棉花幼苗γ-氨基丁酸代谢及对干旱胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱缺水对作物生产造成的危害超过了其他非生物因子胁迫的总和,因此,提高作物抗旱性已成为干旱缺水地区农业可持续发展急需解决的关键问题。新疆是我国典型的干旱区,棉花是新疆最重要的经济作物,研究棉花适应干旱逆境的能力,探讨棉花抗逆生理生态机制,培育耐旱品种,已成为新疆现代植棉业迫切需要解决的重要问题。
     植物体内糖代谢途径主要是通过糖酵解和三羧酸循环(TCA)进行,γ–氨基丁酸(GABA)支路和TCA循环密不可分。GABA支路对C/N分配和氨基酸代谢具有一个中心调节作用。植物中GABA被认为是一种信号传导分子,在生物和非生物逆境胁迫条件下,植物会迅速积累大量GABA。外源GABA具有缓解植物非生物胁迫的作用。所以,研究棉花幼苗GABA代谢对干旱胁迫的响应,了解棉花对干旱胁迫下的氮代谢过程,对生产中调控棉花碳氮代谢,实现棉花高产很有必要。本试验采用土培和水培的方式,在人工气候室条件下,研究抗旱性不同的2个棉花幼苗品种GABA代谢对干旱胁迫的响应,研究结果如下:
     1.在持续干旱胁迫下,新陆早7号(耐旱品种)和新陆早24号(不耐旱品种)的叶水势、叶片相对含水量、根系含水量和根系活力逐渐下降,在胁迫5d降到最低,与同期处理的对照组相比较,差异达到显著水平(p<0.05)。谷氨酸脱羧酶(GAD)活性在处理4d达到最大值,5d及复水后随之下降;GABA含量随着干旱胁迫天数的增加而增加,在胁迫5d上升到最大值,此时新陆早7号和新陆早24号叶片GABA含量分别比对照增加290.56%和200.31%;根系GABA含量分别比对照增加320.63%和243.81%;叶片GABA转氨酶(GABA-T)活性在胁迫前期高,随着胁迫时间的延长而下降,在胁迫3d较对照显著降低,5d下降到最低。2个品种根系的GABA-T活性变化趋势和叶片相似。复水后,2个品种叶片和根系GAD活性、GABA-T活性、GABA含量均有所恢复,其中新陆早7号比新陆早24号恢复速度快,说明耐旱型棉花品种具有较强的恢复能力。
     2.棉花叶片和根系中至少存在3种内肽酶,即巯基蛋白酶、丝氨酸蛋白酶及金属蛋白酶。其中最活跃的是巯基蛋白酶。外源GABA能够显著降低棉花叶片和根系的内肽酶活性。
     3.Ca(NO_3)_2、W7和TFP对棉花幼苗处理组,不同有机酸和氨基酸对棉花幼苗处理GAD活性的作用效果表现为:-1.0MPa PEG处理使棉花叶片GAD活性显著降低,10mM Ca(NO_3)_2处理使棉花叶片GAD活性显著高于对照;在-1.0MPaPEG+100mMW7+10mMCa(NO_3)_2处理下,棉花叶片GAD活性显著低于对照,证明W7对GAD活性的抑制效果最显著;在5mM谷氨酸、5mM丙氨酸、5mM甘氨酸、5mM天门冬氨酸和5mM铵离子处理组,以谷氨酸处理的棉花叶片GAD活性最高,其他氨基酸处理GAD活性略低于对照,铵离子处理的GAD活性最低;在10mM丁酸、10mM柠檬酸、10mM苹果酸和100mM草酸处理组,棉花叶片GAD活性均高于对照,GAD活性变化顺序是草酸>柠檬酸>苹果酸>丁酸。棉花叶片中的草酸含量虽然远远高于其他有机酸,但对GAD活性影响不如苹果酸和柠檬酸显著。在钙试剂和氨基酸处理组棉花根系中GAD活性和GABA含量变化趋势和棉花叶片变化趋势相似,所不同的是变化幅度降低缓慢。
     4.在-0.5MPa、-1.0MPa和-1.5MPa三种水势的PEG溶液胁迫下,棉花叶片腐胺(Put)、亚精胺(Spd)和精胺(Spm)含量均随着胁迫水势的降低而增加,增加量的幅度大小为Put> Spd> Spm,且抗旱品种新陆早7号增加的幅度大于不抗旱品种新陆早24号。在-1.5MPa水势的PEG溶液胁迫下,Put的含量上升最显著,Spd次之,Spm变化幅度最小;在加入二胺氧化酶(DAO)活性抑制剂氨基胍(AG)后,棉花叶片Put、Spd和精胺Spm含量都随着胁迫水势的降低而略有上升,上升幅度最大的也是Put。Spd次之。Spm变化幅度最小;在-0.5MPa、-1.0MPa和-1.5MPa PEG溶液胁迫下,棉花叶片DAO活性在-1.0MPa时最高,在-0.5MPa最低。加入AG后,棉花叶片DAO活性几乎完全被抑制;在-1.5MPaPEG溶液胁迫下,GABA含量最高,-1.0MPa PEG溶液胁迫下的棉花叶片GABA含量次之,-0.5MPa PEG溶液胁迫下的棉花叶片GABA含量最低。
     在三种水势PEG胁迫下,棉花根系的Put、Spd、Spm、GABA含量、DAO活性变化与相同水势PEG胁迫下的叶片变化基本相似,不同的是Put、Spd、Spm和GABA含量比叶片低的多,DAO活性则略低于叶片。-1.0MPa PEG溶液胁迫下的棉花叶片和根系的多胺降解途径可提供30%到40%GABA形成。
     5.在持续干旱胁迫及复水条件下,新陆早7号和新陆早24号叶片和根系氮代谢关键酶活性、可溶性蛋白质含量、总氮含量、纯氮含量和游离氨基酸含量发生了较大的变化。具体表现为:在干旱胁迫下,2个品种叶片含水量逐渐降低,其中新陆早7号下降较为明显;与对照正常供水相比,新陆早7号和新陆早24号叶片和根系谷氨酰胺合成酶(GS)活性和硝酸还原酶(NR)活性都比对照显著降低。叶片和根系内肽酶活性、谷氨酸脱氢酶(GDH)活性都比对照显著增加。可溶性蛋白质含量、总氮含量和铵离子含量也都比对照显著增加;持续干旱胁迫增加了2个品种叶片和根系游离氨基酸含量,新陆早7号在胁迫前期游离氨基酸含量增加慢,后期增加快,新陆早24号游离氨基酸含量的变化趋势与新陆早7号相反。复水后,新陆早7号叶片和根系含水量和硝酸还原酶活性及谷酰胺合成酶活性恢复较快,谷氨酸脱氢酶活性和内肽酶活性与游离氨基酸、铵离子、可溶性蛋白质和总氮含量下降的速度也较新陆早24号快。2个品种棉花幼苗的GABA含量与谷氨酸、脯氨酸、总游离氨基酸含量存在显著或极显著相关关系。
Drought influence crop production greatly more than the sum of other stress factors. Therefore,improving crop drought resistance has become a critical issue of agricultural sustainable development inarid areas. Xinjiang is a typical arid area in China and cotton is the most important economic crops in thisarea. Research on the ability to adapt to drought stress in cotton, discuss physiological and ecologicalmechanism in drought resistance and cultivate varieties which are drought resistant, these have becomethe urgent question to resolve in Xinjiang.
     The metabolism of sugar mainly through glycolysis and the TCA cycle in plants. Gamma aminobutyricacid (GABA) branch is closely linked to TCA cycle. The GABA branch has a central control role in C/Ndistribution and amino acid metabolism GABA is considered to be a signaling molecule in plant. Underbiotic and abiotic stress conditions, plants will accumulate a large number of GABA rapidly. ExogenousGABA can weak the plant abiotic stress. Hence, it is necessary to study GABA metabolism in cottonseedlings response to drought stress, it will help us understand the nitrogen metabolism and improve cottonproduction under drought stress. In this experiment, we studied the response of two cotton varietiesseedlings with different drought stress under soil culture and hydroponics in artificial climate chamber.Some results as follows:
     1. Under sustaining drought stress,"Xinluzao No.7(drought-resistant variety)" and "Xinluzao No.24"(sensitive to variety) leaf water potential, the relative water content of leaves, roots water content andactivity decreased gradually. After5d treatment, it decreased to lowest level, compared with the controlgroup, the difference reached a significant level. The activity of glutamic decarboxylase (GAD) reachedthe maximum value after4d treatment, but it decreased after5d treatment and re-watering. With theextension of drought stress time, the content of GABA increased, and reached to maximum after5d stress.The GABA content increased by290.56%and200.31%in "Xinluzao No.7" and "Xinluzao No.24" leaves,respectively; and in roots, GABA content increased by320.63%and243.81%. Leaf GABA-T has higheractivity in the early stress period, but it decreased with the stress time prolonged in "Xinluzao No.7" and"Xinluzao No.24". Compared with the control, the3d decreased significantly and5d reached the lowestlevel. GABA-T activity of roots and leaves had the similar trend in two varieties. After re-watering, theGAD activity, GABA-T activity and GABA content recover in leaves and roots of two varieties, but"Xinluzao No.7" was recover faster than "Xinluzao No.24". It was suggested that drought-tolerant speciescotton has stronger recover ability.
     2. There are at least3kinds of endopeptidase in cotton leaves and roots, namely the thiol protease,serine protease and metalloprotease. The thiol protease is most active among them. Exogenous GABA candecrease significant endopeptidase activity in cotton leaves and roots.
     3. The results of GAD activity are as follows after treated by Ca(NO_3)_2、W7、TFP and different organicacid and amino acid:
     Under-1.0MPa PEG treatment, GAD activity increased significantly in cotton leaves. But under10M Ca(NO_3)_2treatment, GAD activity was lower than the control in cotton leaf. Under-1.0MPaPEG+100mMW7+10M Ca(NO_3)_2treatment, GAD activity was significantly higher than that of control incotton leaf, which suggested that GAD activity was restrained obvious under W7treatment. For5mMalanine,5mM glycine,5mM glutamic acid,5mM aspartic acid and5mM ammonium ion treatment, GADactivity of cotton leaves reached to the highest under alanine treatment. GAD activity was slightly lowerthan that of control under other amino acids treatment. Under5mM ammonium ion treatment, GAD activity of cotton leaves was the lowest. For10mM butyric acid、citric acid、malic acid and oxalic acidtreatment, GAD activity of cotton leaf was slightly higher than that of control, oxailc acid> citric acid>malic acid> butyric acid. The activity of GAD and GABA content in cotton roots has the similar trendswith leaves under Ca(NO_3)_2、 W7、TFP、different amino acid treatment,but which reduced slowly.
     4. Under-0.5MPa,-1.0MPa and-1.5MPa water stress conditions, putrescine (Put), spermidine (Spd)and spermine (Spm) contents in cotton leaf increased with decreasing stress potential, among them Put>Spd> Spm. The increase range of "Xinluzao No.7" is higher than "Xinluzao No.24". Under-1.5MPaPEG water stress condition, Put content increased significantly, Spd and Spm changed slightly. Afteradding aminoguanidine (AG), which was DAO activity inhibitor, Put, Spd and spermine Spm contentincotton leaf increased slightly with the decrease of water potential, the most change extent is Put, then Spd,and Spm changed slightly. DAO activity was highest under-1.0MPa, but lowest under-0.5MPa stress.After joining the AG,DAO activity in cotton leaf was almost completely inhibited. Under-1.5MPa PEGstress, GABA content reached the highest and it was the lowest under-0.5MPa PEG stress.
     Under three kinds of PEG potential stress, Put, Spd, Spm, DAO activity and GABA content in cottonroots are similar trend with leaves. But the Put, Spd, Spm and GABA content was much lower than theleaves, and DAO activity was slightly lower than the leaves. The polymine degradation pathway canprovide30%to40%GABA product under-1.0MPaPEG stress both in cotton leaves and roots.
     5. Under the continuous drought stress and re-watering, nitrogen metabolism key enzyme activity,soluble protein, total nitrogen, pure nitrogen and free amino acid content major for "Xinluzao No.7" and"Xinluzao No.24" leaves and roots. Under PEG stress, two varieties leaves water content decreasedgradually,"Xinluzao No.7" decreased more obviously;Compared with the control water condition,glutamine synthetase (GS) activity and nitrate reduction enzyme (NR) activity in leaves and rootsdecreased significantly in "Xinluzao No.7" and "Xinluzao No.24",The endopeptidase activity, glutamatedehydrogenase (GDH) activity of leaves and roots increased markedly. The content of soluble protein, totalnitrogen and ammonium ion content also increased markedly than that of control. In addition, free aminoacid content increased under continuous water stress in leaves and roots for two varieties of cotton. Freeamino acid content of "Xinluzao No.7" increased slowly in the early stage under stress and then increasedquickly. Free amino acids change trend of " Xinluzao No.24" was opposite to " Xinluzao No.7". Afterre-watering, water content, activity of nitrate reductase and glutamine synthetase activity recover faster for"Xinluzao No.7" roots and leaves. Glutamate dehydrogenase activity, endopeptidase activity, free aminoacid, ammonium ion, soluble protein and total nitrogen content decreased faster than the "Xinluzao No.24". The correlation analysis showed that the GABA content of cotton seedling was significantly orextremely significantly related to glutamic acid, proline and total amino acid content.
引文
[1]曹慧,王孝威,邹岩梅,束怀瑞.外源NO对水分胁迫下平邑甜茶幼苗中几种氮代谢酶的影响.园艺学报,2009,36(6):781-786
    [2]曹慧,韩振海,许雪峰.水分胁迫诱导平邑甜茶叶片衰老期间内肽酶活力的变化及其生化特性研究.中国农业科学,2002,35(12):1514–1518
    [3]陈贵林,贾开志。钙和钙调素拮抗剂对高温胁迫下茄子幼苗抗氧化系统的影响。中国农业科学,2005,38(1):197-202
    [4]邓志瑞,陆巍,张荣铣,许晓明.水稻叶片光合功能衰退过程中内肽酶活力的变化.中国水稻科学,2003,17(1):47-51
    [5]丁俊胄,刘贞,张璐,董梦钇,熊善柏,赵思明.储藏期对发芽糙米富集γ-氨基丁酸的影响.中国粮油学报,2011,26(9)∶83-6.
    [6]高俊凤主编.《植物生理学实验指导》.北京:高等教育出版社,2006
    [7]焦彦生,郭世荣,李娟,樊怀福,马蓉丽,黄保健.钙调素桔抗剂w7对低氧胁迫下黄瓜根系抗氧化系统的影响.中国农业生态学报,2008,16(5)∶1178-1182
    [8]焦彦生,郭世荣,李娟,樊怀福,马蓉丽,黄保健。钙调素拮抗剂W7对低氧胁迫下黄瓜幼苗根系生长和多胺动态变化的影响。应用与环境生物学报,2008,14(4):454~459
    [9]刘淑云,董树亭,赵秉强,李秀英,张振山.长期施肥对夏玉米叶片氮代谢关键酶活性的影响.作物学报,2007,33(2):278-283
    [10]刘瑞显,郭文琦,陈兵林,周治国.对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响.作物学报,2008,34(9):1598-1607
    [11]刘子凡.作物对土壤干旱胁迫适应机理的最新研究进展.安徽农业科学,2007,35(3):11011-11013,11018
    [12]路兴花,吴良欢,庞林江.节水栽培水稻某些氮代谢生理特性研究.植物营养与肥料学报,2009,15(4):737-743
    [13]罗黄颖,高洪波,夏庆平,宫彬彬,吴晓蕾.γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响.中国农业科学,2011,44(4):753-761
    [14]《棉花抗逆性及抗病虫性鉴定技术》中国农业科学院棉花研究所主编.北京:中国农业科技出版社,1996
    [15]秦嗣军,吕德国,李志霞,马怀宇,刘灵芝,刘国成.水分胁迫对东北山樱幼苗呼吸等生理代谢的影响.中国农业科学,2011,44(1):201-209
    [16]桑子阳,马履一,陈发菊.干旱胁迫对红花玉兰幼苗生长和生理特性的影响.西北植物学报,2011,31(1):0109-0115沈黎明.林生山黧豆体内游离氨基酸与土壤水势的关系.中国草地,1996,4:43-46
    [17]施征,史胜青,钟传飞等.γ-氨基丁酸在植物抗逆生理及调控中的作用.生命科学研究,
    [18]2007,11(4):57-61
    [19]宋红苗,陶跃之,王慧中,徐祥彬. GABA在植物体内的合成代谢及生物学功能.浙江农业科学,2010,2:225-8.
    [20]孙圆圆,孙永健,吴合洲,马均.水分胁迫对水稻氮素同化酶及光合特性的影响.植物营养与肥料学报,2099,15(5):1016-1022
    [21]覃凤云,吕金印,梁宗锁,山仑.外源精胺对水分胁迫下小麦幼苗蛋白酶和核糖核酸酶活性的影响.2004,22(2):95-99
    [22]田华,王兰,段美洋,黎国喜.植物草酸代谢及调控研究进展.现代农业科技,2009,8:212-214
    [23]张木清,陈如凯,余松烈.水分胁迫下叶片多胺代谢变化及其同抗旱性关系.植物生理学报,1994,22,(3):327-332.
    [24]汪沛洪主编.植物生物化学.北京:中国农业出版社,1995
    [25]王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(3):513-520
    [26]王英,吕德国,秦嗣军,张玉龙,马怀宇,刘国成,孟倩.低温对山定子和平邑甜茶幼苗根系氮代谢酶及游离氨基酸的影响.园艺学报,2010,37(2):179-184
    [27]王志强,王春丽,王同朝,林同保.钙离子对盐胁迫小麦幼苗氮代谢的影响.生态学报,2009,29(8):4339-4345
    [28]夏庆平,高洪波,李敬蕊.γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响.应用生态学报,2011,22(4):99:1006
    [29]中国科学院上海植物生理研究所,上海市植物生理学会.《现代植物生理学实验指南》.北京:科学出版社,1999
    [30]熊瑛,吕强,刘素云,陈明灿,李友军.ABA及Ca2+/CaM信使系统对高温逆境下棉苗根系生长的调控.干旱地区农业研究,2010,28(6):165–169
    [31]谢志玉,张文辉,刘新成.干旱胁迫对文冠果幼苗生长和生理生化特征的影响.西北植物学报,2010,30(5):0948-0954
    [32]许振柱,周广胜,王玉辉.干旱和复水对羊草碳氮分配的影响.气象与环境学报,2007,23(3):65-71
    [33]杨建昌,张亚洁,张建华,王志琴,朱庆森.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系.作物学报,2004,30(11):1069-1075
    [34]张海娜,方向文,蒋志荣,冯彦皓.柠条平茬处理后不同组织游离氨基酸含量.生态学报,2011,31(9):2454-2460
    [35]张慧娜,王志强,崔国金,林同保.渗透胁迫下不同抗旱性小麦幼苗氨同化差异.应用生态学报,2009,20(10):2406-2410
    [36]张金政,刘岳路,李晓东,刘洪章,孙国峰,何卿.过量施氮对嵌合体‘金旗’玉簪叶色、氮代谢关键酶活性及叶绿体超微结构的影响.草业学报,2011,20(5):93-101
    [37]张立新,李生秀.水分胁迫下氮、钾对不同基因型夏玉米氮代谢的影响.植物营养与肥料学报,2007,13(4):554-560
    [38]张鹏,王飞,张列峰,芮琪,徐朗莱.丝氨酸内肽酶在黄瓜叶片衰老中的作用.植物生理与分子生物学学报,2006,32(5):593-599
    [39]张为民,张钧,邢智峰,姬生栋,胡轶红,徐存拴.五种黄精属植物的蛋白水解酶谱研究.广西植物,2000,20(1):64-68
    [40]张玉宵,王孝威,曹慧,刘飞.水分胁迫对桃树叶片氮代谢相关指标的影响.安徽农业科学,2010,38(3):1200-1202
    [41]张智猛,万书波,宁堂原,戴良香.氮素水平对花生氮素代谢及相关酶活性的影响.植物生态学报,2008,32(6):1407-1416.
    [42]张志新,邹志荣,张春梅,王云冰,杨建军,燕飞.水分胁迫对番茄幼苗叶片和根系中多胺代谢的影响.西北农林科技大学学报(自然科学版),2009,37(7):97-102
    [43]周静,汪天,崔键,胡锋,李辉信,张斌.红壤水分条件对柑橘叶片氨基酸及多胺含量的影响.中国生态农业学报,2009,17(1):85-89
    [44]周小梅,赵运林,周朴华,李小湘,王淑红.水分胁迫下水稻幼苗多胺含量变化与抗旱性的关系.湖南农业大学学报(自然科学版),2010,36,(1):17-21
    [45]周翔,吴晓岚,李云,张蜀秋.盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系.应用与环境生物学报,2005,11(4):412-415
    [46] Aaron Fait,Adriano Nunes Nesi,Ruthie Angelovici,Martin Lehmann,Phuong Anh Pham,LuhuaSong,Richard P. Haslam,Johnathan A. Napier,Gad Galili,Alisdair R. Fernie.Targeted enhancement ofglutamate-to-g-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storagereserves in a development-dependent manner.Plant Physiology,2011,157:1026–1042
    [47] Akama K,Akihiro T,Kitagawa M,Takaiwa F.Rice (Oryza sativa) contains a novel isoform ofglutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochimicaet Biophysica Acta,2001,1522:43-150
    [48] Akihito T,Koike S,Tani R,Tominaga T,Watanabe S,Iijima Y,Aoki K,Shibata D,AshiharaH,Matsukura C,Akama K,Fujimura T,Ezura H.Biochemical Mechanism on GABA AccumulationDuring Fruit Development in Tomato. Plant Cell Physiol,2008,49(9):1378–1389
    [49] Alcázar R,Garcia-Martinez J L,Cuevas J C,Tiburcio A F,Altabella T.Overexpression of ADC2inArabidopsis induces dwarfism and late-flowering through GA deficiency.Plant Journal,2005,43:425–436.
    [50] Alcázar R,Cuevas J C,Patrón M,Altabella T,TiburcioA F.Abscisic acid modulates polyaminemetabolism under water stress in Arabidopsis thaliana.Physiologia Plantarum,2006,128:448–455.
    [51] Alcázar R,Marco F,Cuevas J C,Patron M,Ferrando A,Carrasco P,Tiburico A F,AltabellaT.Involvement of polyamines in plant response to abiotic stress,Biotechnology Letters,2006,28:1867–1876.
    [52] Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, et al. Polyamines: moleculeswith regulatory functions in plant abiotic stress tolerance. Planta,2010,231(6):1237-1249.
    [53] Arazi T,Baum G,Snedden W A,Shelp B J,Fromm H. Molecular and biochemical analysis ofcalmodulin interactions with the calmodulinbinding domain of plant glutamate decarboxylase. PlantPhysiology,1995,108:551–561.
    [54] Babu Y S,Bugg C E,Cook W J. Structure of calmodulin refined at2.2resolution. Molecularbiology and evolution,1988,204:191–204.
    [55] Barbosa J M,Singh N K,Cherry J H,Locy R D.Nitrate uptake and utilization is modulated byexogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry,2010,48:443-450
    [56] Baum G,Chen Y,Arazi T,Takatsuji H,Fromm H.A plant glutamate decarboxylase containing acalmodulin binding domain. Cloning, sequence, and functional analysis. Biological Chemistry,1993,268:19610–19617.
    [57] Baum G,Lev-Yadun S,Fridmann Y,Arazi T,Katsnelson H,Zik M,Fromm H. Calmodulin bindingto glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normaldevelopment in plants. EMBO,1996,15:2988–2996.
    [58] Bernado P,Mylonas E,Petoukhov M V,Blackledge M,Svergun D I. Structural characterization offlexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc,2007,129,5656–5664.
    [59] Bertoldi M,Cellini B,Clausen T,Voltattorni C B. Spectroscopic and kinetic analyses reveal thepyridoxal5′-phosphate binding mode and the catalytic features of Treponema denticola cystalysin.Biochemistry,2002,41:9153–9164.
    [60] Beuve N,Rispail N,Laine P,Cliquet J B,Ourry A,Deuneff E L.Putative role of gamma-aminobutyricacid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L.Plant CellEnviron,2004,27:1035-1046.
    [61] Bhatnagar P,Minocha R,Minocha S C.Genetic manipulation of the metabolism of polyamines inpoplar cells. The regulation of putrescine catabolism, Plant Physiology,2002,128:1455–1469.
    [62] Blankenhorn D,Phillips J,Slonczewski J L. Acid-and base-induced proteins during aerobic andanaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. Bacteriol,1999,181:2209–2216.
    [63] Bouche N,Fait A,Zik M,Fromm H. The root-specific glutamate decarboxylase (GAD1) is essentialfor sustaining GABA levels in Arabidopsis. Plant Mol. Biol,2004,55:315–325.
    [64] Bouche N,Fromm H. GABA in plants: just a metabolite? Trends Plant Science,2004,9:110–115.
    [65] Bouche N,Lacombe B,Fromm H. GABA signaling:a conserved and ubiquitous mechanism. Trendsin Cell Biology,2003,13:607-610.
    [66] Bouche N,Yellin A,Snedden W A,Fromm H. Plant-specific calmodulin-binding proteins. Annu. Rev.Plant Biol,2005,56:435–466.
    [67] Bown A W,Macgregor K B,Shelp B J. Gamma-aminobutyrate: defense against invertebrate pests?Trends Plant Science,2006,11:424–427.
    [68] Breitkreuz K E, Shelp B J. Subcellular compartmentation of the4-aminobutyrate shunt in protoplastsfrom developing soybean cotyledons. Plant Physiology,1995,108:99–103.
    [69] Breitkreuz K E,Allan W L,Van Cauwenberghe O R,Jakobs C,Talibi D,Andre B,Shelp B J. Anovel gamma-hydroxybutyrate dehydrogenase:identification and expression of an Arabidopsis cDNA andpotential role under oxygen deficiency. Journal of Biological Chemistry,2003,278:41552-41556.
    [70] Cao S,Cai Y,Yang Z,Zheng Y.MeJA induces chilling tolerance in loquat fruit by regulating prolineand c-aminobutyric acid contents.Food Chemistry,2012,133:1466–1470
    [71] Capitani G,De Biase D,Aurizi C,Gut H,Bossa F,Grutter M G. Crystal structure and functionalanalysis of Escherichia coli glutamate decarboxylase. EMBO J,2003,22:4027–4037.
    [72] Carafoli E. Calcium–a universal carrier of biological signals. FEBS,2005,272:1073–1089.
    [73] Clark S M,Leo R D,Dhanoa P K,Van Cauwenberghe O R,Mullen R T,Shelp B J.Biochemicalcharacterization, mitochondrial localization, expression, and potential functions for an Arabidopsisγ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. Journal of Experimental Botany,2009,60(6):1743–1757
    [74] Crawford L A,Bown A W,Breitkreuz K E,Cuine F C.The Synthesis of γ-Aminobutyric Acid inResponse to Treatments Reducing Cytosolic pH. Plant Physiol,1994,104:865-871
    [75] Cuin T A,Shabala S.Amino acids regulate salinity-induced potassium efflux in barley rootepidermis.Planta,2007,225(3):753-761
    [76] De Biase, D., Tramonti, A., John, R. A.&Bossa, F.(1996). Isolation, overexpression, and biochemicalcharacterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expr.Purif.8,430–438.
    [77] De Biase D,Tramonti A,Bossa F,Visca P. The response to stationary-phase stress conditions inEscherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol,1999,32:1198–1211.
    [78] Debouba M.,Gouia H.,Suzuki A.,Ghorbel M.H.NaCl stress effects on enzymes involved in nitrogenassimilation pathway in tomato “Lycopersicon esculentum” seedlings.Journal of Plant Physiology,2006,163(12):1247-1258
    [79] Deewatthanawong R,Rowell P,Watkins C B.γ-Aminobutyric acid (GABA) metabolism in CO2treated tomatoes. Postharvest Biology and Technology,2010,57:97–105
    [80] Dele C, Faes P, Niogret M F, Alain Bouchereau.Effects of the inhibitor of the γ-aminobutyrate-transaminase, vinyl-gaminobutyrate, on development and nitrogen metabolism in Brassicanapus seedlings. Plant Physiology and Biochemistr,2013,64:60-69
    [81] DiTomaso J M,Hart J J,Kochian L V.Transport kinetics and metabolism of exogenously appliedputrescine in roots of intact maize seedlings. Plant Physiology98(1992)611–620.
    [82] Drum C L,Yan S Z,Bard J,Shen Y Q,Lu D,Soelaiman S. Structural basis for the activation ofanthrax adenylyl cyclase exotoxin by calmodulin. Nature,2002,415:396–402.
    [83] Duca S D,Beninatit S,Serafini-Fracassini D.Polyamines in chloroplasts: identification of theirglutamyl and acetyl derivatives.Biochem,1995,305:233-237
    [84] Duhaze C,Gouzerh G,Gagneul D,Larher F,Bouchereau A.The conversion of spermidine toputrescine and1,3-diaminopropane in the roots of Limonium tataricum,Plant Science,2002,63:639–646.
    [85] Dutyshev D I,Darii E L,Fomenkova N P,Pechik I V,Polyakov K M,Nikonov S V.Structure ofEscherichia coli glutamate decarboxylase (GADalpha) in complex with glutarate at2.05angstromsresolution. Acta Crystallogr,2005,61:230–235.
    [86] Emanuelsson O, Nielsen H, Brunak S, Von H G. Predicting subcellular localization of proteins basedon their N-terminal amino acid sequence. Journal of molecular biology,2000,300(4):1005-1016.
    [87] Eva S R,María M R W,Ríos J J,Blasco B,Rosales M á,Melgarejo R,Romero L,Ruiz JM.Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate waterdeficit in tomato plants [J].Journal of Plant Physiology,2011,168(8):816-823
    [88] Fait A,Yellin A,Fromm H.GABA shunt deficiencies and accumulation of reactive oxygenintermediates: insight from Arabidopsis mutants.FEBS Letters,2005,579:415–420
    [89] Fait A,Nesi A N,Angelovici R,Lehmann M,Pham P A,Song L,Haslam R P,Napier J A,GaliliG,Fernie A R.Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seedsaffects carbon-nitrogen balance and storage reserves in a development-dependent manner.PlantPhysiology,2011,157:1026–1042
    [90] Fenalti G,Law R H,Buckle A M,Langendorf C,Tuck K,Rosado C J.GABA production by glutamicacid decarboxylase is regulated by a dynamic catalytic loop. Journal of Structural Biology,2007,14:280–286.
    [91] Fischer W N.Andréb B,Rentscha D,Krolkiewicza S,Tegedera M,Breitkreuza K,Frommera WB.Amino acid transport in plants.Trends Plant Science,1998,3:188-195
    [92] Hilt W,Wolf D H. Stress induced proteolysis in yeast. Molecular. Microbiology.1992,6:2437-2442
    [93] Huffaker R C. Proteolytic activity during senescence of plants. New Phytologist,1990,116:199–231
    [94] Garcia S C,Moretti M B,Ramos E,Batlle Z.Carbon and Nitrogen Sources regulate S-AminolevulinicAcid and y-Aminobutyric Acid Transport in Saccharomyces cerevisiae.Biochem. Cd Bid,1997,29(9):1097-1101
    [95] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance incrop plants. Plant Physiol Bioch.2010,48(12):909-930.
    [96] Gloss L M,Kirsch J F. Decreasing the basicity of the active site base, Lys-258, of Escherichia coliaspartate aminotransferase by replacement with gamma-thialysine. Biochemistry,1995,34:3990–3998.
    [97] Gout E,Bligny R,Douce R. Regulation of intracellular pH values in higher plant cells. Carbon-13andphosphorus-31nuclear magnetic resonance studies,1992,267:13903–13909.
    [98] Gut H,Dominici P,Pilati S,Astegno A,Petoukhov M V, Svergun D I,Grütter M G, CapitaniG.A Common Structural Basis for pH-and Calmodulin-mediated Regulation in Plant GlutamateDecarboxylase. J. Mol. Biol,2009,392:334–351
    [99] Gut H,Pennacchietti E,John R A,Bossa F,Capitani G,De Bias,D.&Grutter, M. G. Escherichiacoli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB. EMBO J.2006,25:2643–2651.
    [100] Han K L,Lee Y,Song J H,Hwang Y S, Lee W S,Kim M W, Kim S H.Enhanced productionand secretion of rutin and GABA in immobilized cells of mulberry tree (Morus bombycis K.). Plant CellTiss Organ Cult,2012,108:513–520
    [101] Handa A K,Mattoo A K. Differential and functional interactions emphasize the multiple roles ofpolyamines in plants. Plant Physiology and Biochemistry,2010,48:540–546.
    [102] Hayashi H,Mizuguchi H,Kagamiyama,H. Rat liver aromatic L-amino acid decarboxylase:spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry,1993,32:812–818.
    [103] Hoeflich K P,Ikura M.Calmodulin in action: diversity in target recognition and activationmechanisms. Cell,2002,108:739–742.
    [104] Honikel K O,Madsen N B.Comparison of the absorbance spectra and fluorescence behavior ofphosphorylase b with that of model pyridoxal phosphate derivatives in various solvents. J. BiologicalChemistry,1972,247:1057–1064.
    [105] Ikushiro H,Hayashi H,Kawata Y,Kagamiyama H. Analysis of the pH-and ligand-inducedspectral transitions of tryptophanase: activation of the coenzyme at the early steps of the catalytic cycle.Biochemistry,1998,37:3043–3052.
    [106] Jakoby W B,Fredericks J. Pyrroline and putrescine metabolism:-aminobutyraldehydedehydrogenase. Journal of Biological Chemistry,1959,234:2145–2150.
    [107] Jansonius J N. Structure, evolution and action of vitamin B6-dependent enzymes. Curr. Opin.Struct. Biol,1998,8:759–769.
    [108] Jones D T. Protein secondary structure prediction based on position-specific scoring matrices.Molecular biology and evolution,1999,292:195–202.
    [109] Jordan B R,Givan C V.Effects of light and inhibitors on glutamate metabolism in leaf discs ofVicia faba L. Plant Physiol,1979,64:1043-1047.
    [110] Jose M. Barbosa,Narendra K. Singh,Joe H. Cherry, Robert D. Locy.Nitrate uptake andutilization is modulated by exogenous g-aminobutyric acid in Arabidopsis thaliana seedlings.PlantPhysiology and Biochemistry xxx (2010)1-8
    [111] Kaiser W M,Huber S C.Posttranslational regulation of nitrate reductase in higher plants.PlantPhysiology,1994,106(3)∶817-821
    [112] Kaplan F,Kopka J, Haskell D W, Zhao W, Schiller K C, Gatzke N, et al. Exploring thetemperature-stress metabolome of Arabidopsis. Plant physiology.2004,136(4):4159-4168.
    [113] Kaplan F, Kopka J, Sung D Y, Zhao W, Popp M, Porat R, et al. Transcript and metaboliteprofiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated geneexpression with modifications in metabolite content. The Plant Journal,2007,50(6):967-981.
    [114] Kathiresan A,Miranda J,Chinnappa C C,Reid D M.γ–aminobutyric acid promotes stemelongation in Stellaria longipes: the role of ethylene. Plant Growth Regulation,1998,26:131–137.
    [115] Kevin E. Breitkreuz,Barry J. Shelp,Wolf N. Fischer,Rainer Schwacke,Doris Rentsch.Identi¢cation and characterization of GABA, proline and quaternary ammonium compound transporters fromArabidopsis thaliana.FEBS Letters,1999,450:280-284
    [116] Khanna S,Rai V K.Changes in proline level in response to osmotic stress and exogenous aminoacids in Raphanus sativus L. seedlings.Acta Physiologiae Plantarum,1998,20(4):393-397
    [117] Khanna S,Rai V K.Changes in proline level in response to osmotic stress and exogenous aminoacids in Raphanus sativus L. seedlings.Acta physiologiae plantarum,1998,20,(4)393-397
    [118] Kinnersley A M, Turano F J. Gamma aminobutyric acid (GABA) and plant responses to stress.Crit Rev Plant Sci,2000,19(6):479-509.
    [119] Kumar A,Taylor M A,Arif S A M,Davies H V. Potato plants expressing antisense and senseS-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene:antisense plants display abnormal phenotypes. Plant Journal,1996,9:147–158
    [120] Kumar P P,Thorpe T A. Putrescine metabolism in excised cotyledons of Pinus radiata cultured invitro. Physiologia Plantarum,1989,76:521–526.
    [121] Ladha J K,Kirk G J D,Bennett J,Peng S,Reddy C K,Reddy P M,Singh U.Opportunitiesfor increased nitrogen use efficiency from improved lowland rice germplasm.Field Crops Research,1998,56(1-2):41-71
    [122] Lesley A. Crawford, Alan W. Bown,Kevin E. Breitkreuz,Fredérique C. Cuine.The Synthesisof γ-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiol,1994,104:865-871
    [123] Macgregor K B,Shelp B J,Peiris S,Bown A W.Overexpression of glutamate decarboxylase intransgenic tobacco plants deters feeding by phytophagous insect larvae. J. Chem. Ecol,2003,29:2177–2182.
    [124] Masgrau C,Altabella T,Farrás R,Flores D,Thompson A J,Besford R T,Tiburcio A F.Inducible expression of oat arginine decarboxylase in transgenic tobacco plants. Plant Journal,1997,11:465–473.
    [125] Mattoo A K, Minocha S C, Minocha R, Handa A K. Polyamines and cellular metabolism in plants:transgenic approaches reveal different responses to diamine putrescine versus higher polyaminesspermidine and spermine. Amino Acids,2010,38(2):405-413.
    [126] Mattoo A K,Sobolev A P,Neelam A,Goyal R K,Handa A K,Segre A L. Nuclear magneticresonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulatespermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiology,2006,142:1759–1770.
    [127] Mazzucotelli E,Tartari A,Cattivelli L,Forlani G. Metabolism of {gamma}-aminobutyric acidduring cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal ofExperimental Botany,2006,57(14):3755-3766.
    [128] McLean M D,Yevtushenko D P,Deschene A,Van Cauwenberghe O R,Makhmoudova A,Potter J W. Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance tothe northern root-knot nematode. Molecular Breeding,2003,11:277–285.
    [129] Mehta R A,Cassol T,Li N,Ali N,Handa A K,Mattoo A K. Engineered polyamine accumulationin tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology,2002,20:613–618.
    [130] Modulation of Osmotic Closure of Stomata,Stomatal resistance and K+fluxes by exogenousamino acids in Vicia faba L. Leaves. Biochemie und Physiologie der Pflanzen,1989,185(5–6):369–376
    [131] Monreal J A,Jiménez E T, Remesal E,Morillo-Velarde R,García-Mauri o S, EchevarríaC.Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at fieldconditions.Environmental and Experimental Botany,2007,60(2):257-267
    [132] Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryoticcells. Genomics,1992,14:897–911
    [133] Narayan V S,Nair P M.Metabolism,enzymology and possible roles of4-aminobutyrate inhigher plants. Phytochemistry,1990,29(2):367-375.
    [134] Ngoc A T H,Chen Y H,Woo H K,Taek J K. Expanding the active pH range of Escherichia coliglutamate decarboxylase by breaking the cooperativeness. Journal of Bioscience and Bioengineering,2013,115(2):154-158
    [135] Nisreen A A Q, Robert D L, Narendra K S.Implications of paraquat and hydrogenperoxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thalianacalmodulin mutants.Plant Biotechnol Rep,2011,5:225–234
    [136] Oh S H,Choi W G.Changes in the Levels of γ-Aminobutyric Acid and Glutamate Decarboxylasein Developing Soybean Seedlings. Journal of Plant Research,2001,114:309-313
    [137] Oh S H,Choi W G,Lee I T,Yun S J.Cloning and characterization of a rice cDNA encodingglutamate decarboxylase. J. Biochem. Molecular biology and evolution,2005,38:595–601.
    [138] Palanivelu R,Brass L,Edlund A F,Preuss D. Pollen tube growth and guidance is regulated byPOP2,an Arabidopsis gene that controls GABA levels. Cell,2003,114:47–59.
    [139] Petoukhov M V,Svergun D I. Global rigid body modeling of macromolecular complexes againstsmall-angle scattering data. Biophys.2005,89:1237–1250.
    [140] Pittmana J K,Shigaki T,Hirschi K D. Evidence of differential pH regulation of the Arabidopsisvacuolar Ca2+/H+antiporters CAX1and CAX2. FEBS Letters,2005,579:2648–2656
    [141] Rai V K.Role of Amino Acids in Plant Responses to Stresses.Biologia Plantarum,2002,45(4):481-487
    [142] Radivojac P,Vucetic,S,O'Connor T R,Uversky, V N,Obradovic,Z,Dunker A K. Calmodulinsignaling: analysis and prediction of a disorder-dependent molecular recognition. Proteins: Struct. Funct.Genet.,2006,63:398–410.
    [143] Rai V K,Kumari A.Modulation of membrane permeability by amino acids in Vinca.Experientia,1983,39(3):301-303
    [144] Ramanjulu S,Sudhakar C.Drought tolerance is partly related to amino acid accumulation andammonia assimilation: A comparative study in two mulberry genotypes differing in droughtsensitivity.Journal of Plant Physiology,1997,150(3)∶345-350
    [145] Ramputh A I,Bown A W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of thegrowth and development of oblique-banded leafroller larvae. Plant Physiolology,1996,111:1349–1352.
    [146] Rana U,Rai V K.Modulation of calcium uptake by exogenous amino acids, in Phaseolus vulgarisseedlings.Acta Physiologiae Plantarum,1996,18(2):452-458
    [147] Ranieri A,Bernardi R,Lanese P,Soldatini G F.Changes in free amino acid content and proteinpattern of maize seedlings under water stress.Environmental and Experimental Botany,1989,29(3):351–357
    [148] Rastogi R,Davies P J. Polyamine metabolism in ripening tomato fruit. I. Identification ofmetabolites of putrescine and spermidine. Plant Physiology,1989,94:1449–1455.
    [149] Reichow S L,Gonen T. Noncanonical binding of calmodulin to aquaporin-0: implications forchannel regulation. Structure,2008,16,1389–1398.
    [150] Rhodes D,Handa S.Amino Acid Metabolism in Relation to Osmotic Adjustment in PlantCells.Environmental Stress in Plants,NATO ASI,1989,(19):41-62
    [151] Robredo A,Usue P L,Jon M A,Lacuesta M,Amaia M P,Alberto M R.Elevated CO2reducesthe drought effect on nitrogen metabolism in barley plants during drought and subsequentrecovery.Environmental and Experimental Botany,2011,71(3)∶399-408
    [152] Santos M G,Pimentel C.Daily balance of leaf sugars and amino acids as indicators of commonbean (Phaseolus vulgaris L.) metabolic response and drought intensity.Physiol. Mol. Biol. Plants2009,15(1):23-30
    [153] Satyanarayan V, Nair P. Enzymolog and possible roles of4-aminobutyric in highplantsphytochemistry. Phytochmistry,1990,29(2):367-376.
    [154] Schwacke R,Grallath S,Breitkreuza K E,LeProT,Stranskya E,Stranskya H,Frommera WB,Rentscha D. LeProT,a transporter for proline,glycine betaine,and r-amnobutyric acid in tomatopollen. Plant Cell,1999,11:377-391
    [155] Shelp B J,Allan W L,Faure D. Role of g-Aminobutyrate and g-Hydroxybutyrate in PlantCommunication,Signaling and Communication in Plants,Plant-Environment Interactions,2009,73-84,
    [156] Shelp B J,Bozzo G G,Trobacher C P,Zarei A,Deyman K L,Brikis C J. Contribution ofputrescine to4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science,2012,193–194:130–135
    [157] Shelp B J, Walton C S, Snedden W A, Tuin L G, Oresnik I J, Layzell D B. GABA shunt indeveloping soybean seeds is associated with hypoxia. Physiol Plantarum,1995,94(2):219-228.
    [158] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid.Trends Plant Sci,1999,4(11):446-452.
    [159] Shelp B J,Bozzo G G,Trobacher C P,Chiu G,Bajwa V S.Strategies and tools for studying themetabolism and function of γ-aminobutyrate in plants. I. Pathway structure.Botany,2012,90:651-669
    [160] Shelp B J. The composition of phloem exudate and xylem sap from broccoli (Brassica oleraceavar. italica) supplied with NH4+,NO3-or NH4NO3. journal of experimental botany,1987,38:1619–1636.
    [161] Shimajiri Y,Ozaki K,Kainou K,Akama K.Differential subcellular localization, enzymaticproperties and expression patterns of γ-aminobutyric acid transaminases (GABA-Ts) in rice (Oryza sativa).Journal of Plant Physiology,2013,170:196–201
    [162] Showler A.Effects of water deficit stress, shade, weed competition, and kaolin particle film onselected foliar free amino acid accumulations in cotton, Gossypium hirsutum (L.).Journal of ChemicalEcology,2002,28,(3):631-651
    [163] Simon-Sarkadi L,Kocsy G, Várhegyi á,Galiba G,De Ronde J A.Stress-induced changes inthe free amino acid composition in transgenic soybean plants having increased proline content.Biologiaplantarum,2006,50(4):793-796
    [164] Snedden W A,Arazi T,Fromm H,Shelp B J.Calcium-calmodulin activation of soybeanglutamate-decarboxylase. Plant Physiology,1995,08:543–549.
    [165] Snedden W A,Koutsia N,Baum G,Fromm H. Activation of a recombinant petunia glutamatedecarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulinbinding domain.Biological Chemistry,1996,271:4148–4153.
    [166] Su G X,Yu B J,Zhang W H,Liu Y L.Higher accumulation of γ-aminobutyric acid induced bysalt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots.PlantPhysiology and Biochemistry,2007,45:560-566
    [167] Sukhareva B S,Tikhonenko A S,Darii E L. Study of the quaternary structure of glutamatecarboxylase from Escherichia coli. Mol. Biol.(Mosk),1994,28:1407–1411.
    [168] Srivali B,Renu K C.Drought induced enhancement of protease activity during monocarpicsenescence in wheat. Current Science,1998,75(11):1174-1176
    [169] Surabhi G K,Reddy A M,Kumari G J,Sudhakar C. Modulations in key enzymes of nitrogenmetabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity tosalt stress.Environmental and Experimental Botany,2008,64(2):171-179
    [170] Svergun D I. Restoring low resolution structure of biological macromolecules from solutionscattering using simulated annealing. Biophy,1999,76:2879–2886.
    [171] T. Capell, L. Bassie, P. Christou, Modulation of the polyamine biosynthetic pathway in transgenicrice confers tolerance to drought stress, Proceedings of the National Academy of Sciences of the UnitedStates of America,2004,101:9909–9914.
    [172] Tanaka O,Nasu Y,Sonoyama A,Maehara Y,Kobayashi T,Nawafune H,Kugimoto M.Effectsof Exogenous Amino Acids on Iron Uptake in Relation to their Effects on Photoperiodic Flowering inLemna paucicostata6746. Plant and Cell Physiology,1987,28(4):697-702.
    [173] Trobachera C P,Clarka S M,Bozzoa G G,MullenbR T,DeEllc J R,Shelp B J.Catabolism ofGABA in apple fruit: Subcellular localization and biochemical characterization of two γ-aminobutyratetransaminases.Postharvest Biology and Technology,2013,75:106–113
    [174] Tuin L G,Shelp B J..In situ [14C]Glutamate Metabolism by Developing Soybean CotyledonsII.The Importance of Glutamate Decarboxylation.J. PlAnt PhysioL,1996,147:714-720
    [175] Turano F J,Fang T K. Characterization of two glutamate decarboxylase cDNA clones fromArabidopsis. Plant Physiology,1998,117:1411–1421.
    [176] Ueno H. Enzymatic and structural aspects on glutamate decarboxylase.Journal of MolecularCatalysis B: Enzymatic,2000,10:67–79
    [177] UranoK,Yoshiba Y,Nanjo T,Ito T,Yamaguchi-Shinozaki K,Shinozaki K. Arabidopsisstress-inducible gene for arginine decarboxylase AtADC2is required for accumulation of putrescine in salttolerance.Biochemical and Biophysical Research Communications,2004,313:369–375.
    [178] Urano K,Yoshiba Y,Nanjo T,Igarashi Y,Seki M,Sekiguchi F,Yamaguchi-Shinozaki K,Shinozaki K. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stressresponses and developmental stages. Plant,Cell&Environment,2003,26:1917–1926.
    [179] Van Cauwenberghe O R, Shelp B J.Biochemical characterization of partially purifiedgaba:pyruvate transaminase from Nicotiana tabacum. Phytochemistry,1999,52:575-581
    [180] Van Cauwenberghe O R, Makhmoudova A, McLean M D, Clark S, Shelp B J. Plantpyruvate-dependent gamma-aminobutyrate transaminase: identification of an Arabidopsis cDNA and itsexpression in Escherichia coli. Canadian Journal of Botany,2002,80:933–941
    [181] Vazquez Segura M A,Donoso,J,Munoz F,Garcia B F,Garcia d V,Echevarria,G.(1994).Photophysical study of the Schiff bases of5′-deoxypyridoxal and n-hexylamine in cationic micelles.Photochemistry and photobiology,1993,60,399–404.
    [182] Vetter S W,Leclerc E. Novel aspects of calmodulin target recognition and activation. Eur. J.Biochem,2003,270:404–414.
    [183] Vierstra R D.Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol,1993,44:385–410
    [184] Wang H L,Lee P D,Liu L F,Su J C.Effect of sorbitol induced osmotic stress on the changes ofcarbohydrate and free amino acid pools in sweet potato cell suspension cultures.Bot. Bull. Acad. Sin,1999,40:219-225
    [185] WANG Hua-Jing,WU Liang-Huan,WANG Min-Yan,ZHU Yuan-Hong,TAO Qin-Nan,ZHANG Fu-Suo.Effects of Amino Acids Replacing Nitrate on Growth, Nitrate Accumulation, andMacroelement Concentrations in Pak-choi (Brassica chinensis L.).
    [186] Wilhelmi L K,Preuss D. Self-sterility in Arabidopsis due to defective pollen tube guidance.Science,1996,274:1535–1537.
    [187] Yan H,Hu X,Li F.Leaf photosynthesis, chlorophyll fluorescence, ion content and free aminoacids in Caragana korshinskii Kom exposed to NaCl stress.Acta Physiol Plant,2012, DOI10.1007/s11738-012-1029-4
    [188] Yang C W,Lin C C,Kao C H.Proline,ornithine,arginine and glutamic acid contents in detachedrice leaves. Biologia Plantarum,2000,43(2):05-307
    [189] Yang R,Guo Q,Gu Z.GABA shunt and polyamine degradation pathway on γ-aminobutyric acidaccumulation in germinating fava bean (Vicia faba L.) under hypoxia.Food Chemistry,2013,136:152–159
    [190] Yang T B,Poovaiah B W. Calcium/calmodulin-mediated signal network in plants. Trends PlantScience,2003,8:505–512.
    [191] Yang R,Yin Y,Guo Q,Gu Z.Purification, properties and cDNA cloning of glutamatedecarboxylase in germinated faba bean (Vicia faba L.). Food Chemistry,2013,138:1945–1951
    [192] Yap K L,Yuan T,Mal T K,Vogel H J,Ikura M. Structural basis for simultaneous binding of twocarboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. J. Mol. Biol,2003,328,193–204.
    [193] Yutaka Kato,Nobutaka Imamura.Effect of calcium ion on uptake of amino acids by symbioticChlorella F36-ZK isolated from Japanese Paramecium bursaria.Plant Science174(2008)88–96
    [194] Zhang H,Yao H,Chen F,Wang X.Purification and characterization of glutamate decarboxylasefrom rice germ.Food Chemistry,2007,101:1670–1676
    [195] Zhang J,Cheltsov A V,Ferreira G C. Conversion of5-aminolevulinate synthase into a moreactive enzyme by linking the two subunits: spectroscopic and kinetic properties. Protein Science,2005,14,1190–1200.
    [196] Zhi-Qiang W, Yong-Ze Y, Ji-Quan O, Qing-Hua L, Chu-Fu Z.Glutamine synthetase andglutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticumaestivum) seedlings exposed to different salinity.Journal of Plant Physiology,2007,64(6):695-701
    [197] Zhou X,Toney M D. pH studies on the mechanism of the pyridoxal phosphate-dependentdialkylglycine decarboxylase. Biochemistry,1999,38:311–320.
    [198] Zik M,Fridmann-Sirkis,Y.&Fromm H. Cterminal residues of plant glutamate decarboxylasearerequired for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin.Biochim. Biophys. Acta,2006,1764:872–876.
    [199] Zik M,Arazi T,Snedden W A,Fromm H. Two isoforms of glutamate decarboxylase inArabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Molecular Biology,1998,37:967–975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700