利用代谢酶学和模型技术改善谷氨酸发酵的稳定性和糖酸转化率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酸是世界上产量最大的氨基酸。国内普遍采用生物素缺陷型谷氨酸棒杆菌(Corynebacterium glutamicum)通过发酵法生产谷氨酸,谷氨酸产量一般为10%~12%,糖酸转化率为55%~60%。国内谷氨酸生产技术基本成熟,但是,工艺水平、特别是转化率远远低于理论水平(81%)和国外先进水平(68%)。谷氨酸工业发酵配料工艺原始,极易导致培养基成分(生物素)的波动、严重影响发酵生产的稳定性。另外,菌种自身的发酵特性也经常会发生变化,引起菌体抵抗环境变化能力和产酸能力的下降,出现补糖后谷氨酸合成便停止、发酵性能不稳定的现象。本论文以C. glutamicum S9114作为谷氨酸发酵的实验菌株,以代谢酶学和模型技术为手段,提出了提高糖酸转化率、稳定发酵性能(应对培养基成分初期波动和菌种特性变化)的有效方法和策略,并对利用上述策略改善发酵性能的机制机理进行了理论分析和探究。论文主要研究内容如下:
     (1)研究分析了初始生物素含量不当,以及初始含量不当、采取补救措施后,主要代谢节点丙酮酸(PYR)、异柠檬酸(ICIT)和α-酮戊二酸(α-KG)处的关键酶活性变化规律。生物素不足时,异柠檬酸脱氢酶(ICDH)活性降低,合成谷氨酸的前体物质减少,α-酮戊二酸脱氢酶(ODHC)完全失活,能量代谢主要靠乙醛酸循环维持。当发现生物素不足并补加生物素后,ICDH活性得到强化,TCA重新成为主要供能途径。生物素过量时,与谷氨酸合成相关的酶(IDHC和谷氨酸脱氢酶)活性降低,而与能量运转相关的酶(ODHC)被激活。当发现生物素过量并添加吐温40后,丙酮酸脱氢酶(PDH)和ICDH依旧保持很高活性,ODHC和异柠檬酸裂解酶(ICL)的活性下降。采用上述补救措施可以挽救因初始生物素含量不当所引起的异常发酵,终酸浓度均可恢复到正常水平(75~80g·L-1)。
     (2)研究了不同生物素浓度及发酵途中添加吐温40条件下,谷氨酸合成关键酶和谷氨酸运输蛋白的基因转录水平。初始生物素不足时,在谷氨酸主合成期内,所有谷氨酸合成关键酶和运输蛋白的表达量均有降低、特别是ICDH,导致终酸浓度很低(53g·L-1),但谷氨酸分泌不受影响。生物素过量时,ICDH依旧很低,但其它关键酶的转录水平均与对照相当,运输蛋白表达量约为对照的10倍,但是,由于细胞没有正常转型,细胞膜(壁)不具备通透能力,谷氨酸无法正常分泌到胞外,谷氨酸在胞内和胞外均无法积累。初始生物素过量、发酵途中添加吐温40刺激了所有关键酶及运输蛋白的表达,同时诱导了细胞转型,胞内谷氨酸含量升高、谷氨酸可正常分泌到胞外,终酸浓度达到正常水平(75~80g·L-1)。
     (3)提出了使用混合碳源改善谷氨酸发酵稳定性的策略。共混流加质量比为5:1的葡萄糖/山梨醇混合液或葡萄糖/甘油混合液,或者于初始培养基中加入适量的山梨醇或甘油(10~15g·L-1),可以缓解因菌种发酵特性变化所引起的发酵性能不稳定现象。谷氨酸合成可以在补料之后正常进行,终酸浓度基本恢复到正常水平,发酵稳定性得到改善。此时,胞内NAD+/NADH比、ORP、PDH、ICDH、和细胞色素c氧化酶活性均维持在较高水平。研究结果表明,山梨醇和甘油不能用作谷氨酸发酵的碳源,它们可以认为是谷氨酸发酵的保护剂,起到提高细胞抵抗环境变化能力和维持关键酶活性的作用。
     (4)提出了协同调节pH和添加NaHCO3的新型发酵工艺,以提高谷氨酸发酵的糖酸转化率。比较了单独添加NaHCO3、调节pH及两者协同操作条件下的发酵性能,结果表明:在同时升高pH和添加NaHCO3,或先升高pH、再添加NaHCO3这两种条件下,葡萄糖消耗量和CO2释放量大幅下降,糖酸转化率比对照(无NaHCO3添加和pH调节)提高了34%~36%,且其浓度也可达到对照水平。关键酶活性分析结果表明,单独提高丙酮酸羧化酶(PC,CO2固定反应的催化酶)的活性并不能提高转化率,只有在各关键酶相互协同作用的条件下,转化率才能得到有效提高。
     (5)在谷氨酸代谢网络的基础上,提出了一种活用生物酶酶活数据的新型代谢网络模型。该模型将酶活数据和有向信号线图理论有机地结合起来,可以用来估算不同操作条件下的糖酸转化率、解释转化率提高的内在原因、提出实现谷氨酸最优操作的理论酶学调控体系。理论计算结果验证了关键酶相互协同作用的重要性:关键酶组合对PC/PDH、ICDH/ICL和GDH/ODHC的相对酶活比只有同时维持在5~6:4~5、7~8:2~3和7~8:2~3的水平上,转化率才能得到有效提高。而同时升高pH和添加NaHCO3,或先升高pH、再添加NaHCO3这两种条件下,关键酶组合对PC/PDH、ICDH/ICL和GDH/ODHC的相对酶活比与上述“最优”条件比较接近,实验现象得到了理论解释或证实。在3维空间上,通过对上述酶组合对的相对酶活比和转化率的实验数据进行聚类分析,新型代谢模型的有效性和通用性得到验证。
Glutamate is the amino acid with the largest production in the world. In China, biotinauxotroph Corynebacterium glutamicum strain is widely used in glutamate production,glutamate concentration and conversion yield (from sugar) vary at the levels of10%~12%and55%~60%. Glutamate production technology in China has a history of more than50years,but the major technological index, conversion yield in particular, is much lower thantheoretical value (81%) and the levels (68%) in advanced foreign countries. In industrialglutamate fermentation, the relatively rough method for medium preparation easily causes thefluctuations in medium components (biotin), and thus severe deteriorates the fermentationstability. In addition, the fermentation features or characteristics of the strain sometimes variesbatch by batch, leading to the lower resistant ability against the environmental change and thedecreased glutamate synthesis ability, which results in glutamate synthesis stoppage aftercarbon source feeding and thus fermentation instability. In this thesis, the efficient strategiesfor increasing the conversion yield and for stabilizing the fermentations to deal with the initialmedium components variations and change of strain characteristics, were proposed andexperimentally testified, using C. glutamicum S9114with the aids of metabolic enzymologyand model techniques. The mechanisms of the fermentation improvements when adopting theproposed strategies were also analyzed and explored theoretically. The main results of thisdissertation were summarized as follows:
     (1) Activities changes of the key enzymes at metabolic nodes of pyruvate, isocitrate andα-ketoglutarate, when initial biotin content varied, and when the content was at improperlevel but faults-rescue measures were adopted, were investigated. When initial biotin wasin shortage, isocitrate dehydrogenase (ICDH) activity was weakened and amount ofglutamate precursor reduced. α-oxoglutarate dehydrogenase complex (ODHC) activitywas inactivated and energy metabolism completely relied on glyoxylate shuttle. Wheninitial biotin was in shortage but biotin was adaptively supplemented, ICDH acitivityrebounded to higher level, and TCA cycle turned to be the main energy metabolism routeonce again. When initial biotin was in excess, activities of the key enzymes associatedwith glutamate synthesis (ICDH and glutamate dehydrogenase) decreased but that relatedwith energy metabolism (ODHC) was stimulated. When biotin was in excess and Tween40was adaptively added, pyruvate dehydrogenase (PDH) and ICDH remained at highlevels, but activities of ODHC and isocitrate lyase (ICL) declined to the normal levels.With the aids of the faults-rescue measures, the failure-likelihood fermentations due toimproper initial biotin variations could be recovered back to normal, and final glutamateconcentrations could reach the normal levels of75~80g·L-1.
     (2) The transcriptional levels of key enzymes for glutamate synthesis and glutamate transportprotein (TP) under varied initial biotin contents and adaptively adding Tween40, wereinvestigated. When initial biotin was in shortage, the transcriptional levels of genesencoding the key enzymes and TP were all down-regulated during the main production phase, especially that of ICDH, resulting in a very low glutamate concentration (53g·L-1),although glutamate efflux was not affected. When biotin was in excess, the transcriptionallevels of key enzymes were all at comparable levels as those of control but with lowICDH. In this case, the impermeable cellular membrane stopped the vitro glutamatesecretion even though TP expression was about10-fold of control, glutamate could not beaccumulated intracellularly and extracellularly. When initial biotin was in excess butadaptively adding Tween40stimulated the expression of all key enzymes and TP, inducedcell morphological transformation, increased intracellular glutamate content, resultingfinal glutamate concentration back to normal level (75~80g·L-1).
     (3) The strategy of mixed-carbon sources was proposed to stabilize fermentation performance.The results demonstrated that, if co-feeding glucose with sorbitol/glycerol at a weightratio of5:1or adding10~15g·L-1of sorbitol/glycerol in the initial medium, glutamatesynthesis could continue after substrate(s) feeding and final glutamate concentration couldbe recovered back to normal level. Under these environments, the NAD+/NADH ratio,ORP, the activities of PDH, ICDH and cytochrome c oxidase could be maintained athigher levels. Sorbitol and glycerol could not be used as carbon sources for thefermentation, they were considered to be the effective protective agents to increase cellsresistant ability against environmental changes and maintain key enzymes activities.
     (4) A new fermentation technology of adaptively regulating pH and NaHCO3addition wasproposed, aiming at increasing glutamate conversion yield from sugar. Fermentationswhen singly and coordinately regulating pH or/and NaHCO3addition were conducted andtheir performance was compared. The results indicated that, the amounts of glucoseconsumption and CO2released decreased significantly and the conversion yield increasedby34%~36%as compared with control, by raising pH before or at the same time as thecommencement of NaHCO3addition. At the same time, comparably high glutamateproductivity could be maintained. Enzymatic activities analysis revealed that increasingPC activity alone could not increase the yield and the yield could be enhanced only whenall key enzymes for glutamate synthesis worked coordinately.
     (5) A novel metabolic model integrating directed signal flow diagram and enzymatic activitiesdata was proposed to interpret the yield enhancement. The simulation and experimentalresults revealed that singly regulating each individual enzyme could not increase theconversion yield, and the yield could be enhanced only when six key enzymes of PC,PDH, ICDH, ICL, GDH and ODHC works in a coordinated way. Namely, relativeactivities ratios of enzymatic pairs of PC/PDH should be controlled at moderate level of6:4, while those of ICDH/ICL and GDH/ODHC at higher level of8:2simultaneously. Themodel could cluster data pairs of conversion yields and enzymatic activities obtainedunder different operation conditions into different categories, indicating its abilities inguiding optimal enzyme regulation ways for fermentations characterized with multipleenzymatic reactions and closed reaction loops.
引文
1. Sano C. History of glutamate production[J]. Am J Clin Nutr,2009,90(3):728S-732S
    2. Grosse Daldrup J B, Held C, Ruether F, et al. Measurement and modeling solubility of aqueousmultisolute amino-acid solutions[J]. Ind Eng Chem Res,2009,49(3):1395-1401
    3.于信令.味精工业手册[M].第二版,北京:中国轻工业出版社,2009.7-39
    4. Wiltshire G H. The estimation of D-and L-glutamic acid in proteins[J]. Biochem J,1953,55(1):46-49
    5. Vickery H B, Schmidt C L A. The history of the discovery of the amino acids[J]. Chem Rev,1931,9(2):170-173
    6. Kusumoto I. Industrial production of L-glutamine[J]. J Nutr,2001,131:2552S-2555S
    7. Ault A. The monosodium glutamate story: the commercial production of MSG and other amino acids[J]. J Chem Educ,2004,81(3):347-355
    8.张开诚.鲜味剂的结构特征和呈味机理讨论[J].中国调味品,2001,6:28-32
    9. Halpern B P. Glutamate and the flavor of foods[J]. J Nutr,2000,130(4):910S-914S
    10. Kurihara K. Glutamate: from discovery as a food flavor to role as a basic taste (umami)[J]. Am J ClinNutr,2009,90(suppl):719S-722S
    11. Fonnum F. Glutamate: a neurotransmitter in mammalian brain[J]. J Neurochem,1984,42(1):1-11
    12. Curtis D, Johnston G R. Amino acid transmitters in the mammalian central nervous system[C]. In:Ergebnisse der Physiologie Reviews of Physiology. Springer Berlin Heidelberg,1974.97-188
    13. Populin T, Morest S, Truant S, et al. A survey on the presence of free glutamic acid in foodstuffs, withand without added monosodium glutamate[J]. Food Chem,2007,104(4):1712-1717
    14.蒋滢.氨基酸的应用[M].北京:世界图书出版社,1996.23-29
    15. Cairns B E, Dong X, Mann M K, et al. Administration of monosodium glutamate elevatesintramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers[J]. Pain,2007,132(1-2):33-41
    16. Glutamate Fam. http://www.fda.gov/opacom/backgrounders/msg.html
    17. Bak L K, Schousboe A, Waagepetersen H S. The glutamate/GABA-glutamine cycle: aspects oftransport, neurotransmitter homeostasis and ammonia transfer[J]. J Neurochem,2006,98(3):641-653
    18. Reeds P J, Burrin D G, Stoll B, et al. Enteral glutamate is the preferential source for mucosalglutathione synthesis in fed piglets[J]. AJP-Endo,1997,273(2): E408-E415
    19. Evans M E, Jones D P, Ziegler T R. Glutamine prevents cytokine-induced apoptosis in human colonicepithelial cells[J]. J Nutr,2003,133(10):3065-3071
    20. Burrin D G, Janeczko M J, Stoll B. Emerging aspects of dietary glutamate metabolism in thedeveloping gut[J]. Asia Pac J Clin Nutr,2008,17(S1):368-371
    21.刘涛,彭健.在日粮中添加谷氨酰胺和谷氨酸对断奶仔猪生产性能的影响[J].华中农业大学学报,1999,18(5):457-460
    22.余健剑,束刚,江青艳.氨基酸调控蓄禽采食的研究进展[J].动物营养学报,2011,23(6):908-913
    23. Rose C, Michalak A, Pannunzio M, et al. Mild hypothermia delays the onset of coma and preventsbrain edema and extracellular brain glutamate accumulation in rats with acute liver failure[J].Hepatology,2000,31(4):872-877
    24. Monfort P, Mu oz M D, ElAyadi A, et al. Effects of hyperammonemia and liver failure onglutamatergic neurotransmission[J]. Metab Brain Dis,2002,17(4):237-250
    25. Hakuba N, Koga K, Gyo K, et al. Exacerbation of noise-induced hearing loss in mice lacking theglutamate transporter GLAST[J]. J Neurosci,2000,20(23):8750-8753
    26. Nordlind K, Johansson O, Lidén S, et al. Glutamate-and aspartate-like immuneore-activities in humannormal and inflamed skin[J]. Virchows Archiv B,1993,64(1):75-82
    27. Werner Heid H, Wernera E, Frankea W W, et al. The complement of native α-keratin polypeptides ofhair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins[J].Differentiation,1986,32(2):101-119
    28. Bloomquist J. GABA and glutamate receptors as biochemical sites for insecticide action[C]. In:Ishaaya I, ed. Biochemical Sites of Insecticide Action and Resistance: Springer Berlin Heidelberg,
    2001.17-41
    29. Morini G, Bassoli A, Temussi P A. From small sweeteners to sweet proteins: anatomy of the bindingsites of the human T1R2_T1R3receptor[J]. J Med Chem,2005,48(17):5520-5529
    30. El-Ghamry A M, Abd El-Hai K M, Ghoneem K M. Amino and humic acids promote growth, yield anddisease resistance of faba bean cultivated in clayey soil[J]. Aust J Basic Appl Sci,2009,3(2):731-739
    31. Richard A, Margaritis A. Rheology, oxygen transfer, and molecular weight characteristics ofpoly(glutamic acid) fermentation by Bacillus subtilis[J]. Biotechnol Bioeng,2003,82(3):299-305
    32.王家勤.味精行业发展形势分析[J].全国氨基酸技术交流研讨会论文集.2008:1-7
    33.冯荣宝.国外氨基酸生产的进展[J].中国食品工业协会发酵工程研讨会技术交流会论文集.2001:1-4
    34.张建华.谷氨酸双结晶高校提取工艺关键技术的研究与集成[D]:[博士学位论文].无锡:江南大学,2012
    35.张建华,杨玉岭,孙付宝,等.谷氨酸提取产业现状与无废化发展方向[J].生物加工过程.2009,7(6):1-7
    36. Asakura Y, Kimura E, Usuda Y, et al. Altered metabolic flux due to deletion of odhA causesL-glutamate overproduction in Corynebacterium glutamicum[J]. Appl Environ Microbiol,2007,73(4):1308-1319
    37. Hirose Y, Enei H, Shibai H. L-glutamic acid fermentation[C]. In: Moo-Young M, ed. ComprehensiveBiotechnology. New York: Pergamon Press,1985.593-600
    38. Collins M D, Cummins C S. Genus Corynebacterium[C]. In: Bergey’s Manual of SystematicBacteriology. Baltimore: Williams and Wilkins,1986.1266-1276
    39. Hermann T. Industrial production of amino acids by coryneform bacteria[J]. J Biotechnol,2003,104(1-3):155-172
    40.王帅. L-谷氨酸发酵高产菌株选育及其发酵条件优化[D]:[硕士论文].无锡:江南大学,2008
    41. Nampoothiri K M, Hoischen C, Bathe B, et al. Expressionof genes of lipid synthesis and altered lipidcomposition modulates L-glutamate efflux of Corynebacterium glutamicum[J]. Appl MicrobiolBiotechnol,2002,58(1):89-96
    42. Chinen A, Kozlov Y I, Hara Y. Innovative metabolic pathway design for efficient L-glutamateproduction by suppressing CO2emission[J]. J Biosci Bioeng,2007,103(3):262-269
    43. Liu Q, Zhang J, Wei X X, et al. Microbial production of L-glutamate and L-glutamine by recombinantCorynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb [J]. Appl MicrobiolBiotechnol,2008,77(6):1297-1304
    44. Ikeda M. Amino acid production processes[C]. In: Faurie R, Thommel J, Bathe B et al., eds. MicrobialProduction of L-Amino Acids, Advances in Biochemical Engineering/Biotechnology. Springer BerlinHeidelberg,2003.12-13
    45.张克旭.氨基酸工艺学[M].北京:轻工业出版社,1992.69-81
    46.李华玮,苏庆辉,李志江,等.谷氨酸生产行业现状综合分析[J].农产品加工,2005,8:65-68
    47.秦海斌,张伟国.金属离子及添加表面活性剂对谷氨酸发酵的影响[J].食品工业科技.2009,30(10):167-169
    48.王燕,孙彩云,杨平平.稀土元素对谷氨酸棒杆菌S9114生长和形态的影响[J].中国调味品,2005,5:23-25
    49. Shiio I, Otsuka S I, Takahashi M. Effect of biotin on the bacterial formation of glutamic acid. I.Glutamate formation and cellular permeability of amino acids[J]. J Biochem,1962a,51:56-62
    50. Shiio I, Otsuka S I, Katsuya N. Effect of biotin on the bacterial formation of glutamic acid. II.Metabolism of glucose[J]. J Biochem,1962b,52:108-116
    51. Radmacher E, Stansen K C, Besra G S, et al. Ethambutol, a cell wall inhibitor of Mycobacteriumtuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum[J]. Microbiology,2005,151(5):1359-1368
    52. Takinami K, Yoshii H, Tsuri H, et al. Biochemical effects of fatty acid and its derivatives on L-glutamicacid fermentation. III. Biotin-Tween60relationship in the accumulation of L-glutamic acid and thegrowth of Brevibacterium lactofermentum[J]. Agric Biol Chem,1965,29:351-359
    53. Akhtar M, Lentz M J, Blanchette R A, et al. Corn steep liquor lowers the amount of inoculum forbiopulping[J]. Biotechnology,1997,80(6):161-164
    54.张捷,董爱军.糖蜜的资源利用化(上)[J].中国甜菜糖业,2007,(2):38-40
    55. Dominguez H, Rollin C, Guyonvarch A, et al. Carbon-flux distribution in the central metabolicpathways of Corynebacterium glutamicum during growth on fructose[J]. Eur J Biochem,1998,254(1):96-102
    56. Gerstmeir R, Wendisch V F, Schnicke S, et al. Acetate metabolism and its regulation inCorynebacterium glutamicum[J]. J Biotechnol,2003,104(1-3):99-122
    57. Kiefer P, Heinzle E, Wittmann C. Influence of glucose, fructose and sucrose as carbon sources onkinetics and stoichiometry of lysine production by Corynebacterium glutamicum[J]. J Ind MicrobiolBiotechnol,2002,28(6):338-343
    58. Moon M W, Kim H J, Oh T K, et al. Analyses of enzyme II gene mutants for sugar transport andheterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC13032[J]. FEMSMicrobiol Lett,2005,244(2):259-266
    59. Kawaguchi H, Sasaki M, Vertes A A, et al. Engineering of an L-arabinose metabolic pathway inCorynebacterium glutamicum[J]. Appl Microbiol Biotechnol,2008,77(5):1053-1062
    60. Kawaguchi H, Vertes A A, Okino S, et al. Engineering of a xylose metabolic pathway inCorynebacterium glutamicum[J]. Appl Environ Microbiol,2006,72(5):3418-3428
    61. Azizi A, Ranjbar B, Khajeh K, et al. Effects of trehalose and sorbitol on the activity and structure ofPseudomonas cepacia lipase: Spectroscopic insight[J]. Int J Biol Macromol,2011,49(4):652-656
    62. Wang Z, Wang Y, Zhang D, Li J, et al. Enhancement of cell viability and alkaline polygalacturonatelyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation[J]. BioresourceTechnol,2010,101(4):1318-1323
    63. Liu Y, Zhang Y G, Zhang R B, et al. Glycerol/glucose co-fermentation: one more proficient process toproduce propionic acid by Propionibacterium acidipropionici[J]. Curr Microbiol,2011,62(1):152-158
    64. Arruda P V, Felipe M G A. Role of glycerol addition on xylose-to-xylitol bioconversion by Candidaguilliermondii[J]. Curr Microbiol,2009,58(3):274-278
    65. Zhang C, Shi Z, Gao P, et al. On-line prediction of products concentrations in glutamate fermentationusing metabolic network model and linear programming[J]. Biochem Eng J,2005,25(2):99-108
    66. Chen N, Du J, Liu H, et al. Elementary mode analysis and metabolic flux analysis of L-glutamatebiosynthesis by Corynebacterium glutamicum[J]. Ann Microbiol,2009,59(2):317-322
    67. Xiao J, Shi Z P, Gao P, et al. On-line optimization of glutamate production based on balancedmetabolic control by RQ[J]. Bioprocess Biosyst Eng,2006,29(2):109-117
    68.曹艳,丁健,段作营,等.在线控制和推定葡萄糖浓度改善谷氨酸发酵性能[J].微生物学通报,2009,36(10):1619-1624
    69. Demain A L, Birnbaum J. Alteration of permeability for the release of metabolites from the microbialcell[J]. Curr Top Microbiol,1968,46:1-25
    70. Clément Y, Lanéelle G. Glutamate excretion mechanism in Corynebacterium glutamicum: triggering bybiotin starvation or by surfactant addition[J]. J Gen Microbiol,1986,132(4):925-929
    71. Clement Y, Escoffier B, Trombe M C, et al. Is glutamate excreted by its uptake system inCorynebacterium glutamicum? A working hypothesis[J]. J Gen Microbiol1984,130(10):2589-2594
    72. Gutmann M, Hoischen C, Kr mer R. Carrier-mediated glutamate secretion by Corynebacteriumglutamicum under biotin limitation[J]. BBAMEM,1992,1112(1):115-123
    73. Hoischen C, Kr mer R. Evidence for an efflux carrier system involved in the secretion of glutamate byCorynebacterium glutamicum[J]. Arch Microbiol,1989,151(4):342-347
    74. Wachi M. Amino acid exporters in Corynebacterium glutamicum[C]. In: Yukawa H, Inui M, eds.Corynebacterium glutamicum. Microbiology Monographs. Springer Berlin Heidelberg,2013.335-349.
    75. Hoischen C, Kr mer R. Membrane alteration is necessary but not sufficient for effective glutamatesecretion in Corynebacterium glutamicum[J]. J Bacteriol,1990,172(6):3409-3416
    76. Yao W, Deng X, Liu M, et al. Expression and localization of the Corynebacterium glutamicumNCgl1221protein encoding an L-glutamic acid exporter[J]. Microbiol Res,2009,164(6):680-687
    77. Nakamura J, Hirano S, Ito H, et al. Mutations of the Corynebacterium glutamicum NCgl1221gene,encoding a mechanosensitive channel homolog, induce L-glutamic acid production[J]. Appl EnvironMicrob,2007,73(14):4491-4498
    78. Schwender J. Metabolic flux analysis as a tool in metabolic engineering of plants[J]. Curr OpinBiotechnol,2008,19(2):131-137
    79. Kim H U, Kim T Y, Lee S Y. Metabolic flux analysis and metabolic engineering of microorganisms[J].Mol Biosyst,2008,4(2):113-120
    80. Kern A, Tilley E, Hunter I S, et al. Engineering primary metabolic pathways of industrialmicro-organisms[J]. J Biotechnol,2007,129(1):6-29
    81.陈琦,王卓,魏冬青.代谢网络流分析进展及应用[J].科学通报,2010,55(14):1302-1309
    82. Taka S, al k G, Mavituna F, et al. Metabolic flux distribution for the optimized production ofL-glutamate[J]. Enzyme Microb Tech,1998,23(5):286-300
    83. Sonntag K, Schwinde J, de Graaf A A, et al.13C NMR studies of the fluxes in the central metabolism ofCorynebacterium glutamicum during growth and overproduction of amino acids in batch cultures[J].Appl Microbiol Biotechnol,1995,44(3-4):489-495
    84.欧阳平凯,曹竹安,马宏建,等.发酵工程关键技术及其应用[M].北京:化学工业出版社,2005.455-457
    85.王树青,元英进.生化过程自动化技术[M].北京:化学工业出版社,1999.132-138
    86.张嗣良,储炬.多尺度微生物过程优化[M].北京:化学工业出版社,2003.56-77
    87.史仲平,潘丰.发酵过程解析、控制与检测技术[M].北京:化工出版社,2005.162-168
    88. Shimizu K, Furuya K, Optimal operation derived by Green’s theorem for the cell-recycle filterfermentation focusing on the efficient use of the medium[J]. Biotechnol Prog,1994,10(3):258-262
    89. Kishimoto M. Application of fuzzy logic theory to bioprocesses and its problem[J]. Biosci Ind,1991,49(7):18-22
    90. Pollard J F, Broussard M R, Garrison D B, et al. Process identification using neural networks[J].Comput Chem Eng,1992,16(4):253-270
    91. Ungar L H, Powell B A, Kamens S N. Adaptive networks for fault diagnosis and process control[J].Comput Chem Eng,1990,14(4/5):561-572
    92. Samanta B, Al-Balushi K R. Artificial neural network based fault diagnosis of rolling element bearingsusing time-domain features[J]. Mech Syst Signal Pr,2003,17(2):317-328
    93.董传亮.谷氨酸发酵过程的故障诊断研究[D]:[硕士论文].无锡:江南大学,2008
    94. Shi H, Shimizu K. An integrated metabolic pathway analysis based on metabolic signal flow diagramand cellular energetics for Saccharomyces cerevisiae[J]. J Ferment Bioeng,1997,83(3):275-280
    95. Shi H, Shimizu K. On-line metabolic pathway analysis based on metabolic signal flow diagram[J].Biotechnol Bioeng,1998,58(2-3):139-148
    96. Kimura E, Yagoshi C, Kawahara Y, et al. Glutamate overproduction in Corynebacterium glutamicumtriggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit[J].Biosci Biotechnol Biochem,1999,63(7):1274-1278
    97. Hasegawa T, Hashimoto K I, Kawasaki H, et al. Changes in enzyme activities at the pyruvate node inglutamate-overproducing Corynebacterium glutamicum[J]. J Biosci Bioeng,2008,105(1):12-19
    98. Uy D, Delaunay S, Germain P, et al. Instability of glutamate production by Corynebacteriumglutamicum2262in continuous culture using the temperature triggered process[J]. J Biotechnol,2003,104(1-3):173-184
    99. Kalinowski J, Bathe B, Bartels D, et al. The complete Corynebacterium glutamicum ATCC13032genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins[J].J Biotechnol,2003,104(1-3):5-25
    100. Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts onbiotechnological processes[J]. Appl Microbiol Biotechnol,2003,62(2-3):99-109
    101. Haussmann U, Poetsch A. Global proteome survey of protocatechuate-and glucose-grownCorynebacterium glutamicum reveals multiple physiological differences[J]. J Proteomics,2012,75(9):2649-2659
    102. Tanaka Y, Okai N, Teramoto H, et al. Regulation of the expression of phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R[J].Microbiology,2008,154(Pt1):264-274
    103. Van Ooyena J, Emerb D, Bussmann M, et al. Citrate synthase in Corynebacterium glutamicum isencoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR[J]. J Biotechnol,2011,154(2-3):140-148
    104. Schmid R, Uhlemann E M, Nolden L, et al. Response to nitrogen starvation in Corynebacteriumglutamicum[J]. FEMS Microbiol Lett,2000,187(1):83-88
    105. Ehira S, Teramoto H, Inui M, et al. Regulation of Corynebacterium glutamicum heat shock responseby the extracytoplasmic-function sigma sactor SigH and transcriptional regulators HspR and HrcA[J].J Bacteriol,2009,191(9):2964-2972
    106. Kr mer R. Osmosensing and osmosignaling in Corynebacterium glutamicum[J]. Amino Acids,2009,37(3):487-497
    107. Livaniou E, Costopoulo D, Vassiliadou I, et al. Analytical techniques for determining biotin[J]. JChromatogr A,2000,881(1-2):331-343
    108. Nelson B C, Sharpless K E, Sander L C. Improved liquid chromatography methods for the separationand quantification of biotin in NIST standard reference material3280: multivitamin/multielementtablets[J]. J Agric Food Chem,2006,54(23),8710-8716
    109. Hirsch J D, Eslamizar L, Filanoski B J. Easily reversible desthiobiotin binding to streptavidin, avidinand other biotin-binding proteins: uses for protein labeling, detection, and isolation[J]. Anal Biochem,2002,308(2):343-357
    110.刁立兰.谷氨酸发酵过程中生物素含量的测定及控制[D]:[硕士论文].济南:山东轻工业学院,2008
    111. Popova O V, Ismailov S F, Popova T N, et al. Salt-induced expression of NADP-dependent isocitratedehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum[J].Planta,2002,215(6):906-913
    112.余秉琦,沈微,王正祥,等.谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成[J].生物工程学报,2005,21(2):270-274
    113. Marx A, Striegel K, de Graaf A A, et al. Response of the central metabolism of Corynebacteriumglutamicum to different flux burdens[J]. Biotechnol Bioeng1997,56(2):168-180
    114. Eggeling L, Krumbach K, Sahm H. L-glutamate efflux with Corynebacterium glutamicum: why ispenicillin treatment or Tween addition doing the same?[J]. J Mol Microbiol Biotechnol,2001,3(1):67-68
    115. Pacheco-Alvarez D, Solórzano-Vargas R S, León Del R o A. Biotin in metabolism and its relationshipto human disease[J]. Arch Med Res,2002,33(5):439-447
    116. Duperray F, Jezequel D, Ghazi A, et al. Excretion of glutamate from Corynebacterium glutamicumtriggered by amine surfactants[J]. Biochim Biophys Acta,1992,1103(2):250-258
    117. Balleza E, Lopez-Bojorquez L N, Martinez-Antonio A, et al. Regulation by transcription factors inbacteria: beyond description[J]. FEMS Microbiol Rev,2009,33(1):133-151
    118. Masuo S, Terabayashi Y, Shimizu M, et al. Global gene expression analysis of Aspergillus nidulansreveals metabolic shift and transcription suppression under hypoxia[J]. Mol Genet Genomics,2010,284(6):415-424
    119. Shimizu H, Tanaka H, Nakato A, et al. Effects of the changes in enzyme activities on metabolic fluxredistribution around the2-oxoglutarate branch in glutamate production by Corynebacteriumglutamicum[J]. Bioprocess Biosyst Eng,2003,25(5):291-298
    120. Kimura E. Triggering mechanism of L-glutamate overproduction by DtsR1in coryneform bacteria[J].J Biosci Bioeng,2002,94(6):545-551
    121. Hashimoto K, Kawasaki H, Akazawa K, et al. Changes in composition and content of mycolic acids inglutamate-overproducing Corynebacterium glutamicum[J]. Biosci Biotech Bioch,2006,70(1):22-30
    122. Naji B, Géhin G, Bonaly R. Structure of surfactants and glutamate efflux by Corynebacteriumglutamicum[J]. Process Biochem,2000,35(8):759-764
    123. Eggeling L, Sahm H. The cell wall barrier of Corynebacterium glutamicum and amino acid efflux[J]. JBiosci Bioeng,2001,92(3):201-213
    124. Lambert C, Erdmann A, Eikmanns M, et al. Triggering glutamate excretion in Corynebacteriumglutamicum by modulating the membrane state with local anesthetics and osmotic gradients[J]. ApplEnviron Microbiol,1995,61(12):4334-4342
    125. Gea T, Barrena R, Artola A, et al. Monitoring the biological activity of the composting process:oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ)[J]. BiotechnolBioeng,2004,88(4):520-527
    126.王瑶,张银冰,邓毛程.流加混合碳源的谷氨酸发酵工艺研究[J].科研开发,2007,23(4):30-33
    127. Arndt A, Eikmanns B J. Regulation of carbon metabolism in Corynebacterium glutamicum[C]. InBukovski A, ed. Corynebacteria: genomics and molecular biology. Wymondham, United Kingdom:Caister Academic Press,2008.155-182
    128. Inan M, Meagher M M. Non-repressing carbon sources for alcohol oxidase (AOX1) promoter ofPichia pastoris[J]. J Biosci Bioeng,2001,92(6):585-589
    129. Rittmann D, Lindner S N, Wendisch V F. Engineering of a glycerol utilization pathway for amino acidproduction by Corynebacterium glutamicum[J]. Appl Environ Microbiol,2008,74(20):6216-6222
    130. Chen X, Jiang S, Zheng Z, et al. Effects of culture redox potential on succinic acid production byCorynebacterium crenatum under anaerobic conditions[J]. Process Biochem,2012,47(8):1250-1255
    131. Li J, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production byActinobacillus succinogenes[J]. Bioprocess Biosyst Eng,2010,33(8):911-920
    132. Kastner J R, Eiteman M A, Lee S A. Effect of redox potential on stationary-phase xylitolfermentations using Candida tropicalis[J]. Appl Microbiol Biotechnol,2003,63(1):96-100
    133. Kwong S C W, Rao G. Utility of culture redox potential for identifying metabolic state changes inamino acid fermentation[J]. Biotechnol Bioeng,1991,38(9):1034-1040
    134. Gourdon P, Lindley N D. Metabolic analysis of glutamate production by Corynebacteriumglutamicum[J]. Metab Eng,1999,1(3):224-231
    135. Skjerdal O T, Sletta H, Flenstad S G, et al. Changes in intracellular composition in response tohyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum andCorynebacterium glutamicum[J].1996,44(5):635-642
    136. Park S M, Sinskey A J, Stephanopoulos G. Metabolic and physiological studies of Corynebacteriumglutamicum mutants[J]. Biotechnol Bioeng,1997,55(6):846-879
    137. Savinell J M, Palsson B O. Network analysis of intermediary metabolism using linear optimization. I.Development of mathematical formalism[J]. J Theor Biol1992,154(4):421-454
    138. Roohi M S, Mitchell W J. Regulation of sorbitol metabolism by glucose in Clostridium pasteurianum:a role for inducer exclusion[J]. J Gen Microbiol,1987,133(8):2207-2215
    139.王镜岩,朱圣庚,徐长法.生物化学[M].第三版,北京:高等教育出版社,2002.93-127
    140. Yao W J, Deng X Z, Zhong H, et al. Double deletion of dtsR1and pyc induce efficient L-glutamateoverproduction in Corynebacterium glutamicum[J]. J Ind Microbiol Biotechnol,2009,36(7):911-921
    141. Koffas M A G, Jung G Y, Stephanopoulos G. Engineering metabolism and product formation inCorynebacterium glutamicum by coordinated gene overexpression[J]. Metab Eng,2003,5(1):32-41
    142. Delaunay S, Daran-Lapujade P, Engasser J-M, et al. Glutamate as an inhibitor of phosphoenolpyruvatecarboxylase activity in Corynebacterium glutamicum[J]. J Ind Microbiol Biotechnol,2004,31(4):183-188
    143. Peters-Wendisch P G, Schiel B, Wendisch V F, et al. Pyruvate carboxylase is a major bottleneck forglutamate and lysine production by Corynebacterium glutamicum[J], J Mol Microbiol Biotechnol,2001,3(2):295-300
    144.内斯托尔.代谢工程的途径分析与优化[M].北京:化学工业出版社,2005.187-215
    145. Xi Y, Chen K, Li J, et al. Optimization of culture conditions in CO2fixation for succinic acidproduction using Actinobacillus succinogenes[J]. J Ind Microbiol Biotechnol,2011,38(9):1605-1612
    146. Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolicallyengineered Corynebaterium glutamicum strain[J]. Appl Microbiol Biotechnol,2008,81(3):459-464
    147. http://en.wikipedia.org/wiki/Sodium_bicarbonate
    148. Shirai T, Nakatoa A, Izutani N, et al. Comparative study of flux redistribution of metabolic pathway inglutamate production by two coryneform bacteria[J]. Metab Eng,2005,7(2):59-69
    149. Wendisch V F, Bott M, Kalinowski J, et al. Emerging Corynebacterium glutamicum systemsbiology[J]. J Biotechnol,2006,124(1):74-92
    150. Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and metabolic information[J]. NuclAcids Res,2002,30(1):47-49
    151. Mason S J. Feedback theory-further properties of signal flow graph[J]. Proc I R E,1956,44:920-926
    152. Jin S, Ye K, Shimizu K. Metabolic pathway analysis of recombinant Saccharomyces cerevisiae with agalactose-inducible promoter based on a signal flow modeling approach[J]. J Ferment Bioeng,1995,80(6):541-551
    153. Zhang X, Yan W, Zhao X, et al. Nonlinear biological batch process monitoring and fault identificationbased on kernel fisher discriminant analysis[J]. Proc Biochem,2007,42(8):1200-1210
    154. Kimura E. Metabolic engineering of glutamate production[J]. Adv Biochem Eng/Biotechnol,2003,79:37-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700