物料悬浮速度智能测试系统的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代农业生产生活中,为提高生产效率,人们越来越注重农业装备智能化与机械化的设计要求。而在设计粮食收割机,粮食干燥与气力输送设备,复式脱粒机以及清选机的分离与清选装置时,物料的悬浮速度是一个重要的设计参数,所以它的准确测定显得尤为重要。
     在现今研究的基础上,本文选用索尼公司生产的一款高速高分辨率低暗电流面阵CCD ICX085AL,设计了此套基于单片机为主控制单元的高速图像采集系统。该系统选用C8051F000与XC9536作为驱动面阵CCD与信号处理器ADS8320的时序发生器,实现了面阵CCD输出模拟信号的高速转换,并通过USB接口将数据传送到计算机进行存储并显示、反馈、控制,实现农业物料位置信息的实时监测,从而设计出能够计算其悬浮速度的一整套智能控制系统。
     本套系统选用ICX085AL面阵CCD代替了TCD1001P线阵CCD,相较线阵CCD而言:
     1)实现了较高分辨率的动态检测,不仅能检测物料颗粒在锥形筒里的通过状态,而且能够实时检测到物料颗粒在同一时间点上的位置信息,同时捕获到其相对稳定的悬浮状态,实现其精确定位。
     2)采用行间转移方式,不仅仅提高了光电转换效率,而且成功消除了拖尾现象,使得采集到的物料位置信息的准确度与实时性都相应提高。
     3)对于物料成像时的重叠以及同一种物料悬浮时的分布状态,利用此图像传感器采集相应的图像信息进行灰度直方图与二值化处理,从而在一定程度上得到解决;尤其是在后期的图像处理方面,面阵CCD较线阵CCD而言显示了其巨大的优势;
     与此同时,用单片机与CPLD相结合的控制单元,产生驱动CCD的时序脉冲,消除了单片机无法产生高频信号的弊端,实现了面阵CCD的正确驱动。
     本套智能测试装置的完美实现还要牵涉到相应的计算机控制技术,通过人机交互系统,实现自动闭环控制。该系统经改进后,不但可以广泛应用于粮食加工、除尘、清选等企业,为其提供必须的物料悬浮速度,而且还可以用于教学和科研工作,与此同时,物料悬浮速度的测定更加精确,并能够在一定程度上指导农业生产,对于农业装备的智能化方向研究具有指导意义。
In order to improve production efficiency, more people put emphasis upon design requirements of agricultural equipment in terms of mechanized and intelligence. Grain suspension velocity is a very important design parameter when grain harvesters, grain drying and pneumatic conveying equipment, double threshers and cleaning plant are considered to design. Hence, it is particularly important to be sure the exactly value of grain suspension velocity.
     This paper selects a kind of CCD sensor ICX085AL produced by Sony, which is considered to be area array, high speed, high resolution and low dark current. High-speed image acquisition system is designed based on single chip and the present research. Both single chip C8051F000 and CPLD XC9536 are selected and put to drive area array CCD and signal processor ADS8320, all of which realize high-speed conversion between digital signal and analog signal output by CCD. Finally, the computer storage and display the dates that through USB interface and also feedback information and control the loop. This kind of intelligent controlling system can realize the grain suspension velocity on real-time monitoring.
     This set of system chooses array CCD ICX085AL instead of linear CCD TCD1001P, compared with linear CCD, there are three important reasons for this choice.
     1) This system realize dynamic test of higher resolution ratio. This set not only detect the state of materials particles in the tapered tube, but also detect the location information whether materials particles can be in the same point position at the real-time, Meanwhile captures its relatively stable state of suspension, which realize accurate positioning.
     2) This sensor adopts rows move mode. It not only can improve the photoelectric conversion efficiency, but also can eliminate the trailing phenomenon successfully. It makes an increase on the accuracy and real-time about material position information.
     3) It relates to the overlap imaging materials particles and a suspension of distribution state of the same kind of materials particlesl. It is necessary to use the image sensor acquisition corresponding image information with gray histogram binary processing, thus to a certain extent this problem solved. Especially in the late image processing, the array CCD compare with the linear, It shows a huge advantage. Meanwhile, the control cells combined MCU with CPLD produce the temporal pulse which drives CCD and eliminate disadvantages of being unable to produce high frequency signals only with MCU. All of these realize the correct driver of array CCD.
     This perfect realization of intelligent test device even involves corresponding computer control technology, which realizes the automatic closed-loop control through the human-computer interaction system. This improvement system provide the necessary grain suspension velocity can be widely used in food processing, dusting and clear choose enterprises, teaching and research work etc. Meanwhile, grain suspension velocity is more accurate, and in a certain extent it can guide agricultural production. All of this study has a guiding significance of research direction of agricultural intelligent equipment.
引文
[1]张丽.单片机的发展与应用[J].科技咨询导报,2007,8-9.
    [2]张俊谟.单片机的发展与应用[J].专题与综述,2007.
    [3]邓春香,陶栋材,高英武.谷物清选机的研究现状和发展趋势[J].农机化研究,2005,3.
    [4]魏国维.小型垂直气流清选机设计参数探讨[J].江西农业大学学报,1996,9.
    [5]秦玉尧,傅琴.气流喷射式流化床干燥器传热状况的研究[J].农业机械学报,1999,30(2):71-74.
    [6] Paltik-J,Sabik·J,Maga,-J,et al·B.Quality of Sugar Beet Seeding by Pneumatic Seeder.(Slovak Republic)[J].Agriculture Journal for Agricultural Sciences,2001,47(4):306-3 18.
    [7] Y C,Fon,-D S.Development of an Amommic Rolling System for Rice Seedlings[M].Academic London. Press,1956.
    [8] Uchigaski.·M,Watanabe.·K,Tojo.-S,eta1.A utom-atic Transplanter Using a Pneumatic System:Simulation Analysis of Seedling Block Dynamics[J].Journal of the Society of Agricultural Structures Japan,2000,(86):31-38.
    [9] Wang Yuxing,Luo Xiwen,Xiang Weibing.Research on Paddy SeedIing Ordered Pneumatic Throwing transplantation.Written for Presentation at the 2002 ASAE Annual International Meeting[R].USA:/CICRXVth World Congress.
    [10] Batista-M.J, Dias.A.B. National Symposium on Olive·Growing[J].Braganca(Portuga1). 1998,15-18.
    [11]王同福,宋玉英,王进朝.气流清选原理在脱粒机上的应用[J].河北农业大学学报,1997.1.
    [12]彭建恩.物料悬浮速度的研究[J].粮食科技与经济,2001,4.
    [13]张睿彬,李娜. CCD在光学器件表面疵病度测量中的应用[J].光盘技术,2007,(2):38-40.
    [14]金丹青.CCD在光学实验中的应用[J].宁波广播电视大学学报,2010,8(1):120-122.
    [15]蒋万秋.大面阵CCD相机在靶场测量经纬仪中的应用设计[J].信息化研究,2009,35(11):60-64.
    [16]张百良.浅谈CCD技术在前照灯检测仪上的应用[J].汽车维护与修理,2010,(7):78-80.
    [17]宋华,林土胜.手指折痕图像采集系统的设计与验证[J].科技论坛.
    [18]邓志平,李文超,倪绍流.线阵CCD测量系统在数控车床中的应用[J].西华大学学报,2010,29(2):41-43.
    [19]唐积才,周国义,王为清.增压锅炉火焰图像采集系统研究[J].船舶科学技术,2010,32(6):31-35
    [20]王威立.单片机控制的物料悬浮速度测试系统的研究[D].河南农业大学,2009.
    [21]李骥,李英.基于VC++的物料悬浮速度的可视化快速计算[J].干燥技术与设备,2005.
    [22]贾磊,刘晓玲,庞子瑞.仿真技术在物料悬浮速度计算中的应用[J].开封大学学报,2004,4.
    [23]周乃如,朱凤德.气力输送原理与设计计算[M].河南科技出版社,1981.
    [24]邓春香,陶栋材,高静萍.气流清选风车中谷物的动力学特性和影响因素的研究[J].农业工程学报,2006,(4):121-124.
    [25] TadoC.J. M.blacker P.Kutzbach N. D.Suministrado D.C.Aerodynamic Properties of paddy. International Agricultural Engineering, journal v 8 n 2 1999 AAAE p 91-100 0848-2114 In English
    [26] Mi n, P. I.,Kutzbach, H. D. Mathematical modeling of grain separation process Over the length of straw walkers. American Society of Agricultural Engineers v 1 Aug 1D-141997 ASAE 16p 0145-0166 In English
    [27]白扩社,流体力学·泵与风机[M].机械工业出版社,2005.
    [28]塔娜,张志耀,秀荣.基于图像法的粮食物料悬浮速度的研究[J].粮食与饲料工业,2008,(7):8-10
    [29]王庆有.光电传感器应用技术[M].机械工业出版社,2007.
    [30]戴焯.传感与检测技术[M].武汉理工大学出版社,2003.
    [31]刘迎春,叶湘滨.传感器原理、设计与应用[M].国防科技大学出版社,2006.
    [32]米本和也.CCD/CMOS图像传感器基础与应用[M].科学出版社,2006
    [33] Sony Corporation.Datasheet of ICX085AL.1999.
    [34] Cypress Semiconductor Corporation.Datasheet of CY7C68013.2006.
    [35]顾一.基于CCD的图像采集和处理系统[D].浙江大学,2008.
    [36]周黎,张健,吴丽莹.基于CPLD和USB2.0的线阵CCD数据采集系统及应用[J].仪表技术与传感器,2009(2):83-86.
    [37]王玉红,封维忠,王芳.基于面阵CCD瞬时位置的研究[J].现代点击技术,2008,(20):186-188.
    [38]张迎辉,贡雪梅.单片机实训教程[M].北京大学出版社,2005.
    [39] Protel 99 SE电路设计基础与工程范例[M].清华大学出版社,2008.
    [40]冉峰,黄舒平,杨辉.图像采集系统面阵CCD驱动电路的设计[J],电子技术应用,2009,(11):43-45
    [41]郭瑜茹,张朴,杨野平.光电子技术及其应用[M].北京:化学工业出版社,2006,7.
    [42]朱定华.单片机原理及接口技术[M].北京:电子工业出版社,2001,4.
    [43]王正洪,朱正伟,马正华.微机接口与应用[M].清华大学出版社,2006.
    [44]许煜,叶炜,顾一.基于USB2.0的面阵CCD图像采集系统设计[J].机床与液压,2008,36(11):97-100
    [45]郭文斌,程耀瑜,刘清文.基于CCD焊缝自动跟踪系统的设计[J].微计算机信息,2008,24(21):304-305
    [46]李保谦,王威立,栗文雁等.物料悬浮速度测试方法研究[J].农机化研究,2009,(1)123-125.
    [47]周辉,张星祥,陶宏江等.基于行间转移CCD场输出模式下的成像系统设计[J],液晶与显示,2009,24(1):121-125
    [47]王雪文,张志勇.传感器原理及应用[M].北京航空航天大学出版社,2004,3.
    [48]张佳,庄卫东,陈彬.农业物料悬浮速度试验台的研制[J].黑龙江八一农垦大学学报, 1998,(9):56-59.
    [49]周祖锷,农业物料学[M].农业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700