567-593.
    Condes-Lara M, Gonzalez NM, Martinez-Lorenzana G, Delgado OL, Freund-Mercier MJ. Actions of oxytocin and interactions with glutamate on spontaneous and evoked dorsal spinal cord neuronal activities. Brain Res. 2003, 976: 75-81.
    Condes-Lara M, Maie I A, Dickenson AH. Oxytocin actions on afferent evoked spinal cord neuronal activities in neuropathic but not in normal rats. Brain Res. 2005, 1045:124-133.
    Condes-Lara M, Rojas-Piloni G, Martfnez-Lorenzana G, Rodriguez-Jimenez J, Lopez Hidalgo M, Freund-Mercier MJ. Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res. 2006, 7;1081(1):126-137.
    Conti F, Weinberg RJ. Shaping excitation at glutamatergic synapses. Trends Neurosci. 1999, 22(10): 451-458.
    Oaglish MR, Weinstein A, Malizia AL, Wilson S, Melichar JK, Lingford-Hughes A, Myles JS, Grasby P, Nutt DJ. Functional connectivity analysis of the neural circuits of opiate craving: "more" rather than "different"? Neuroimage. 2003, 20(4): 1964-1970.
    Dahchour A, De Witte P. Taurine Blocks the Glutamate Increase in the Nucleus Accumbens Microdialysate of Ethanol-Dependent Rats. Pharmacol Biochem. Behav. 2000, 65(2): 345-350.
    Dahchour A, Quertemont E, De Witte P. Taurine increases in the nucleus accumbens microdialysate after acute ethanol administration to naive and chronically alcoholised rats. Brain Res. 1996, 735(1): 9-19.
    D'Astous M, Gajjar TM, Dluzen DE, Di Paolo T. Dopamine transporter as a marker of neuroprotection in methamphetamine-lesioned mice treated acutely with estradiol. Neuroendocrinology. 2004;79(6):296-304.
    David V, Durkin TP, Cazala P. Rewarding effects elicited by the microinjection of either AMPA or NMDA glutamatergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. Eurj neurosci. 1998,10(4): 1394-1402.
    Davidson C, Lee TH, Ellinwood EH. Acute and chronic continuous methamphetamine have different long-term behavioral and neurochemical consequences. Neurochem Int. 2005, 46(3): 189-203.
    de Boer P, Damsma G, Fibiger HC, Timmerman W, de Vries JB, Westerink BH. Dopaminergic-cholinergic interactions in the striatum: the critical significance of calcium concentrations in brain microdialysis. Naunyn Schmiedebergs Arch Pharmacol. 1990, 342(5): 528-534.
    De Kloet ER, Rotteveel F, Voorhuis TA, Teriou M. Topography of binding sites for neurohypophyseal hormones in rat brain. Eur J Pharmacol. 1985,110(1): 113-119.
    del Olmo N, Bustamante J, del Rio RM, Soils JM., T Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res. 2000, 864(2):298-307.
    Di CG, North RA. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992,13(5): 185-193.
    Di Chiara G, North RA. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992, 13(5): 185-193.
    Doherty MD, Gratton A. NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in nucleus accumbens and ventral tegmental area. Synapse. 1997 Jul;26(3):225-34.
    Dryhurst G. Are dopamine, norepinephrine, and serotonin precursors of biologically reactive intermediates involved in the pathogenesis of neurodegenerative brain disorders? Adv Exp Med Biol. 2001, 500: 373-396.
    Ebner K, Bosch OJ, Kromer SA, Singewald N, Neumann ID. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology. 2005, 30(2):223-230.
    Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995, 375(6532): 599-603.
    Fang YR, Abekawa T, Li XB, Wang ZC, Inoue T, Koyama T. Effect of the protein kinase C inhibitor, staurosporine, on the high dose of methamphetamine-induced behavioral sensitization to dizocilpine (MK-801). Psychopharmacology (Berl). 2005,180(1): 100-106.
    Ferrier BM, Kennett DJ, Devlin MC. Influence of oxytocin on human memory processes. Life Sci. 1980, 27(24): 2311-2317.
    Frawley, PJ, Smith, JW. One-year follow-up after multimodal inpatient treatment for cocaine and methamphetamine dependencies. J Substance Abuse Treat. 1992, 9(4): 271-286.
    Freund-Mercier MJ, Stoeckel ME, Dietl MM, Palacios JM, Richard P. Quantitative autoradiographic mapping of neurohypophysial hormone binding sites in the rat forebrain and pituitary gland-I. Characterization of different types of binding sites and their distribution in the Long-Evans strain. Neuroscience. 1988,26(1):261-72.
    Freund-Mercier MJ, Stoeckel ME, Palacios JM, Pazos A, Reichhart JM, Porte A, Richard P. Pharmacological characteristics and anatomical distribution of [3H]oxytocin-binding sites in the Wistar rat brain studied by autoradiography. Neuroscience. 1987,20(2):599-614.
    Frosch D, Shoptaw S, Huber A, Rawson RA, Ling W. Sexual HIV risk among gay and bisexual male methamphetamine abusers. J Subst Abuse Treat. 1996, 13(6): 483-486.
    Fujio M, Nakagawa T, Sekiya Y, Ozawa T, Suzuki Y, Minami M, Satoh M, Kaneko S. Gene transfer of GLT-1, a glutamate transporter, into the nucleus accumbens shell attenuates methamphetamine- and morphine-induced conditioned place preference in rats. Eur J Neurosci. 2005, 22(11):2744-2754.
    
    Fuster JM. Executive frontal functions. Exp Brain Res. 2000,133(1): 66-70.
    Galloway GP, Newmeyer J, Knapp T, Stalcup SA, Smith D. Imipramine for the treatment of cocaine and methamphetamine dependence. J Addictive Dis. 1994,13(4): 201- 216.
    Ghasemzadeh MB, Nelson LC, Lu XY, Kalivas PW. Neuroadaptations in ionotropic and metabotropic glutamate receptor mRNA produced by cocaine treatment. J Neurochem. 1999, 72(1): 157-165.
    Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev.2001,81(2):629-83.
    Giorgetti M, Hotsenpiller G, Ward P, Teppen T, Wolf ME. Amphetamine induced plasiticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J Neursci. 2001, 21(16): 6362-6369.
    Goeders NE, Smith JE. Cortical dopaminergic involvement in cocaine reinforcement. Science. 1983, 221(4621): 773-775.
    Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH. The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res. 1990, 85:95-118; discussion 116-118.
    Han DD, Gu HH. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006,6:6.
    
    Hanson GR, Sandoval V, Riddle E, Fleckenstein AE. Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications. Ann N Y Acad Sci. 1025:146-150.
    Hao Y, Yang JY, Wu CF, Wu MF. Pseudoginsenoside-F11 decreases morphine-induced behavioral sensitization and extracellular glutamate levels in the medial prefrontal cortex in mice. Pharmacol. Biochem. Behav. 2007, 86(4): 660-666.
    Haracz JL, Belanger SA, MacDonall JS, Sircar R. Antagonist of N-methyl-D-aspartate receptors partially prevent the development of cocaine sensitization. Life Sci. 1995, 57(25):2347-2357.
    Heresco-levy U, Javitt DC. The role of N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndromes, Eur Neuropsychopharmacol. 1998, 8(2): 141-152.
    Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, Anagnostou E, Wasserman S. Oxytocin increases retention of social cognition in autism. Biol Psychiatry. 2007, 61(4):498-503.
    
    Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994,17:31-108.
    Huber A, Ling W, Shoptaw S., Gulati V, Brethen, P, Rawson R. Integrating treatments for methamphetamine abuse: a psychosocial perspective. J Addict Dis. 1997,16(4): 41- 50.
    Ito K, Abekawa T, Koyama T. Relationship between development of cross-sensitization to MK-801 and delayed increases in glutamate levels in the nucleus accumbens induced by a high dose of methamphetamine. Psychopharmacology (Berl). 2006,187(3):293-302.
    Itoh Y, Nishibori M, Oishi R, Saeki K. Neuronal histamine inhibits methamphetamine-induced locomotor hyperactivity in mice. Neurosci Lett. 1984, 48(3): 305-309.
    Itzhak Y, Martin JL. Cocaine-induced conditioned place preference in mice: induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology. 2002, 26(1): 130-134.
    Izawa J, Yamanashi K, Asakura T, Misu Y, Goshima Y. Differential effects of methamphetamine and cocaine on behavior and extracellular levels of dopamine and 3,4-dihydroxyphenylalanine in the nucleus accumbens of conscious rats. Eur J Pharmacol. 2006, 549(1-3): 84-90.
    Jezova D, Skultetyova I, Tokarev DI, Bakos P, Vigas M. Vasopressin and oxytocin in stress. Ann N Y Acad Sci. 1995, 771:192-203.
    Jo YH, Stoeckel ME, Freund-Mercier MJ, Schlichter R. Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J. Neurosci. 1998, 18: 2377-2386.
    Johanson CE, Fischman MW. The pharmacology of cocaine related to its abuse. Pharmacol Rev. 1989, 41(1): 3-52.
    Kalivas PW, Pierce RC, Cornish J, Sorg BA. A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol. 1998,12(1): 49-53.
    Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 1991, 16(3): 223-244.
    Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev. 1993,18(1): 75-113.
    Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992, 360(6403): 467-471.
    Karler R, Calder LD, Thai LH, Bedingfield JB. The dopaminergic, glutamatergic, GABAergic bases for the action of amphetamine and cocaine. Brain Res. 1995, 671 (1):100-104.
    Katz RJ, Gormezano G A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacol Biochem Behave 1979,11(2): 213-233.
    Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002, 22(9): 3306-3311.
    Kim HS, Hong YT, Oh KW, Seong YH, Rheu HM, Cho DH, Oh S, Park WK, Jang CG Inhibition by ginsenosides Rb1 and Rg1 of methamphetamine-induced hyperactivity, conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Gen Pharmacol. 1998, 30(5): 783-789.
    Kitanaka N, Kitanaka J, Takemura M. Behavioral sensitization and alteration in monoamine metabolism in mice after single versus repeated methamphetamine administration. Eur J Pharmacol. 2003,474(1): 63-70.
    Kitanaka N, Kitanaka J, Takemura M. Repeated clorgyline treatment inhibits methamphetamine-induced behavioral sensitization in mice. Neurochem Res. 2005, 30(4): 445-451.
    Kitanaka N, Kitanaka J, Tatsuta T, Watabe K, Morita Y, Takemura M. Methamphetamine reward in mice as assessed by conditioned place preference test with Supermex sensors: effect of subchronic clorgyline pretreatment. Neurochem Res. 2006, 31(6): 805-813.
    Kombian SB, Malenka RC. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature. 1994, 368(6468): 242-246.
    Koob GF, Stinus L, Le Moal M, Bloom FE. Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev. 1989, 13(2-3): 135-140.
    Koob GF. Drug of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992,13(5): 177-184.
    
    Kovacs G, Telegdy G. Effects of oxytocin, des-glycinamideoxytocin and anti-oxytocin serum on the alpha-MPT-induced disappearance of catecholamines in the rat brain. Brain Res. 1983, 268(2): 307-314.
    Kovacs GL, Horvath Z, Samyai Z, Faludi M, Telegdy G. Oxytocin and a C-terminal derivative (Z-prolyl-D-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain. Neuropharmacology. 1985, 24(5): 413-419.
    Kovacs GL, Izbeki F, Horvath Z, Telegdy G. Effects of oxytocin and a derivative (Z-prolyl-D-leucine) on morphine tolerance/withdrawal are mediated by the limbic system. Behav Brain Res. 1984,14(1): 1-8.
    Kovacs GL, Sarnyai Z, Barbarczi E, Szabo G, Telegdy G. The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity. Neuropharmacology. 1990, 29(4): 365-368.
    Kovacs GL, Samyai Z, Szabo G Oxytocin and addiction: a review. Psychoneuroendocrinology. 1998, 23(8):945-962.
    Kovacs GL. Oxytocin and behavior. In: Gantner D, Pfaff D, eds. Neurobiology of Oxytocin, Current Topics in Neuroendocrinology. 1986, 6: 91-120.
    Kuribara H, Uchihashi Y. SCH 23390 equivalently, but YM-09151-2 differentially reduces the stimulant effects of methamphetamine, MK-801 and ketamine: assessment by discrete shuttle avoidance in mice. Jpn J Pharmacol. 1993,62(1): 111-114.
    Kuribara H. Effects of interdose interval on ambulatory sensitization to methamphetamine, cocaine and morphine in mice. Eur J Pharmacol. 1996, 316(1): 1-5.
    Kuribara H. Induction of sensitization to hyperactivity caused by morphine in mice: effects of post-drug environments. Pharmacol Biochem Behav. 1997, 57(1-2): 341-346.
    Leshner Al. Addiction is a brain disease, and it matters. Science. 1997, 278(5335): 45- 47
    Li Y, Wolf ME, Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav Brain Res. 1997, 84:285-289.
    Li Y, Wolf ME, White FJ. T The expression of cocaine sensitization is not prevented by MK-801 or ibotenic acid lesions of the medial prefrontal cortex. Behav Brain Res. 1999, 104:119-125.
    Liberzon I, Trujillo KA, Akil H, Young EA. Motivational properties of oxytocin in the conditioned place preference paradigm. Neuropsychopharmacology. 1997,17(6): 353-359.
    Lin MT, Ho LT, Chan HK. Effects of oxytocin and (1-penicillamine,4-threonine) oxytocin on thermoregulation in rats. Neuropharmacology. 1983, 22(8): 1007-1013.
    
    Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330: 613-622.
    Maldonado C, Rodriguez-Arias M, Castillo A, Aguilar MA, Minarro J. Effect of memantine and CNQX in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Prog Neuropsychopharmacol Biol Psychiatry. 2007, 31(4): 932-939.
    Maldonado R. The neurobiology of addiction. J Neural Transm Suppl. 2003, (66): 1 -14.
    Masserano JM, Baker I, Natsukari N, Wyatt RJ. Chronic cocaine administration increases tyrosine hydroxylase activity in the ventral tegmental area through glutaminergic- and dopaminergic D2-receptor mechanisms. Neurosci Lett. 1996, 217(2-3):73-76.
    Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. Prog Neurobiol. 1987,28(3): 197-276.
    McBroom MJ, Elkhawad AO, Dlouha H. Taurine and ethanol-induced sleeping time in mice: route and time course effects. Gen Pharmacol. 1986,17(1): 97-100.
    Melichar JK, Daglish MR, Nutt DJ. Addiction and withdrawal - current views. Curr Opin Pharmacol. 2001, 1(1):84-90.
    Miner LAH, Ostrander M, Sarter M. Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for executive dysfunction. J Psychopharmacol. 1997,11(2): 169-178.
    Moghaddam, B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem. 1993, 60(5): 1650-1657.
    Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM. Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience. 1996, 71(2): 371-382.
    Moody CA, Frank RA. Cocaine facilitates prefrontal cortex self-stimulation. Pharmacol Biochem Behav. 1990, 35(3): 743-746.
    Mucha RF, van der Kooy D, O'Shaughnessy M, Bucenieks P. Drug Reinforcement Studied by the Use of Place Conditioning in rat. Brain Res. 1982,243(1): 91-105.
    Mueller D, Stewart J. Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res. 2000,115(1):39-47.
    Murase S, Grenhoff J, Chouvet G, Gonon FG, Svensson TH. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett. 1993,157(1): 53-56.
    Murray JB. Psychophysiological aspects of amphetamine-methamphetamine abuse. J Psychol. 1998, 132(2): 227-237.
     Nakagawa T, Fujio M, Ozawa T, Minami M, Satoh M. Effect of MS-153, a glutamate transporter activator, on the conditioned rewarding effects of morphine, methamphetamine and cocaine in mice. Behav Brain Res. 2005,156(2): 233-239.
    Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science, 1992,258(5082):597-603.
    Needle RH, Coyle S, Cesari H, Trotter R, Clatts M, Koester S, Price L, McLellan E, Finlinson A, Bluthenthal RN, Pierce T, Johnson J. Jones TS, Williams M. HIV risk behaviors associated with the injection process: Multiperson use of drug injection equipment and paraphernalia in injection drug user networks. Substance Use & Misuse. 1998, 33(12): 2403- 2423.
    Nestby P, Schotte A, Janssen PF, Tjon GH, Vanderschuren LJ, De Vries TJ, Mulder AH, Leysen JE, Schoffelmeer AN. Striatao dopamine receptors in rats displaying long-term behavioral sensitization to morphine. Synapse. 1997,27(3): 262-625.
    Neumann ID, Wigger A, Tomer L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J. Neuroendocrinol. 2000,12(3): 235-243.
    
    Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000,10(3): 206-219.
    Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol, 1998,54(5): 581-618.
    Parker LA, Mcdonald RV. Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmacol Biochem Behav. 2000, 66(3):559-561.
    Parsons CG. NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol. 2001,429(1-3):71-78.
    Paxinos G., Franklin K.B., 2001. The mouse brain in stereotaxic coordinates, 2nd edition. San Diego, CA: Academic Press.
     Peakman MC, Colby C, Perrotti LI, Tekumalla P, Carle T, Ulery P, Chao J, Duman C, Steffen C, Monteggia L, Allen MR, Stock JL, Duman RS, McNeish JD, Barrot M, Self DW, Nestler EJ, Schaeffer E. Inducible, brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine. Brain Res. 2003,970(1-2): 73-86.
    Pedersen CA, Ascher JA, Monroe YL, Prange AJ Jr. Oxytocin induces maternal behavior in virgin female rats. Science. 1982, 216(4546): 648-650.
    Piazza PV, Marinelli M, Jodogne C, Deroche V, Rouge-Pont F, Maccari S, Le Moal M, Simon H. Inhibition of corticosterone synthesis by Metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Research. 1994, 658(1-2): 259-264.
    Pierce RC, Bell K, Duffy P, Kalivas PW. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci. 1996, 16(4): 1550-1560.
    Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience. 1998, 82(4): 1103-1114.
    Pines G, Danbolt NC, Bjφras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992, 360(6403): 464-467.
    Pu L, Bao GB, Xu NJ, Ma L and Pei G. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci. 2002, 22(5): 1914-1921.
    Pudiak CM, Bozarth MA. L-NAME and MK-801 attenuate sensitization to the locomotor-stimulating effect of cocaine. Life Sci. 1993, 53(20):1517-1524.
    
    Qi J, Yang JY, Song M, Li Y, Wang F, Wu CF.. Inhibition by oxytocin of methamphetamine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice. Naunyn Schmiedebergs Arch Pharmacol. 2008, 376(6):441 - 448.
    Reeves R, Thiruchelvam M, Cory-Slechta DA.. Expression of behavioral sensitization to the cocaine-like fungicide triadimefon is blocked by pretreatment with AM PA, NMDA and DA D1 receptor antagonists. Brain Res. 2004,1008(2): 155-67.
    Results from the 2003 National Survey on Drug Use and Health (NSDUH Series H-25). Rockville, MD' Office of Applied Studies, Substance Abuse and Mental Health Services Administration. (SAMHSA). 2004.
    Roberts AC, Robbins TW, Weiskrantz L. The prefrontal cortex: executive and cognitive functions, Oxford University Press, 1998, 221-242
    
    Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, Muglia LJ, Zhuo M. Oxytocin mediates stress-induced analgesia in adult mice. J Physiol. 2002, 540(Pt 2): 593-606.
    Robinson MB. The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int. 1998, 33(6):479-91.
    Robinson TE, Berridge KC. Adiction. Annu Rev Psychol. 2003, 54: 25-53.
    Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001, 96 (1): 103 - 114.
    Robinson TE, Berridge KC. The neural basis of drug craving: Anincentive-sensitization theory of addiction. Brain Res Rev. 1993,18(3): 247-291.
    Samaha AN, Li Y, Robinson TE. The rate of intravenous cocaine administration determines susceptibility to sensitization. J Neurosci. 2002, 22(8): 3244-3250.
    Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA. Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience. 2003, 119(2):497-505.
    Samyai Z, Babarczy E, Krivan M, Szabo G, Kovacs GL, Barth T, Telegdy G. Selective attenuation of cocaine-induced stereotyped behaviour by oxytocin: putative role of basal forebrain target sites. Neuropeptides. 1991,19(1): 51-56.
    Samyai Z, Kovacs GL. Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology. 1994,19(1): 85-117.
    Samyai Z, Szabo G, Kovacs GL, Telegdy G. Opposite actions of oxytocin and vasopressin in the development of cocaine-induced behavioral sensitization in mice. Pharmacol BiochemBehav. 1992a, 43(2): 491-494.
    Samyai Z, Vecsemyes M, Laczi F, Biro E, Szabo G, Kovacs GL. Effects of cocaine in the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats. Neuropeptides. 1992b, 23(1): 27-31.
    
    Samyai Z. Oxytocin and neuroadaptation to cocaine. Prog Brain Res. 1998,119: 449-466.
    
    Schenk S, Snow S, Sensitization to cocaine's motor activating properties produced by electrical kindling of the medial prefrontal cortex but not of the hippocampus. Brain Res. 1994, 659:17-22
    Schmidt EF, Sutton MA, Schad CA, Karanian DA, Brodkin ES, Self DW. Extinction training regulates tyrosine hydroxylase during withdrawal from cocaine self-administration. J Neurosis. 2001, 21(7): 137-145.
    Schultz W, Tremblay L, Hollerman JR. Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology. 1998, 37(4-5): 421-429.
    Seiden LS, Kleven MS. Methamphetamine and related drugs: toxicity and resulting behavioral changes in response to pharmacological probes. NIDA Res Monogr. 1989, 94:146-60.
    Sekiya Y, Nakagawa T, Ozawa T, Minami M, Satoh M. Facilitation of morphine withdrawal symptoms and morphine-induced conditioned place preference by a glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate in rats. Eur J Pharmacol. 2004, 485(1-3):201-210.
    Self DW, Nestler EJ. Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol. Depend. 1998, 51(1-2): 49-60.
    Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur J Pharmacol. 1999, 378(1): 1-8.
    
    Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci. 1997, 17(7):2605-2614.
    
    Shippenberg TS, Heidbreder C, Lefevour A. Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur J Pharmacol. 1996, 299(1-3): 33-39.
    Shoptaw S, Rawson RA, McCann MJ, Obert JL. The Matrix model of outpatient stimulant abuse treatment: evidence of efficacy. J Addict Dis. 1994; 13(4): 129-141.
    Sidiropoulon K, Chao S, Lu W, Wolf ME. Amphetamine administration does not alter protein levels of the GLT-1 and EAAC1 glutamate transporter subtypes in rat midbrain, nucleus accumbens, striatum or prefrontal cortex. Brain Res Mol Brain Res, 2001, 90:187-192.
    Smeltzer MD, Curtis JT, Aragona BJ, Wang Z. Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett. 2006,13;394(2): 146-51.
    Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science. 1989, 243(4889): 398 - 400.
    Steketee JD. Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev. 2003,41(2-3): 203-228.
    
    Stephans SE, Yamamoto BK. Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res. 1995,700 (1-2): 99-106.
    
    Steward J, Wise RA. Reinstatement of heroin self-administration habits : Morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology (Berl). 1992, 108(1-2): 79-84.
    Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992, 89(22): 10955-10959.
    Taguchi K, Atobe J, Kato M, Chuma T, Chikuma T, Shigenaga T, Miyatake T. The effect of methamphetamine on the release of acetylcholine in the rat striatum. Eur J Pharmacol. 1998, 360(2-3): 131-137.
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997, 276(5319): 1699-1702.
    
    Tong ZY, Overton PG, Clark D. Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res. 1995,674(1): 63-74.
    Tsai G, Gastfriend DR, Coyle JT. The glutamatergic basis of human alcoholism. Am J Psychiatry. 1995, 152(3): 332-340.
    Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hubner CA, Represa A, Ben-Ari Y, Khazipov R. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science. 2006, 314(5806): 1788-1792.
    Tzschentke TM. Measuring reward with the conditioned place prefernce paradigm; a comprehensive review of drug effects. Recent progress and new issues. Prog Neurobiol. 1998, 56(6): 613-672
    
    UNDCP. Amphetamine-type stimulants: a global review. United Nations International Drug Control Programme, Technical Serirs, NO 3.Vienna:1996.
    Ungless MA, Whistler JL, Malenka RC, Bond A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature. 2001,411(6837): 583-587.
    Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinicalstudies. Psychopharmacology(Beri). 2000,151(2-3): 99-120.
    Versteeg DH. Neurohypophyseal hormones and brain neurochemistry. Pharmacol Ther. 1982, 19(3): 297-325.
    Vezina P. Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res. 1993,605(2): 332-337.
    Volkow ND, Li TK. Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences. Pharmacol Ther. 2005, 108(1): 3-17.
    
    Wang B, Luo F, Zhang WT, Han JS. Stress or drug priming induces reinstatement of extinguished conditioned place preference. Neuroreport. 2000, 21; 11 (12):2781-2784.
    Wang HD, Takigawa M, Hamada K, Shiratani T, Takenouchi K. A shift in information flow between prefrontal cortex and the ventral tegmental area in methamphetamine-sensitized rats. Int J Psychophusiol. 2002, 44(3): 251-259.
    Weindl A. The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (Eds) Current Topics in Neuroendocrinology. Central Cardiovascular Control. Springer, Berlin, 1983,151-186.
    White FJ, Hu XT, Zhang XF, Wolf ME. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharmacol Exp Ther. 1995, 273(1): 445-454.
    Windle RJ, Gamble LE, Kershaw YM, Wood SA, Lightman SL, Ingram CD. Gonadal steroid modulation of stress-induced hypothalamo-pituitary-adrenal activity and anxiety behavior role of central oxytocin. Endocrinology. 2006,147(5): 2423-31.
    Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci. 2004, 24(12): 2974-2982.
    Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987, 94(4): 469-492.
    Wise RA. Brain reward circuitry: insights from unsensed incentibes. Neuron. 2002, 36(2): 229-240.
    Wolf ME. Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv. 2002, 2(3): 146-157.
    Wright JM, Peoples RW, Weight FF. Single-channel and whole-cell analysis of ethanol inhibition of NMDA-activated currents in cultured mouse cortical and hippocampal neurons. Brain Res. 1996, 738(2): 249-256.
    Wu CF, Liu YL, Song M, Liu W, Wang JH, Li X, Yang JY. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacol Biochem Behav. 2003, 76(1):103-109.
    Xie CW, Lewis DV. Opioid-mediated facitation of long-term potentiation at the lateral perforant path-dentate granule cell synapse. J Pharmacol Exp Ther. 1991,256(1): 289-296.
    
    Xu NJ, Bao L, Fan HP, Bao GB, Pu L, Lu YJ, Wu CF, Zhang X, Pei G. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci. 2003,23(11): 4775-4784.
    Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther. 1998,287(1): 107-114.
    
    Ye G, Tse AC, Yung W. Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA- and glycine-linked chloride conductance. Brain Res. 1997, 749(1): 175 - 179.
    Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL. Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res. 2003,990(1-2): 157-164.
    Zhang XF, Hu XT, White FJ, Wolf ME. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther. 1997, 281(2): 699-706.
    Zhu H, Brodsky M, Gorman AL, Inturrisi CE. Region-specific changes in NMDA receptor mRNA induced by chronic morphine treatment are prevented by the co-administration of the competitive NMDA receptor antagonist LY274614. Brain Res Mol Brain Res. 2003, 114(2):154-162.
    Zuo GC,Yang JY,Hao Y,Dong YX,Wu CF.Ethanol and acetaldehyde induce similar changes in extracellular levels of glutamate,taurine and GABA in rat anterior cingulate cortex.Toxicol Lett.2007 Mar 30;169(3):253-8.
    蔡志基.全球毒品问题的主要动向.中国药物滥用防治杂志.1999.2:13-16.
    曹家琪.连智,刘志民.甲基苯丙胺的毒性和治疗研究最新进展.中国药物依赖性杂志.2001,10:67-68.
    管林初,姚林.脑复康,石杉碱甲。绞股蓝,豆腐果甙和樟柳碱对动物旷场行为的影响.心理学报.1988,2:211-214.
    韩济生.神经科学原理.第二版,北京:北京医科大学出版社,1999a.1077-1079.
    韩济生.神经科学原理.第二版,北京:北京医科大学出版社,1999b,527-528.
    何颂跃.冰毒危害与毒品犯罪.北京:人民法院出版社。1999,2-12.
    姜佐宁.药物成瘾的临床特征与现代治疗.人民卫生出版社.2003.180-185.
    康颂建,史永芝.徐隆绍.催产素在中枢神经系统内的作用.国外医学:内分泌学分册.1992,12(4):202-204.
    梁建辉.第十七章药物依赖性研究原理和方法,见:杜冠华主编,实验药理学,北京:中国协和医科大学出版社.2004.333-366.
    刘闯.条件性位置偏爱试验.中国药物滥用预防杂志.1996,4:37-39.
    刘杰,肖琳,李勇辉.隋南.影响条件性位置偏爱实验各种因素的研究现状.中国药物依赖性杂志.2005,14(2):85-88.
    刘胜,周文华,杨国栋.成瘾药物行为敏化及机制.中国药物滥用防治杂志.2004,10:337-339
    陆苏南.郑继旺.奖赏效应与药物滥用的关系及其神经生化机制.中国药物滥用防治杂志.1999,1:5-9.
    罗峻,隋建峰.林建雄,李希成.催产素对低氧大鼠海马脑片CAl区LTP的影响.第三军医大学学报.2003,25(3):275-276.
    汤易朗.当前药物滥用的主要治疗模式.中国药物滥用防治杂志.1997a,1:9-11.
    汤易朗.药物依赖的复发及其防治.中国药物依赖性通报.1997b.6(2):73-76.
    张均田主编.现代药理实验方法学.第一版,北京医科大学中国协和医科大学联合出版.1998.1084-1093.
    郑继旺.苯丙胺类兴奋剂的行为药理.中国药物依赖性通报.1993.2(3):159-163.
    左明雪.细胞和分子神经生物学.高等教育出版社,施普林格出版社.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700