子癇前期母胎界面游离DNA双向转运的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:对子癎前期患者的母胎转运的游离DNA进行定量测定,探讨转运的母胎游离DNA与子癎前期的关系及其在子癎前期疾病的发展和预测中的价值。
     方法:采用聚合酶链式反应(polymerase chain reaction,PCR)方法,利用谷胱甘肽S转移酶M1基因(glutathione S-transferase M1,GSTM1)、人血管紧张素转换酶基因(angiotensin-converting enzyme genes,ACE)基因多态性对同期住院分娩男婴的子癎前期及正常妊娠的母婴病例对进行筛选。通过实时荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)方法利用特异性Y性别决定区(sex-determining region Y,SRY)基因及GSTM1、ACE基因多态性分别对入选病例对母血浆中胎儿游离DNA及脐血浆中母体游离DNA进行定量测定。同时利用放射免疫法对入选病例母血中绒毛膜促性腺激素(β-chorionic-gonadotropinhormone,β-HCG)浓度进行测定及相关比较。
     结果:1、共有52对母婴病例对入选进行FQ-PCR检测,其中实验组中子癎前期轻度组12对,重度组15对,正常对照组25对。
     2、52对病例对母血浆中均检测出胎儿游离DNA,实验组胎儿游离DNA浓度均值与对照组相比增高,子癎前期重度较轻度组增高,组间差异有显著性(P<0.001)。
     3、脐血浆中检测出母体游离DNA,实验组共10例,对照组8例,实验组浓度高于对照组,子癎前期重度较轻度组增高。各组间浓度差异有统计学意义(P<0.05)。
     4、实验组中子痼前期血β-HCG浓度值与对照组相比较,组间有显著性差异(P<0.001),子癎前期母血β-HCG浓度高于正常妊娠。
     5、妊娠母血浆中游离胎儿DNA浓度、脐血浆中母体游离DNA浓度与母血β-HCG水平呈正相关(P<0.01),转运的胎儿游离DNA浓度与母体游离DNA浓度无明显相关性(P>0.05)。
     结论:1、妊娠高血压子癎前期转运的母胎游离DNA浓度高于正常妊娠,可能与胎盘滋养层和合体滋养层细胞凋亡增加有关。DNA增多意味着子癎前期与胎盘损伤有关,导致母儿交换增多。
     2、妊娠中转运的母、胎游离DNA浓度与子癎前期具有相关性,可能可以作为一项预测和监测子癎前期的临床指标。
     3、母胎转运游离DNA浓度与母血β-HCG水平相关,可用于子癎前期的临床预测和监测,并说明DNA代谢紊乱与子癎前期有相关性。
Objective To quantitative analyze the bidirectional transfer within fetomaternal plasma free DNA and study the relationship with preeclampsia.To analyze the effects of the bidirectional free DNA traffic in the development and prognosis of preeclampsia.
     Methods Using a polymerase chain reaction(PCR)assay to screen the informative mother-baby pairs of which the pregnant women who carrying male babies and delivered in hospital,including 60 examples of preeclampsia(study group)and normal pregnancy(control group)respectively.The transfer from mother-to-fetus or fetus-to-mother was determined by detecting the inserting/deletion polymorphisms involving the glutathione S-transferase M1(GSTM1)and angiotensin-converting enzyme genes(ACE).The fetus-to-mother transfer of plasma DNA in pregnant women was studied using a fluorescence quantitative PCR(FQ-PCR)assay for sex-determining region Y(SRY)gene.For mother-to-fetus transfer,FQ-PCR assays for the insertion/deletion polymorphisms involving the GSTM1 and ACE genes were used.At the same time,radioimmunity assay was used to detect theβ-chorionicgonadotropin hormone(β-HCG).
     Results①A total of 52 informative mother-baby pairs were selected in all of 120 pairs.In the study group,there were 12 pairs of the mild degree of preeclampsia and 15 pairs of the severe degree of preeclampsia.The control group included 25 informative mother-baby pairs.
     ②In the plasma fraction,fetal DNA was detected in 100%of maternal plasma(52 of 52).Compared with the control group,the mean fractional concentration in the group of the mild and severe degree of preeclampsia appeared significantly difference among groups(P<0.001).The free fetal DNA concentration in preeclampsia was higher than which in the normal pregnancy.
     ③Of the 27 informative mother-baby pairs,maternal DNA was detected only 10 pairs,including 4 pairs of mild degree of preeclampsia and 6 pairs of severe degree of preeclampsia.But 8 pairs in the control group were detected the maternal DNA.In the study group,the median fractional concentration was higher than the control group.The difference among groups was significance(P<0.05).The free maternal DNA concentration in preeclampsia was higher than which in the normal pregnancy.
     ④In comparision with normal pregnancy,the concentration ofβ-HCG in preeclampsia was significantly higher(P<0.001).
     ⑤Both the mother-to-fetus or fetus-to-mother transfer of plasma DNA had positive relationship withβ-HCG(P<0.01).But there appeared to be no relationship between the fetus-to-mother and mother-to-fetus transfer of plasma DNA(P>0.05).
     Conclusions①The concentration of the bidirectional transfer of feto-maternal plasma DNA in preeclampsia was higher than normal pregnancy.It might have the correlation with the increasing apoptosis of trophoblastic cells in placenta.So the increasing of free DNA might mean that the damage of placenta had relationship with preeclampsia,and resulted the increasing changes between fetus and mother at last.
     ②The bidirectional transfer of feto-maternal free DNA have the relationship with preeclampsia.These results also raise the possibility that measurement of circulating DNA may prove useful as a marker for the diagnosis and/or monitoring of preeclampsia.
     ③The concentration of the bidirectional transfer of feto-maternal plasma DNA had relationship with the concentration ofβ-HCG.Both of them could be used as the index of prediction and/or monitoring of preeclampsia.It suggested that preeclampsia was associated with metabolism disturbances of circulating DNA.
引文
[1].Lo YMD,LO ESF,Watson N,et al.Two-way cell traffic between mother and fetus:Biologic and clinical implications.Blood 1996;88(11):4390-5
    [2].Lo YMD,Lan TK,Chan LYS,et al.Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA.Clin Chem 2000;46(9):1301-9.
    [3].Chiu RW,Lo YM.Noninvasive prenatal diagnosis by analysis of fetal DNA in maternal plasma.Methods Mol Biol 2006;336:101-9.
    [4].Jansen MW,Korver-Hakkennes K,van Leenen D,et al.Significantly higher number of fetal cells in the maternal circulation of women with pre-eclampsia.Prenat.Diagn 2001;21(12):1022-26.
    [5].Cotter AM,Martin CM,O'leary JJ,et al.Increased fetal DNA in the maternal circulation in early pregnancy is associated with an increased risk of preeclampsia.Am J Obstet Gynecol 2004;191(2):515-20.
    [6].Cotter AM,Martin CM,O'Leary JJ,et al.Increased fetal RhD gene in the maternal circulation in early pregnancy is associated with an increased risk of pre-eclampsia.BJOG 2005;112:584-7.
    [7].Zhong X Y,Holzgreve W,Hahn S.Cell-free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal cells.Mol Hum Reprod 2002;8,864-70.
    [8].Holzgreve W,Li JJ,Steinborn A,et al.Elevation in erythroblast count in maternal blood before the onset of preeclampsia.Am J Obstet Gynecol 2001;184:165-8.
    [9].Kadyrov M,Kingdom JC,Huppertz B.Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction.Am J Obstet Gynecol 2006 Feb;194(2):557-63.
    [10].Redman CW,Sargent IL.Pre-eclampsia,the placenta and the maternal systemic inflammatory response-a review.Placenta 2003 Apr;24 Suppl A:S21-7.
    [11].Matthiesen L,Berg G,Ernerudh J,et al.Immunology of preeclampsia.Chem Immunol Allergy 2005;89:49-61.Review.
    [12].乐杰主编.妇产科学(第6版).人民卫生出版社,2004,97-104.
    [13].Chen XQ,Stroun M,Magnent JL,et al.Microsatellite alterations in plasma DNA of small cell lung cancer patients[J].Nat Med 1996;2:1033-5.
    [14].Lo YMD,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet 1997;350:485-7.
    [15].Lo YMD.Fetal DNA in maternal plasma:biology and diagnostic applications[J].Clinical Chemistry 2000;46:1903-6.
    [16].Lo YMD,Tein MSC,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum:implications or noninvasive prenatal diagnosis[J].Am J Hum Genet 1998;62:768-75.
    [17]. Zhao XX, Suzumori N, Ozaki Y, et al. Examination of fetal cells and cell-free fetal DNA in maternal blood for fetal gender determination. Gynecol Obstet Invest 2004; 58(1):57-60.
    
    [18]. Zarou DM, Lichtman HC, Hellman LM. The transmission of chromium-51 tagged maternal erythrocytes from mother to fetus. Am J Obstet Gynecol 1964; 88:565-71.
    
    [19]. Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man. Blood 196321:665-73.
    
    [20]. El-Alfi OS, Hathout H. Maternal transfusion: Immunologic and cytogenetic evidence. Am J Obstet Gynecol 1969; 103:599-600.
    
    [21]. Zhong XY, Laivuori H, Livingston JC, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 2001; 184:414-9.
    
    [22]. Leung TN, Zhang J, Lau TK, et al. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem 2001; 47:137-9.
    
    [23]. Farina A, Sekizawa A, Sugito Y, et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low-risk nonsymptomatic patients. Prenat Diagn 2004 Feb; 24(2):83-6.
    
    [24]. Cottter A M, Martin C M, O'Leary J J, et al. Increased maternal fetal cell trafficking in early pregnancy is associated with an increased risk of pre-eclampsia. Hypertens Pregnancy 2001;21:65.
    
    [25]. Malcolm A, Smith F. Placental mRNA in maternal plasma: Prospects for fetal screening.Proc Natl Acad Sci 2003; 100:4360-2.
    
    [26]. Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006 Feb; 194(2):557-63.
    
    [27]. Sekizawa A, Jimbo M, Saito H, et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am J Obstet Gynecol 2003; 188(2):480-4.
    
    [28]. Madazli R, Benian A, Ilvan S, et al. Placental apoptosis and adhesion molecules expression in placenta and the maternal placental bed of pregnancies complicated by fetal growth restriction with and without pre-eclampsia. J Obstet Gynaecol 2006 Jan ; 26(1) :5-10.
    
    [29]. Al Mufti R, Hambley H, Albaiges G, et al. Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Hum Reprod 2000; 15:1624-8.
    
    [30]. Basirat Z, Barat S, Hajiahmadi M. Serum beta human chorionic gonadotropin levels and preeclampsia. Saudi Med J 2006; 27(7):1001-4.
    
    [31]. Gurbuz A, Karateke A, Mengulluoglu M, et al. Can serum HCG values be used in the differential diagnosis of pregnancy complicated by hypertension? Hypertens Pregnancy 2004;23(1):1-12.
    
    [32]. Ohashi Y, Miharu N, Honda H, et al. Correlation of fetal DNA and Human chorionic gonadotropin concentrations in second-trimester maternal serum. Clin Chem 2002; 48(2):386-8.
    [1]. Lo YMD, Patel P, Wainscoat JS, Sampietro M, et al. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet 1989; 2:1363-5.
    
    [2]. Wong IHN, Lo YMD, Zhang J, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999; 59:71-3.
    
    [3]. Lo YMD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350:485-7.
    
    [4]. Houfflin-Debarge V, O'Donnell H, Overton T, et al. High sensitivity of fetal DNA in plasma compared to serum and nucleated cells using unnested PCR in maternal blood. Fetal Diagn Ther 2000; 15:102-7.
    
    [5]. Zhao XX, Suzumori N, Ozaki Y, et al. Examination of fetal cells and cell-free fetal DNA in maternal blood for fetal gender determination. Gynecol Obstet Invest 2004; 58:57-60.
    
    [6]. Lo YMD, Tein MSC, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications or noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62:768-75.
    
    [7]. Chan KCA, Zhang J, Hui ABY, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 2004; 50:88-92.
    
    [8]. Holdenrieder S, Stieber P, Forg T, et al. Apoptosis in serum of patients with solid tumours. Anticancer Res 1999; 19:27214.
    
    [9]. Malcolm A, Smith F. Placental mRNA in maternal plasma: Prospects for fetal screening. Proc Natl Acad Sci 2003; 100:4360-2.
    
    [10]. Ganshirt D, Borjesson-Stoll R, Burschyk M, et al. Successful prenatal diagnosis from maternal blood with magnetic-activated cell sorting. Ann N Y Acad Sci 1994; 731:103-14.
    
    [11]. Lo YMD, Leung TN, Tein MSG, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia.[J] Clin Chem 1999;45:184-188
    
    [12]. Zhong XY, Laivuori H, Livingston JC, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 2001; 184:414-9.
    
    [13]. Holzgreve W, Li JJ, Steinborn A, et al. Elevation in erythroblast count in maternal blood before the onset of preeclampsia. Am J Obstet Gynecol 2001; 184:165-8.
    
    [14]. Leung TN, Zhang J, Lau TK, et al. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem 2001; 47:137-9.
    
    [15]. Cotter AM, Mrcog, Martin CM, et al. Increased fetal DNA in the maternal circulation in early pregnancy is associated with an increased risk of preeclampsia. Am J Obstet Gynecol 2004; 191:515-20.
    
    [16]. Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response--a review. Placenta 2003 ; 24:21-7.
    
    [17]. Leung TN, Smith SC, To KF, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2001; 184:1249-50.
    
    [18]. Madazli R, Benian A, Ilvan S, et al. Placental apoptosis and adhesion molecules expression in placenta and the maternal placental bed of pregnancies complicated by fetal growth restriction with and without pre-eclampsia. J Obstet Gynaecol 2006; 26:5-10.
    
    [19]. Redman CW and Sargent IL. The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 2001;29:518-22.
    
    [20]. Sargent IL, Germain SJ, Sacks GP, et al. Trophoblast deportation and maternal inflammatory response in preeclampsia. J Repord Immunol 2003; 59:153-60.
    
    [21]. Lau TW, Leung TN, Chan LY,et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clin Chem 2002; 48:2141-6.
    
    [22]. Socie G, Gluckman E, Carosella E, et al. Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences. Blood 1994;86:340-4.
    
    [23]. Hall JM, Lingenfelter P, Adams SL, et al. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 1995; 86:2829-32.
    
    [24]. Lo YMD, Lo ESF, Watson N, et al. Two-way cell traffic between mother and fetus: Biologic and clinical implications. Blood 1996; 88:4390-5.
    
    [25]. Lo YMD, Lan TK, Chan LYS, et al. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000; 46:1301-9.
    
    [26]. Falcini F, Battini ML, Ceruso M, et al. A 4-year-old with a rash. Lancet 1999,354:40.
    
    [27]. Catlin EA, Roberts JD Jr, Erana R, et al. Transplacental transmission of natural-killer- cell lymphoma. N Engl J Med 1999; 341:85-91.
    
    [28]. Nelson JL. Microchimerism in human health and disease. Autoimmunity 2003; 36:5-9.
    
    [29]. Lambert NC, Pang JM, Yan Z, et al. Male microchimerism in women with systemic sclerosis and healthy women who have never given birth to a son. Ann Rhewm Dis 2005; 64:845-8.
    
    [30]. Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004; 351:2265-75.
    
    [31]. Grewal SS, Barker JN, Davies SM, et al. Unrelated donor hematopoietic cell transplantation:marrow or umbilical cord blood? Blood 2003; 101:4233-44.
    
    [32]. Reed Am, McNallan K, Wettstein P, et al. Does HLA-dependent chimeism underlie the pathogenesis of juvenile dermatomyosis? J Immunol 2004; 172:5041-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700