益气活血法对糖尿病视网膜神经细胞保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:新的观点认为:DR除了视网膜微血管损害以外,还是一种神经组织的慢性退行性变,神经元和神经胶质的改变可能是导致视网膜血管病变的一个主要因素,糖尿病引起的RGCs和Muller细胞的改变要早于出现有证据的血管病变。我们曾观察到益气类中药(红参)对糖尿病大鼠RGCs具有神经保护作用,在此基础上,欲进一步研究益气活血法对DM视网膜神经细胞损害的干预保护作用。本实验欲通过观察DM视网膜神经胶质细胞(Muller细胞)GFAP、GLAST、GS表达的变化、视网膜神经细胞的损害,神经营养因子NT-3的表达,探讨DM对视网膜神经细胞的影响,观察益气活血类中药对视网膜神经细胞的神经保护作用,分析其可能的作用机理,为中药防治DR开辟新思路。
     方法:选用SPF级六周龄雄性SD大鼠82只,通过腹腔注射链脲佐菌素(65mg/kg体重)诱导实验性DM大鼠模型,尾静脉血糖≥16.7mmol/L者为DM大鼠模型。造模成功的糖尿病大鼠随机分为模型组20只,治疗组30只,对照组20只。正常组大鼠12只。治疗组和对照组大鼠在糖尿病造模成功后即开始给药,每日上午9-10时灌胃给药一次,治疗组药物为芪参益气滴丸,对照组为多贝斯,剂量均为0.5g/kg体重/日(正常成人剂量的20倍)。定期检测大鼠血糖、体重,实验周期为300天。颈动脉放血处死大鼠,摘取眼球,制备视网膜组织切片,通过光镜、电镜检查,从组织病理水平观察糖尿病大鼠视网膜的改变;RT-PCR法检测视网膜GFAP mRNA表达水平;TUNEL法检测RGCs及内核层细胞的凋亡并记数细胞凋亡数量;免疫组织化学技术LSAB法检测GFAP、GLAST、GS、NT-3在视网膜的表达,从分子生物学水平观察糖尿病大鼠视网膜RGCs及内核层细胞功能的改变,用图象分析仪测量免疫组化的显色强度,进行定量分析。采用SPSS13.0统计软件对数据进行分析处理。
     结果:(1)成模后,与正常组相比,DM大鼠各时期体重明显减轻(P<0.01),治疗组、对照组、模型组大鼠体重无显著差异(P>0.05)。(2)成模后,与正常组相比,DM大鼠各时期血糖显著升高(P<0.01),治疗组、对照组、模型组大鼠血糖无显著差异(P>0.05)。(3)正常大鼠视网膜各层组织层次清楚,RGCs单层排列,内核层由3-5层细胞构成,细胞排列整齐,胞核较大,染色稍深。视细胞外节膜盘结构清晰,内节椭圆体内线粒体沿周边排列,结构规整,外核层核染色质分布均匀,内核层排列整齐,核染色质均匀,细胞器结构清楚,RGCs胞体呈卵圆形,胞浆中有较多的粗面内质网、多聚核糖体、线粒体,细胞表面有较多的突起。DM模型组大鼠视网膜神经纤维层水肿、增厚,胶质细胞增生,空泡样变,RGCs空泡变性,核固缩,部分坏死,内核层、外核层细胞排列极度紊乱。视细胞外节膜盘模糊不清,间隙扩大,部分溶解、断裂,内节椭圆体内线粒体肿胀、空泡样变,排列紊乱,外核层细胞核固缩,内核层深染细胞明显增多,细胞表面的微绒毛减少,细胞核固缩,部分崩解,核内染色质呈大小不等的团块,边集明显,粗面内质网高度扩张,线粒体肿胀,嵴断裂,空泡样变,RGCs胞体变形,核固缩,部分溶解、核膜消失,胞浆较多大小不等的空泡,线粒体肿胀,细胞表面突起明显减少(4)RT-PCR检测大鼠视网膜GFAP mRNA表达水平结果显示:与正常组相比,糖尿病大鼠视网膜GFAP mRNA表达明显增加(P<0.01);与模型组相比,治疗组、对照组表达量明显降低(P<0.01);与对照组相比,治疗组表达量明显降低(P<0.05)。(5)用TUNEL法检测,大鼠视网膜凋亡阳性细胞仅见于RGCs层和内核层。与正常组相比,治疗组、对照组、模型组大鼠视网膜内核层细胞凋亡及RGCs凋亡数量显著增加(P<0.01);与模型组相比,治疗组、对照组细胞凋亡数量明显减少(P<0.01);与对照组相比,治疗组细胞凋亡数量明显减少(P<0.01)。(6)LSAB法标记染色的GFAP在视网膜的表达结果显示:与正常组相比,治疗组、模型组和对照组GFAP阳性表达IOD值明显增加(P<0.01);与模型组相比,治疗组、对照组表达明显降低(P<0.05);与对照组相比,治疗组表达明显降低(P<0.05)。(7)LSAB法标记染色的GLAST在视网膜的表达结果显示:与正常组相比,治疗组、模型组、对照组大鼠视网膜GLAST阳性表达IOD值明显降低(P<0.05);与模型组相比,治疗组表达明显增加(P<0.05),而对照组无明显增加(P>0.05);与对照组相比,治疗组表达明显增加(P<0.05)。(8)LSAB法标记染色的GS在视网膜的表达结果显示:与正常组相比,治疗组、模型组、对照组大鼠视网膜GS阳性表达IOD值明显降低(P<0.01);与模型组相比,治疗组、对照组表达明显增加(P<0.01);与对照组相比,治疗组表达明显增加(P<0.01)。(9)LSAB法标记染色的NT-3在视网膜的表达结果显示:与正常组相比,治疗组、对照组、模型组视网膜NT-3阳性表达IOD值明显减少(P<0.01);与模型组相比,治疗组、对照组表达明显增加(P<0.01);与对照组相比,治疗组表达明显增加(P<0.01)。(10)GFAP阳性表达IOD值与内核层细胞凋亡数及RGCs凋亡数呈正相关;GLAST、GS、NT-3阳性表达IOD值与内核层细胞凋亡数及RGCs凋亡数呈负相关。
     结论:
     1糖尿病大鼠视网膜RGCs凋亡数及内核层细胞凋亡数显著增加;
     2糖尿病大鼠视网膜Muller细胞GFAP表达增强,处于活跃的胶质反应性增生状态;
     3糖尿病大鼠视网膜Muller细胞GLAST及GS功能减弱,转运谷氨酸能力下降;4益气活血法(芪参益气滴丸)对糖尿病大鼠视网膜神经细胞具有保护作用,其作用机制:(1)抑制Muller细胞GFAP的过度表达,抑制胶质细胞反应性增生,减轻DM对Muller细胞功能的影响,减轻视网膜神经元的损害;
     (2)促进Muller细胞GLAST及GS的表达,及时有效清除细胞外过量谷氨酸,减轻高浓度谷氨酸的兴奋性毒性作用;(3)促进神经营养因子NT-3的表达,减少神经细胞的凋亡。
Purpose:A new view points that DR is not only a retinal microvascular damage but also a chronic degeneration of nerve tissue. The changes of neurons and glial might be the major factors for retinal vascular disease. The change of ganglion cells and Muller cells caused by diabetes should occur as early as there is evidence of vascular lesions. My research was designed to assess the expression of GFAP、GLAST、GS、NT-3 in glial cells(Muller cells) and the damage of RGCs in rats by DM and discuss the effection to retinal neurons by DM, observe the neurologically protective role of Chinese medicine, analyzes its nerve protective mechanism and find a way to prevent and cure DR by Chinese medicine..
     Methods:82 male SD rats (weight between 180g and 220g) are randomly divided into 4 groups:model group,control group, treatment group and normal group. The rats were injected STZ (65 mg/kg weight) peritoneanouly and those with a blood glucose level higher than or equal to 16.7 mmol/L are DM model rats. Rats in treatment group and normal group were with QiShenYiQI pills and DuoBeiShi pills (1.5g/kg weight) each day. Blood glucose level and body weights were measured regularly. Experiment lasts for 300 days. Carotid bloodletting executed rats.The eyeballs were removed and retinal slides were made. Retinal structure was observed by optical microscope and electron microscopy. The expression level of GFAP mRNA was detected by the method of RT-PCR. Apoptosis of RGCs and cells in retinal kernel layer were measured by Tunel and the apoptotic cells were counted. LSAB method was used to measure the expression level of GFAP,GLAST,GS,NT-3. Immunological histochemistry assay was used for quantitative analysis. SPSS was used for statistical analysis..
     Results:(1) Weight of diabetic rats were significantly lower than normal group (P<0.01) and there is no significant differences in weight of treatment group, control group and the model of rats (P>0.05). (2) Glucose in diabetic rats were markedly higher than normal group (P<0.01) and there is no significant differences in glucose in treatment group, control group and the model of rats(P> 0.05). (3) Compared to normal group, the expression of GFAP mRNA by RT-PCR in diabetic rats was enhanced significantly. Compared to model group, the expression in treatment group and control group was decreased. Compared to control group, the expression in treatment group was decreased. (4) The positive apoptotic retinal cell were only expressed in RGCs and inner nuclear layer. The number of apoptotic RGCs and cells in inner nuclear layer in model group,control group and treatment group was significantly higher than in normal group. Compared to model group, the number of apoptotic cells in control group and treatment group decreased obviously. Compared to control group, the number of apoptotic cells in treatment group decreased obviously. (5) Compared to normal group, the positive expression of GFAP in diabetic rats by LSAB was enhanced significantly. Compared to model group,the expression in treatment group and control group was decreased. Compared to control group, the expression in treatment group was decreased (6) Compared to normal group, the positive expression of GLAST by LSAB in model group,control group and treatment group was decreased significantly. Compared to model group and control group, the expression in treatment group was enhanced. (7) Compared to normal group, the positive expression of GS by LSAB in model group,control group and treatment group was decreased significantly. Compared to model group, the expression in treatment group and control group was enhanced. Compared to control group, the expression in treatment group was increased. (8) Compared to normal group, the positive expression of NT-3 by LSAB in control group, model group and treatment group was decreased significantly. Compared to model group, the expression in treatment group and control group was enhanced. Compared to control group, the expression in treatment group was increased. (9) The number of apoptotic RGCs and cells in inner nuclear layer was correlated positively with the positive expression level of GFAP, while the expression of GLAST,GS and NT-3 was negatively.
     Conclusion:1 The apoptotic cells number in RGCs and the inner nuclear layer in diabetic rats retina were significantly increased.2 The expression of GFAP in Retinal Muller cells in diabetic rats increases and Muller cells are in active proliferation of glial reactive state.3 The function of GLAST and GS iin diabetic retinal Muller cells is weakened and its ability of transporter glutamate is declined.4 Qishenyiqi pills has a protective effect to retinal nerve cells in diabetic rats. Its mechanism is as follows.(1)Qishenyiqi pills can inhibit the overexpression of GFAP and glial cell reactive hyperplasia in Muller cells and reduce the damage to the Muller cell function and retinal neurons by DM.
     (2)Qishenyiqi pills can promote the expression of GLAST and GS in Muller cells and remove the excessive extracellular glutamate effectively and reduce the high concentrations of the role of glutamate excitotoxicity. (3) Qishenyiqi pills can promote the expression of neurotrophic factors (NT-3) and reduce the the number of apoptotic neural cells.
引文
1 Porta M,Allione A, Current approaches and perspectives in the medical treatment of diabetic retinopathy. Pharmacol Ther,2004.103:167-77.
    2 唐仕波,李斌.应努力推动我国糖尿病视网膜病变的临床基础研究.中华眼底病杂志,2006,22:1-3.
    3 杨金奎,陆惠.糖尿病视网膜病变的生化机制与药物治疗.中国处方药,2004,25:50-52.
    4 Srivastava BK,Rema M.Does hypertension play a role in diabetic retinopathy. Assoc Physicians Indian,2005,53:803-808.
    5 Chew EY, Klein ML, Ferris FL, et al. Association of elevated serum lipid levels with retinal hard exudates in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study(ETDRS) Report.Arch Ophthalmol,1996,114:1079-1084.
    6 Dagher Z, Patio YS, Aenaghi V, et al. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes, 2004,53:2404-2411.
    7 Freedman BI, Wuerth JP, Cartwright K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy(ACTION Ⅱ). Control Clin Trials,1999,20(5):493-510
    8 Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science,1992,5082(258):607-614.
    9 Way KJ, Chou E, King GL. Identification of PKG-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci,2000,21 (5):181-187.
    10 Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes,1998,47 (6):859-866.
    11 Bursell SE. King G. Can protein kinase C inhibition and vitamin E prevent the development of diabetic vascular complications? Diabetes Res Clin Pract,1999,45 (23):169-182.
    12 Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS,et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms and endothelial cell growth. Clin Invest,1996,98:2018-2026.
    13 陈忠平,姜德味.糖尿病性视网膜病变药物治疗进展一PKCβ抑制剂.国外医学眼科学分册,2004,28(3):205-208
    14 Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes,2005,54:1615-1625.
    15 Low PA, Nickander KK, Tritschler HJ.The role of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes,1997,338-342.
    16 Obrosova IG, Minchenko AG, Marinescu V, Fathallah L, et al. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats.Diabetologia,2001,44:1102-1110
    17 Millen A, Gruber M, Klein R, et al. Relations of seruim ascorbic acid and alpha-tocopherol to diabetic retinopathy in the Third National Health and Nutrition Examination Survey. Am J Epidemiol,2003,158:225-233
    18梁静,陈松,王明俭.糖尿病性视网膜病变治疗进展.临床眼科杂志,2008,16(1): 85-87
    19 Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol, 2002,86:363-365.
    20 Jonas J, Sofker A,. Introocular injection of crystalline cortisone as adlunctive treatment of diabetic macular edema. Am J Ophthalmol,2001,132:425-427
    21 Kang S W, Sa H S,Cho H Y, et al. Macular grid photo-coagulation after intravitreal triamcinolone acetonide for diffuse diabetic macular edema. Arch Ophthalmol,2006,124:653-658.
    22 Cusick M, Mclcth AD, Agron E, et al. Early Treatment Diabetc Retinopathy Study Research Group Associations of mortality and diabetes complications in patients with type 1 and type 2 diabetes early treatment diabetic retinopathy study report n.27.Diabetes Care,2005,28,617-622.
    23 Vinores SA. Technology evalution. Pegaptanib, Eyetech/Pfizer. Current Opinion in Molecular Therapeutics,2003,5(6):673-679
    24 Cunningham ET, Adam AP, Altawccl M, et al. A phase II random izcd double?masked trial of pegaptanib an anti-vascular endothelial growth factor aptamer for diabetic macular edema. Ophthalmology,2005,112,1747-1751.
    25 Quan Dong Nguycn, Sinan Tatlipinar, Syed Mahmood Shah, et al. Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalinol,2006,142, 961-966.
    26 Campochiaro PA. Gene therapy for retinal and choroidal diseases. Expert Opin Biol Ther,2002,2 (5):537-544
    27 Takahashi T, Nakamura T, HayashiA, et al. Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol,2000,130(6):774-781.
    28 Gehlbach P,Demetriades AM,Yamamoto S,et al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization.Gene Ther,2003,10(8):637-646.
    29 Guy J, Qi X, Muzyczka N, et al. Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Arch Ophthalmol.1999,117(7):929-937.
    30 Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, Maquire AM. Adenovirus-mediated delivery of rhodopsm-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther,1998,5:1156-1164
    31 Kafri T, van-Praag H, Gage FH, et al. Lentiviral vectors:regulated gene expression. Mol Ther,2000,1(6):516-521.
    32 Drixler TA, Borel-Rinkes IH, Ritchie ED, et al. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci,2001,42(13):3325-3330.
    33 Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. Cell Physiol,2001,188(2):253-263.
    34邓辉,金明.糖尿病视网膜病变发病机制相关因素的研究进展.中国中医眼科杂志,2003,13(3):181-185
    35张承芬,张惠蓉.糖尿病的眼部并发症及治疗.北京:人民卫生出版社,2003:62
    36徐风芹.糖尿病视网膜病变的激光治疗.医学综述,2005,11:823-824
    37 Nakazawa M, Kimizuka Y, Watabe T, et al. Visual outcome after vitrectomy for diabetic retinopathy a five-year follow up. Acta Ophthalmol.1993,71 (2):219-223
    38 Smiddy WE, Feuer W, Irvine WD, Flynn HW, et al. Vitrectomy for complication of proliferative diabetic retinopathy functional outcomes. Ophthalmolgy,1995,102:1688-1695
    39 Harbour JW, Smiddy WE, Flynn HW, et al. Vitrectomy for diabetic macular edema associated with a thichened and tout posterior hyaloid membrane. Am J Ophthalmol,1996,121:405-413
    40 Cunba Vaz J. Lowering the risk of visual impairment and bindnesa. Diabet Med,2006,15;47-50.
    41 Sebag J. Pharmacologic vitreolysis. Retina.1998,18:1-3
    42 Sebag J. Anamalous poeterior vitreous detachment a unifying concept in vitreo-retinal disease. Graefe Arch Clin Exp Ophthalmol.2004,242:690-698
    43 Frank RN.Diabetic retinopathy. N Engl J Med,2004,350:48-58
    44 Lieth E, Barber AJ, Xu B,et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes,1998,47:815-820
    45 Lecleire A, Tessier LH, Massin P, et al. Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants. Br J Ophthalmol,2005,89:1631-163
    46 Baber AJ. A new view of diabetic retinopathy a neurodegenerative disease of the eye. Prog Neuropasychophamacol Biol Psychiatry,2003,27 (2):283-290
    47 Guidry C. The role of Mtlller cells in fibrocontractive retinal disorders. Prog Retin Eye Res,2005,24:75-86
    48 Newman EA. Voltage-dependent calcium and potassium channels in retinal glial cells. Nature,1985,317:809-811
    49 Kofuji P, Biedermann B, Siddharthan V, et al. Kir potassium channel subunit expression in retinal glial cells:implication for spatial potassium buffering. Glia, 2002,39:292-303
    50 Willbold E, Rothermel A, Tomlinson S. Muller Glia cellsreorganize reaggregating chicken retinal cells into correctly laminatedin vitroretina. Glia, 2000,29(1):45-57.
    51 Sharma RK, Johnson DA.. Nolecalar signals for development of neuronal corcuitry in the retina. Neurochem Res,2000,2519(9):1257-1263.
    52李爱冬,羊惠君.胎儿视网膜M u ll er细胞的免疫组化研究[J].四川解剖学杂志,1995,3(2):108.
    53 Sharma RK. Expression of Bcl-2during the development of rabbit retina. Curr Eye Res,2001,22(3):208-214.
    54 Poitry S, Poitry-Yamate C, Veberfeld J. Mechanisms of glutamate metabolic signaling in retinal glial (Muller) cells. J Neurosic,2000,20(5):1809-1821.
    55 Tsacopoulos M. Metabolic signaling between neurons and glial cells:a short review. J Physiol Paris.2002,96(34):283-288.
    56 Winkler BS, Arnold MJ, Brassell MA. Energy metabolism in human retinal Muller cells. Invest Ophthalmol Vis Sci,2000,41(10):3183-3190.
    57 Du JL, Xu LY, Yang XL. Glycine receptors and transporters on bull frog retinal Muller cells. Neuroreport,2002,13(13):1653-1656.
    58 Romano C, Price MT, Olney JW. Delayed excitotoxic neurodegeneration induced by excitatory amino acid agonists in isolated retina. J Neurochem,1995, 65:59-67
    59 Pow DV, Robinson SR. Glutamate in some retinal neurons is derived solely from glia. Neuroscience,1994,60:355-366
    60 Qian X, Malchow RP, O'Brien J, et al. Isolation and characterization of a skate retinal GABA transporter cDNA..Mol Vis,1998,4:6
    61 Biedermann B, Bringmann A, Reichenbach A. High-affinity GABA uptake in retinal glial (Muller) cells of the guinea pig:electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia,2002,39(3): 217-218.
    62 Reichenbach A, Henke A, Eberhardt W, et al. K+ion regulation in retina. Can J Physiol Pharmacol,1992,70:S239-S247.
    63 Kofuji P, Connors NC. Molecular substrates of potassium spatial buffering in gial cells. Mol Neurobiol,2003,28(2):195-208
    64 Kofuji P, Ceelen P, Zahs KR. Genetic inactivation of an inwardly rectifuing potassium channal(Kir4.lsubnuit) in mice. phenotypic impact in retinal. J Neurosc, 2000,20(15):5733-5740.
    65杨雄里.Muller细胞与视网膜功能.生理科学进展,1998,29(1):7-10.
    66 Newman EA. Acid efflux from retinal glial cell generated by sodium bivarbonate cotransport. J Neurosci,1996,16:159-168
    67 Newman E, Zahs KR, Reichenbach A.. The Muller cell:a functional element of the retina. Trends Nurosci,1996,19(8):307-312.
    68 Newman EA.. Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci,2001,21(7):2215-2223.
    69 Atsusbi K, Yasumasa O, Colin JB. Muller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci, 2000,41 (11):3444-3450.
    70 Li Q, Puro D. Diabete-induced dysfunction of the glutamate transport in retinal Muller cell. Invest Ophthalmol Vis Sci,2002,43(9):3109-3116.
    71 Huster D, Reichenbach A, Reichelt W. The glutathione content of retinal Muller(glial)cells:effect of pathological conditions. Neurochem Int,2000, 36(4-5):461-469.
    72 Taylor S,Srinivasan B,Wordinger RJ.Glutamate stimulates neurotrophin expression in cultured Muller cells. Brain Res,2003;111(1-2):189-197.
    73 Chun MN, Ju WK, Kim KY. Upregulation of oiliary neurotrophic factor in reactive Muller cells in the retina following optic nerve transaction. Brain Res,2000;868 (2):358-362.
    74 Honjo M, Tanihara H, Kido N. Expression of ciliary neurotrophic factor activated by retinal Muller cells in eyes with NMDA and kainic acid-induced neuronal death. Invest Ophthalmol Vis Sci,2000,41(2):552-560.
    75 Harada T, Harada C, Kohsaka S. Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci,2002,22(21):9228-9236.
    76 Walsh N, Valter K, Stone J. Cellular and subcelluler patterns of expression of BFGF and CNTF in the normal and light stressed adult rat retina. Exp EyeRes,2001,72 (5):495-501.
    77沈玺,徐格致.糖尿病对视网膜Muller细胞功能的影响.国际眼科纵览,2006,30(4):237-240
    78 Lieth E, Barber A J, Xu B, et al. Gial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes, 1998,47:815-820
    79 Barber AJ, Lieth E, Khin SA, etal. A new view of diabetic retinopathy:a neurodegenerative disease of the eye. Prog Neuropsy chopharmacol Biol Psychiatry.2003,27:283-290.
    80包秀丽,艾育德.视网膜缺血性损伤中兴奋性氨基酸的变化.眼科新进展,2005,25(1):24-26.
    81 Poulaki V, Joussen AM, Mitsiades N, etal. Insulin-like growth factor-1 plays a pathogenetic role in diabetic retinopathy. Am J Pathol,2004,165:457-469.
    82 Song E, Yang W, Cui ZH, et al. Effects of high-concentration insulin on expression of vascular endothelial growth factor in cultured Muller cells vitro. Intern J Ophthalmol,2004,4:202-205.
    83 Abu-El-Asrar A, Meersschaert A, Dralands L, et al. Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye,2004,18:306-313.
    84 Xi X, Gao L, Denise A, et al. Chronically elevated glucose-induced apoptosis is mediated by inactivation of Akt in cultured Muller cells. Biochem J,2005, 326:548-553.
    85 Aizu Y, Katayama H, Takahama S, et al. Topical instillation of ciliary neurotrophic factor inhibits retinal degeneration in streptozotocin-induced diabetic rats. Neuroreport,2003,14:2067-2071.
    86 Abu-El-Asrar A, Dralands L, Missotten L, et al. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci, 2004,45:2760-2766.
    87张均田.主编现代药理实验方法.北京:北京医科大学.中国协和医科大学联合出版社,1998,984
    88 Hammes PH,Ali SS. Aminoguanidine does not inhibit the initial phase of diabetic retinopathy in rats [J]. Diabetologia,1995,38(1):269-273
    89于德民,吴锐,尹潍等.实验性链脲佐菌素糖尿病动物模型的研究.中国糖尿病杂志,1995,3(2):105-109
    90郑虎占董泽宏余靖主编.中药现代研究与应用(第一卷),学苑出版社,1997,119-173
    91 Mireille Belanger, Paul Desjardins, Nicolas Chatauret,et al. Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochemistry International,2002,41(2-3):155-1601
    92谭小华,张亚历,姜泊等.常规组织切片凋亡细胞原位末端标记法.细胞生物学杂志,1997,19(1):48-50
    93郑辉,颜亚晖,沈明.原位DNA末端转移酶法检测细胞凋亡的影响因素.湖 南医科大学学报,1998,23(2):206-207
    94. Negoescu A, Lorimier P, Labat-Moleur F, et al. TUNEL improvent and evaluation of the method for in situ apoptotic cell indentif ication. Mio Chemical,1997,21 (1):12
    95张俊华,张国安,金威尔等.一氧化氮和氧自由基诱导视网膜神经节细胞凋亡.眼科新近展,2001,21(2):84-85
    96李校堃,胡爱莲,郑远远等.基因重组bFGF对大鼠视网膜神经节细胞的影响.中国病理生理杂志,2002,18(2):147-149
    97. Boeri D, Caglio E, Podesta F, et al. Vascular wall von Willerbrand factor in human diabetic retinopathy.Invest Ophthal Vis Vic, 1994,35, (2):600-607
    98. Gerhardinger C,Brown LF, Roy S, et al. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am J Pathol,1998,152(9):1453-1467
    99 卢艳.糖尿病早期视网膜神经退行性病变.眼科新进展.2007,27(6):460-462
    100 Barber AJ, Lieth E, Ichin SA, et al. Neural apoptosis in the retina during experimental and human diabetes early onset and effect of insulin. J Clin Invest,1998,102(4):783-791
    101耿爽,叶俊杰.糖尿病视网膜病变发病机制及其药物治疗研究进展.中华眼科杂志,2008,44(1):76-81
    102周霞,夏晓波,蒋幼芹.视网膜M u l ler细胞谷氨酸转运体及其功能调节.国际眼科杂志,2003,3(3):71-73
    103 Shaked I, Ben-Dror I, Vardimon L. Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retine. J Neurochem,2002,83:574-580
    104罗云,黎杏群.NT-3在神经系统中的作用及其对脑缺血的影响.国外医学神经病学神经外科学分册,2003,30(2):104-107
    105李程,李根林.视网膜神经细胞生长发育中相关诱导因素的研究进展.眼科新进展,2007,27(2):146-149
    106 Frade JM, Bovolenta P, Rodriguez-Tebar A. Neurotrophins and other growth factors in the generation of retinal neurons. Micros Res Tech,1999,45(4):243-251
    107李志英,余杨桂,张淳等.糖尿病中医证型与糖尿病视网膜病变分期关系的探讨.中国中医眼科杂志,2000,10(1):29-32
    108李志英,余杨桂,张淳等.糖尿病视网膜病变与血瘀关系的探讨.广州中医药大学学报,1999,16(4):275
    109张鹏霞,朴金花,欧芹.黄芪对老年小鼠脑线粒体Mn-SOD、 MDA及脑细胞 凋亡影响的实验研究.中国老年学杂志,2003,9(23):596-597
    110 Dehong Yu, Yanlong Duan, Yongming Bao. Isoflavonoids from a stragalus mongholicus protect PC12 cells from toxicity induced by glutamate.Joumal of Ethnophamacology,2005,98(1-2):89-94
    111王沙燕,赖真,耿小英等.黄芪对脑缺血再灌注星形胶质细胞的影响.中国中医基础医学杂志,2003,9(4):41-42
    112张均田,杜冠华.丹参水溶性有效成分-丹酚酸研究进展.基础医学与临床,2000,20(5):10-14
    113袁恒杰.丹参素药理作用研究新进展.中国医院药学杂志,2006,26(5):604-606
    114杨新光,于敬妮,金文亮.几种对青光眼视神经有保护作用的中药介绍.中国实用眼科杂志,2007,25(3):241-242
    115郭志松,邵换璋.三七总皂甙对脑出血大鼠的神经细胞保护作用.中国实用神经疾病杂志,2009,12(11):42-44
    116刘大君,刘汝专,刘佳等.三七对细胞凋亡的研究进展.云南中医中药杂志,2009,30(6):62-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700