孔石莼—赤潮异弯藻相互作用及其对UV-B辐射的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮是全球性的海洋生态灾害,具有全球性、多发性、复杂性和高危害性等特点,已经成为亟待解决的重大海洋环境问题之一。我国是赤潮灾害多发国,近年来,由于人类活动引起的近岸水体富营养化程度加剧,导致赤潮频发,对近岸水域的生态环境和沿岸水产业的可持续发展造成极大的威胁。建立切实可行的赤潮防控方法势在必行。利用存在于海洋环境中的天然生物因子,如大型海藻等进行赤潮的生物学调控已经越来越引起人们的重视。已有的研究表明,大型海藻能通过营养竞争或是克生作用来抑制赤潮微藻的生长。另一方面,臭氧层衰减而导致的UV-B(280nm~320nm)辐射增强是另一个全球性的环境问题之一,不仅能够对海洋生物体构成伤害,而且还会对海洋生态系统产生明显的影响。
     本文以青岛沿岸常见的大型海藻—孔石莼(Ulva pertusaKjellm)和赤潮微藻—赤潮异弯藻(Heterosigma akashiwo ( hada)hada)为材料,在实验生态条件下,把石莼和赤潮异弯藻分别分为单养(对照)、UV-B辐射处理的单养、混养和UV-B辐射处理的混养四个试验组,研究了石莼-赤潮异弯藻相互作用及其对UV-B辐射的响应。结果发现:
     一、石莼-赤潮异弯藻相互作用的研究
     (1)研究了不同起始营养盐条件和初始生物量对石莼-赤潮异弯藻种间竞争的影响,结果表明:石莼和赤潮异弯藻发生相互竞争作用时,利用性竞争和干扰性竞争并存;两种竞争方式对竞争结果都会产生影响。当赤潮异弯藻初始接种密度不变(1×1 0 4 c e l l·m L - 1),石莼初始接种重量较低时(0 . 0 5 g / 1 5 0 m L),石莼和赤潮异弯藻的生长主要受干扰性竞争的影响;石莼初始接种重量较高时(0 . 4 g / 1 5 0 m L),石莼的生长主要受到利用性竞争的影响,而此时赤潮异弯藻的生长同时受到干扰性竞争和利用性竞争的影响。当石莼初始接种重量不变(0 . 0 5 g / 1 5 0 m L),赤潮异弯藻接种初始密度较低时(0 . 5×1 0 4 c e l l·m L - 1和1 . 0×1 0 4 c e l l·m L - 1),石莼和赤潮异弯藻的生长主要受干扰性竞争的影响;赤潮异弯藻初始接种密度较高时(2. 0×1 0 4 c e l l·m L - 1和4 . 0×1 0 4 c e l l·m L - 1),二者的生长同时受到利用性竞争和干扰性竞争的共同影响。试验结果说明石莼的初始接种重量和赤潮异弯藻初始密度可能是决定二者竞争方式的主要原因。
     (2)对石莼和赤潮异弯藻的相互作用、培养液滤液和胞内物质的交叉培养进行研究,结果表明:石莼抑制赤潮异弯藻的生长,赤潮异弯藻亦会抑制石莼的生长,二者之间存在克生效应:石莼主要通过分泌次生物质来抑制赤潮异弯藻的生长,而赤潮异弯藻对石莼生长的抑制可能通过细胞的直接接触和分泌次生物质完成的,其抑制物存在于藻体和培养液中。
     二、石莼-赤潮异弯藻相互作用对UV-B辐射的响应研究
     (1)研究了U V - B辐射对石莼和赤潮异弯藻的生长、叶绿素a含量、脱镁叶绿素a含量和石莼孢子萌发率的影响。结果表明:在单养的条件下,UV-B辐射对石莼和赤潮异弯藻的生长都有明显的抑制作用;而在混养的条件下,UV-B辐射对石莼生长的影响并不明显,但是却能显著抑制赤潮异弯藻的生长。石莼和赤潮异弯藻的叶绿素a和脱镁叶绿素a含量对U V - B辐射和克生效应有明显的响应,而且叶绿素a和脱镁叶绿素a含量的变化有一定的相似性。在U V - B辐射条件下,单养和与赤潮异弯藻混养石莼孢子的萌发率均受到明显的抑制,但未加U V - B辐射的与赤潮异弯藻混养的石莼孢子的萌发率虽然会下降,但是不明显。
     (2)石莼和赤潮异弯藻的抗氧化系统活性对UV-B辐射有明显的响应。在UV-B辐射处理的单养条件下,石莼丙二醛(MDA)含量,总抗氧化能力(T-AOC)和超氧化物岐化酶(T-SOD)活性显著升高,而可溶性蛋白含量和谷胱甘肽过氧化酶(GPX)活性显著降低;赤潮异弯藻MDA含量,T-AOC和过氧化氢酶(CAT)活性显著升高,而T-SOD活性,可溶性蛋白和类胡萝卜素(Car)含量显著降低。在混养的条件下,石莼MDA含量,T-AOC,CAT和T-SOD活性显著升高,而GPX活性显著下降;赤潮异弯藻CAT活性显著上升,而MDA含量,T-AOC,T-SOD和GPX活性显著下降。在混养附加UV-B辐射处理的条件下,石莼MDA含量,T-AOC,CAT和T-SOD活性显著升高,而GPX活性和Car含量显著降低;赤潮异弯藻CAT活性显著上升,而可溶性蛋白,MDA和Car含量,T-AOC,T-SOD和GPX活性显著下降。
     (3)采用生化检测法和聚丙烯酰胺凝胶电泳技术(PAGE)对石莼-赤潮异弯藻的两种同功酶—过氧化物酶(PRX)和多酚氧化酶(PPO)进行检测。结果显示:在单养条件下,UV-B辐射会使石莼和赤潮异弯藻PRX和赤潮异弯藻PPO活性降低,而石莼PPO活性却显著升高。混养会使石莼PPO活性显著下降,而赤潮异弯藻PPO活性显著升高。混养的同时附加UV-B辐射的条件下,石莼PRX和赤潮异弯藻PRX和PPO活性都受到了显著的抑制。不同处理组的石莼和赤潮异弯藻PRX、PPO同功酶谱均存在差异,主要表现为条带多少和活性强弱的不同,说明UV-B辐射处理和藻间的相互作用均能够引起石莼和赤潮异弯藻PRX和PPO同功酶谱的变化。
     (4)对石莼和赤潮异弯藻的胞外滤液的研究结果表明:胞外微生物对石莼-赤潮异弯藻相互作用无明显影响。石莼可以分泌热敏感的胞外物质来影响赤潮异弯藻的生长。UV-B辐射并不能减少赤潮异弯藻产生的有害物质,而与石莼混养会显著的减少赤潮异弯藻所产生的有害物质。
     (5)N、P限制对石莼-赤潮异弯藻相互作用有明显的影响。N、P限制的条件下,石莼生长受到UV-B辐射胁迫和赤潮异弯藻的克生作用在减小;而赤潮异弯藻生长受到UV-B辐射胁迫和石莼的克生作用会增加。
Globally, the problem of red tide has expanded considerably over the lastseveral decades and seriously threatens the marine sustainability. It not only causesserious destruction to marine ecosystem and the recreational activities, but also leadsto massive mortality of the wild and farmed fisheries. Various methods have beenproposed on red tide controlling or mitigation, among which biological strategies arethe most potential one. Marine macroalga, for instance, is one of the potentialcandidates in red tide mitigation. It could inhibit the red tide micrialgal growth eitherby nutrient competition ability or by allelopathy. Ozone depletion is another seriousenvironmental problem that results in UV-B (280nm~320nm) radiation enhancement,and the enhancement would seriously damage the sustainability of marineecosystem.
     A macroalga Ulva pertusa Kjellm and a red tide microalga Heterosigmaakashiwo (hada) hada were selected to identify their interactions under controlledlaboratory conditions with and without UV-B radiation in the present study. Resultsshowed that:
     1、Interaction between U. pertusa and H. akashiwo with absence of UV-B radiation
     (1) The interspecific competition between U. pertusa and H. akashiwo wereestimated under different initial nutrient and biomass conditions. Results showedthat: Both exploitation competition and interference competition were found in theinteraction between U. pertusa and H. akashiwo. Interference competition playdominant role in the growth of U. pertusa and H. akashiwo when the initial biomassof was set at 0.05g/150mL for U. pertusa and 1×104cell·mL-1 for H. akashiwo ;however U. pertusa was affected by exploitation competition and H. akashiwo wasaffected by both exploitation and interference competition when the initial biomass of U. pertusa increased to 0.40g/150mL. When fixed the initial biomass of U. pertusa at 0.05g/150mL and changed the intial cell density of H. akashiwo we found that H. akashiwo was affected by interference competition under lower initial cell density (0.5×104cell·mL-1 and 1.0×104cell·mL-1) while affected by both exploitation and interference competition under higher initial cell density (2.0×104cell·mL-1and 4.0×104cell·mL-1). Result suggested that the initial inoculated biomass was responsible for different interspecific competition in mixed culture.
     (2) The simultaneous assay on culture was carried out in mixed culture. Results showed that: U. pertusa could inhibit the growth of H. akashiwo, H. akashiwo could inhibit the growth of U. pertusa simultaneously. Results suggested an allelopathic effect between their interactions: U. pertusa could release extracellular products to inhibit the growth of H. akashiwo, while direct cell-cell contact and releasing extracellular products were responsible for inhibitory effect of H. akashiwo on U. pertusa. U. pertusa and H. akashiwo could release intracellular products into the culture medium filtrates to affect the other’s growth.
     2、The responses of interaction between U. pertusa and H. akashiwo to UV-B radiation
     (1) Effects of UV-B radiation on the growth, Chl-a contents, pheapigment-a contents and sporulation of U. pertusa and H. akashiwo were studied. Results showed that: The allelopathic effect existed between U. pertusa and H. akashiwo. UV-B radiation could inhibit the growth of U. pertusa and H. akashiwo. However, UV-B radiation exhibited inhibition that was insignificant to the growth of U. pertusa but significant to the growth of H. akashiwo. The response of UV-B radiation on Chl-a and pheapigment-a contents were significant, and the changes of Chl-a and pheapigment-a contents showed comparability. UV-B radiation could inhibit the sporulation of U. pertusa. H. akashiwo could also inhibit the sporulation of U. pertusa, but it was insignificant.
     (2) The antioxidant enzymatic activies of U. pertusa and H. akashiwo changed greatly when exposed to UV-B radiation. Malondine (MDA) contents, tota1 antioxide capacity (T-AOC) and total superoxide dismutase (T-SOD) activities in U. pertusa increased significantly while just the opposite changes were observed in the soluble protein contents and glutathione peroxidase (GPX) activity in U. pertusa. MDA contents, T-AOC and catalase (CAT) activities in H. akashiwo increased significantly, but its T-SOD activity, soluble protein and carotenoid (Car) contents in H. akashiwo decreased obviously when exposed to the UV-B radiation. As to mixed culture, MDA contents, T-AOC, CAT and T-SOD activities in U. pertusa increased significantly, but the GPX activity in U. pertusa decreased significantly. CAT activity in H. akashiwo increased significantly, but MDA contents, T-AOC, T-SOD and GPX activities in H. akashiwo decreased obviously in mixed culture. MDA contents, T-AOC, CAT and T-SOD activities in U. pertusa increased significantly, but GPX activity and Car contents in U. pertusa decreased significantly in mixed culture exposed to UV-B radiation. CAT activity in H. akashiwo increased significantly, but MDA and Car contents, T-AOC, T-SOD and GPX activities in H. akashiwo decreased significantly in mixed culture under UV-B radiation.
     (3) Furthermore, biochemical method and the vertical polyacrylamide gel electrophoresis (PAGE) were used to identify the isozymes differentiation of peroxidase (PRX) and polyphenol peroxidase (PPO) in U. pertusa and H. akashiwo. Results showed that: PRX activity in U. pertusa and H. akashiwo decreased significantly when exposed to UV-B radiation. PPO activity in U. pertusa increased obviously while just the opposite changes were observed in H. akashiwo when exposed to UV-B radiation. PPO activity in U. pertusa decreased significantly, but PPO activity in H. akashiwo increased significantly in mixed culture. PRX activity in U. pertusa and PRX and PPO activities in H. akashiwo decreased significantly in mixed culture under UV-B radiation. The isozymes of PRX and PPO in U. pertusa and H. akashiwo presented differences respectively in forms of numbers of bands and staining intensity. Therefore, UV-B radiation and the interaction between U. pertusa and H. akashiwo could result in changes of PRX and PPO isozymes.
     (4) The extracellular products of U. pertusa and H. akashiwo were studied. Results showed that: Effects of extracellular microbe on the interaction between U. pertusa and H. akashiwo was insignificant. The thermo-sensitive products were excreted by U. pertusa which could inhibit the growth of H. akashiwo. UV-B radiation could not alleviate the deleterious products from H. akashiwo, but the deleterious products from H. akashiwo could be alleviated in mixed culture with U. pertusa.
     (5) Effects of N and P limitation on the interaction between U. pertusa and H. akashiwo were significant. Effects of UV-B radiation stress and allelopathic effect from H. akashiwo on the growth of U. pertusa were decreased under the condition of N and P limitation. Nevertheless effects of UV-B radiation stress and allelopathic effect from U. pertusa on the growth of H. akashiwo were increased under the condition of N and P limitation.
引文
1. Aebi H E, Catalase, In: Hu Bergmeyer, K. Bergmeyer, M. Grables eds, Methos of Enzymatic Analysis, Vol.III Verlag Chemie, Weinheim, pp: 273-286
    2. Alexander T, Marcia RD. Interference and exploitation components in interespecific competition between sympatric intertidal hermit crabs. Journal of Experimental marine Biology and Ecology, 2004,310: 183-193
    3. Allen DJ, McKee IF, Farage PK, et al. Analysis of the limitation to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell & Environment, 1997,20:633-640
    4. Allen DJ, Nogues S, Baker NR. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis. Journal of Experimental Botany, 1998,49:1775-1788
    5. Anthoni U, Christophersen C, Ogard M, et al. Biologically active sulphur compounds from the green alga Charaglobularis. Phytochemistry, 1980,19:1228-1229
    6. Bagchi SN. Structure and site of action of an algicide from a cyanobacterium, Oscillatoria late-virens. Journal of Plant Physiology, 1995,146: 372-374
    7. Bagchi SN, Marwah JB. Production of an algicide from cyanobacterium Fischerella species which inhibits photosynthetic electron transport. Microbios, 1994,79: 187-193
    8. Barnes PW, Beyschlag W, Ryel R, et al. Plant competition for light analyzed with a multispecies canopy model III.Influence of canopy structure in mixtures and monocultures of wheat and wild oat. Oecologia, 1990,82:560-566
    9. Barnes PW, Jordon PW, Gold WG, et al. Competition, morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatual.) exposed to enhanced ultraviolet-B radiation. Functional Ecology, 1988,2:319-30
    10. Beauchamp C, Fridovich I. Superocxide Dismutases: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971,44:276-287
    11. Beaumont AR, Newman PB. Low levels of tributyltin reduce growth of marine microalgae. Mar Pollut Bull, 1986,17(10):457-461
    12. Berger J, Schagerl M. Allelopathic activity of Chara aspera. Hydrobiologia, 2003,501, 109-115
    13. Bjom LO. UV-B Effects: Receptors and Targets, Concept in photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, India, 1999,821-832
    14. Bjorn LO. Effects of ozone depletion and increased UV-Bon terrestrial ecosystem. Intern J Environ Studies, 1996, 51: 217-243
    15. Blanc F, Jaziri H. Variation of zllozyme polymorphism in Ostrea angasi and O edulis. Aquaculture, 1990, 85:331-332
    16. Bowler M, Van Montagu. D. Inze, Superoxide dismutase and stress tolerance, Ann. Rev. Plant Physiol Plant Mol Biol, 1992,43: 83-116
    17. Bradford MM. A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976: 248-254
    18. Brandle TK, Camphell W, Sisson WB, et al. Net photosynthesis Electron transport capacity and ultrastructure of pisum sativuml exposed to ultraviolet-B radiation. Plant Physiol, 1977,60:165
    19. Brian L, Bingham, Reyns NB. Ultraviolet radiation and distribution of the solitary ascidians Corella inflata (Huntsman). Biol Bull, 1999,196:94-104
    20. Bull AL, Slater JH. Microbial Interactions and Communities. Vol. I. Academic Press, London, 1982: 567
    21. Cai HJ,Tang XX,Zhang PY, et al. Effects of UV-B radiation on the growth interaction of Ulva pertusa and Alexcmdrium tamarense. Journal of Environmental Sciences,2005,17(4): 605-610
    22. Caldwell MM, Bjorn LO, Bornman JF, et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B:Biology, 1998(46):40-52
    23. Caldwell MM, Teramura AH, Tivini M, et al. Effects of increased radiation on terrestrial plant. Ambio, 1995,24:166-173
    24. Carlos A, Martinez ME, Loureiro MA, et al. Differential responses of superoxide dismutase in freezing resistant Solarium curtilobum and freezing sensitive Solarium tuberosum subjected to oxidative and water stress. Plant Science, 2001,160:505-515
    25. Carreto JI, Lutz VA, De Marco SG, et al. Fluence and wavelength dependence of mycosporine-like amino acid synthesis in the dinoflagellate Alexandrium excavatum 1990. In: Graneli E, Edler L, Sundstrom B, Anderson DM (eds). Toxic Marine Phytoplankton. Elsevier. New York.
    26. Ceccherelli G, Cinelli F. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. Journal of Experimental Marine Biology and Ecology, 1997,217:165-177
    27. Chang FH, Anderson C, Boustead NC. First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cagereared salmon in Big Glory Bay, New Zealand. N Z J Mar Freshw, 1990,24 :461-469
    28. Chomoneva T. Peroxidase activity in seedlings amd; ate sjprtste, ed amd tall rice cultivars. Fiziol East (sofia), 1984,10(3): 28-37
    29. Connie L, Louis L, Therriault JC, et al. Growth and distribution of marine bacteria in relation to nanoplankton community structure. Deep-sea Research II ,2000,47:461-487
    30. Constantine NG ,Stanley K.R. Superoxide dismutase I Occurrence in high plants. Plant Physiol, 1977,59:309-314
    31. Craige EW. What role does UV-B radiation play in freshwater ecosystem. Limnology and Oceanography, 1995,40(2): 386-392
    32. Damodara C, Venkaiah B. Studies on isoenzymes of superoxide dismutase from mung bean (Vigna radiatd) seedlings. Journal of Plant Physiology, 1984,116:279-284
    33. Davis BC, Fourqurean JW. Competition between the tropical alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. Aquatic Botany,2001,71:217-232
    34. Daza MC, Sandalio LM, Quijano-Rico M, et al. Isoenzyme pattern of superoxide dismutase in coffee leaves from genotypes susceptible and resistant to the rust Hemileia 6astatrix. Journal of Plant Physiology, 1993,141:521-526
    35. de Nys R, Colt JC, Price LR. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Marine Biology,1991,108:315-320
    36. Del Rio LA, Sevilla F, Sandalio LM, et al. Nutritional effect and expression of SODs: induction and gene expression; diagnostics prospective against oxygen toxicity. Free Radicals Research and Communications, 1991,12-13:819-827
    37. den Hartog C. The dynamic aspect in the ecology of sea-grass communities. Thalassia Jugoslavica, 1971,7:101-112
    38. Dhindsa RS, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Expt Botany, 1981,32:19-91
    39. Donald T, Krizek, Britz SJ, et al. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. new leaf fire lettuce. Physiologic Plantarum, 1998,103:1-7
    40. Enling SM. UV-B induced synthesis of photoprotective pigment sand extra cellular polysaccharidesin terrestrial cyanobacterium. Nostoc commune J-Bacteriol, 1997,179(6): 1940
    41. Evans JJ. The distribution of peroxide in extreme dwarfs and normal tomato. Phytochemistry, 1965,4: 499-503
    42. Fandino LB, Riemann L, Steward, et al. Variations in bacterial community structure during a dino-agellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol, 2001,23: 119-130
    43. Fletcher RL. Heteroannism observed in mixed algal cultures. Nature, 1975,253:534-535
    44. Fogg GE. Extracellular products of algae in freshwater. Ergebn der Limnol, 1971,5:1-25
    45. Fong P, Donohoe RM, Zedler JB. Competition with macroalgae and benthic cyanobacterial limits phytoplankton abundance in experimental microcosms. Mar Ecol Prog Ser, 1993, 100: 97-102
    46. Fong P, Zedler JB, Donohoe RM. Nitrogen versus phosphorous limitation of algal biomass in shallow coastal lagoons. Liminology and Oceanography, 1993,38:906-923
    47. Fong P, Foin TC, Zedler JB. A simulation model of lagoon algal based on nitrogen competition and internal storage. Ecological Monographs, 1994,64: 225-247
    48. Fox FM, Caldwell MM. Competitive interaction in plant populations exposed to supple mentary ultraviolet-B radiation. Oecolodia, 1978,36:173-190
    49. Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ, 1994,17:507-523
    50. Friedlander M, Gonen Y, Kashman Y, et al. Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red algae by Ulva cf. lactuca. J Appl Phycol, 1996,8: 21-15
    51. Gerber S, Lesser MP Effects of solar radiation on motility and pigmentation of three species of phytoplankton. Envion Exp Bot, 1993,33(4): 513-517
    52. Gleason FK, Baxa CA. Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiol Lett, 1986,33:85-88
    53. Gleason FK, Case DE. Activity of the natural algicide cyanobacterin on angiosperm. Plant Physiol, 1986,80:834-837
    54. Gleason FK, Paulson JL Site of action of the natural algicide, cyanobacterin in the blue green alga, Synechococcus sp.. Arch. Microbiol, 1984,138: 273-277
    55. Gold WG Caldwell MM. The effects of ultraviolet-B radiation on plant competition in terrestrial ecosystems. Physiologia Plantarum, 1983,28:435-444
    56. Goldberg RT. Localization and properties of cell wall enzymesactivity related to the final stages of lignin biosynthesis. J Exp Bot, 1985,36(164): 503-510
    57. Gopal B, Goel U. Competition and allelopathy in aquatic communities. Bot Rev,1993,59:155-210
    58. Gromov BV, Vepritskiy AA, Titova NN, et al. Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia Calu 892 (cyanobacterium). J Appl Phycol,1991,3:55-59
    59. Gross EM. Allelopathy of aquatic autotrophs. Crit Rev Plant Sci, 2003,22: 313-339
    60. Guillard RRL, Hellebust JA.Growth and the production of extracellular substances by two strains of Phaeocystispouchetii. J Phycol, 1971,7:330-338
    61. Hader DP, Kumar HD, Smith RC, et al. Effects on aquatic ecosystems. J Photochem Photobiol B: Biol, 1998,46: 53-56
    62. Hader DP. Effects of enhanced UV-B radiation on a phytoplankton. Sci Mar Bare, 1996,60(supply): 49
    63. Hader DP. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio,1995.24(3): 174
    64. Hader DP. Influence of ultraviolet radiation on phytoplankton ecosystems, in: W. Wiessner, E. Schnepf, R.C. Starr(Eds.), Algae, Environment and Human Affairs, Biopress Limited, Bristol, UK, 1995: 41-45
    65. Hader DP. Novel method to determine vertical distribution of phytoplankton in marine in water columns. Environ Exp Bot, 1995,35:547-555
    66. Halliwell B. Antioxidant characterization, Methodology and Mechanisms. Biochem Pharm, 1995,49:1341-1348
    67. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem, 1992,59:1609-1623
    68. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 3rd ed. London: Oxford University Press; 1999
    69. Han T, Han YS, Kim KY, et al. Influences of light and UV-B on growth and sporulation of the green alga Ulva pertnsa Kjellman. Journal of Experimental Marine Biology and Ecology, 2003,290, 115-131
    70. Hein M, Pedersen MF, Sand-Jensen K. Size-dependent nitrogen up take in micro- and macroalgae. Mar Ecol Prog Ser, 1995, 118: 247-253
    71. Helbing EW, Chalker BE, Dunlap WC, et al. Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. Journal of Experimental Biology and Ecology, 1996,204:85-101
    72. Honjo T. The biology and prediction of representative red tides associated with fish kills in Japan. Rev Fish Sci, 1994, 2: 225-253
    73. Igarashi T, Aritake S, Yasumoto T. Biological activities of prymnesin-2 isolated from a red tide alga Prymnesiwn parvwn. Nat Tox, 1998, 6, 35-41
    74. Ikawa M, Sasner JJ, Haney JF. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorellapyrenoidosa growth. Hydrobiologia, 2001,443, 19-22
    75. Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast , 1998,14:1511-1527
    76. Jeffery SW, Humphery GF. New spectrophotometric equations for determining chlorophyll a, b, cl and c2 in higher plant, algae and natural phytoplankton. Biochem Physiol Pflanzen, 1975,167: 191-194
    77. Jensen A. Chlorophyll and Carotenoids. In "Handbook of Physiological Methods", Physiological and Biochemical Methods. New York: Cambridge University Press, 1978: 59-70
    78. Jerez B, Rololan MJ. Biochemical genetics in the Argentinean Squid. Illex Argentinus Scientia Marina, 1998,62(1-2): 141-149
    79. Jin Q, Dong SL. Comparative studies on the allelopathic effects of two different strains of Ulva pertnsa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2003, 293:41-55
    80. John JW, Kenneth DH, Dwight AD, et al. A numerical analysis of landfall of the 1979 red tide of Karenia brevis along the west coast of Florida. Continental Shelf Research, 2002,22: 15-38
    81. Jordan BR, He J, Chow WS, et al. Changes in mRNA levels and polypetide subunits of ribulose-1, 5-biophosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant Cell Environment, 1992,15:91-98
    82. Juttner F, Todorova AK, Walch N, et al. Nostocyclamide M: cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31 .Phytochemistry, 2001,57:613-619
    83. Kajiwara T, Ochi S, Kodama K, et al. Cell-destroying sesquiterpenoid from red tied of Gymnodinium Nagasakiense. Phytochemistry, 1992,31:783-785
    84. Kakisawa H, Asari F, KusumiT, et al. An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistiy, 1988,27:731-735
    85. Kalir A, Poljakoff-Mayber A. Changes in activity of malate dehydro-genase,catase , peroxidase and superoxide dismutase in leaves of Halimus protolacoides L. Alley exposed to high sodium chloride concentration.Ann Bot,1981,47:75-85
    86. Keams KD, Hunter MD. Toxin-producing Anabaena flos-aguae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microbial Ecol, 2001,42:80-86
    87. Kerkhof LJ, Voytek MA, Sherrell RM, et al. Variability in bacterial community structure during upwelling in the coastal ocean. Hydrobiology, 1999,401: 139-148
    88. Kerr JB, McElroy CT. Evidence for large upward trend of ultraviolet-B Radiation linked to ozone depletion. Science, 1993,262:1032-1034
    89. Konig GM, Wright AD, Linden A. Plocamium hamatum and its monoterpenes: chemical and biological investigation of the tropical marine red alga. Phytochemistiy, 1999,52:1047-1053
    90. Kozhevnikova NN. Diurnal rhythms of peroxidase activity in pine needle tissues. Fiziol Rast (MOSC), 1984,31(4): 674-682
    91. Kumar A, Sinha RP, Hader DP. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacteriumNostoccalciola. J Plant Physiol, 1996,148:86-91
    92. Kurepa J, Herouart D, Van Montagu M, et al. Differential expression of Cu:Zn and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Mol Biol, 1997,38: 463-470
    93. Leprince O, Deltour R., Thorpe PC, et al. The role of free radical and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L). New Phytol, 1990,116:573-580
    94. Lesser MR Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of phytoplankton are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar Ecol Prog Ser, 1996,158:283-287
    95. Levine RL, Williams JA, Stadtman ER, et al. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol, 1994,233:346-357
    96. Lewis RJ, Holmes MJ. Origin and transfer of toxins involved in ciguatera. Comp Biochem Phys, 1993,106,615-628
    97. Li WKW, Harrison WG Chlorophy II, bacteria and picophytoplankton in ecological provinces of the North Atlantic. Deep-sea Research II ,2001,48:2271-2293
    98. Lorenzen CJ. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol Oceanogr, 1967,12: 343-346
    99. MacArthur RH, Wilson EO. The theory of island biogeography. Princeton, New Jersey, USA: Princeton University Press, 1967
    100. Maestrini SY, Bonin DJ. Alleropathic relationship between phytoplankton species. Can Bull Fish Aquat Sci, 1981,210: 323-338.
    101. Mark DB. Interference, exploitation, and sexual components of competition in a tropical hermit crab assemblage. Journal of Experimental marine Biology and Ecology, 1981, 49: 189-202
    102. Marshall SM, Orr AP. Further experiments on the fertilization of a sea loch (Loch Craiglin). J Mar Biol Assoc UK, 1949,27: 360-379
    103. Mason CP, Edwards KR, Carlson RE, et al. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonemahofinanni. Science,1982,215:400-402
    104. McCracken MD, Middaugh RE, Middaugh RS. A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia, 1980,70:271-276
    105. McKersie BD, Chen Y, de Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago satida L.). Plant Physiol, 1993,103:1155-1163
    106. McLachlan J, Craigie JS. Algal inhibition by yellow ultraviolet absorbing substances from Fucus vesiculosus. Canad J Bot,1964,42:287-292
    107. McRoy CP, Lloyd DS. Comparative function and stability of macrophyte-based ecosystems. InLonghurst, A.R. (Ed.), Analysis of Marine Ecosystems. Academic Press, London, UK, 1981:473-89.
    108. Mercedes J, Josefa EC. Oxidation of the flavonol fisetin by polyphenol oxidase. Biochemica et Biophysica Acta, 1425: 534-542
    109. Molina MJ, Rowland FS. Stratospheric sink for chloro -fluoromethanes chlorine atom-catalyzed destruction of ozone. Nature, 1974,249:810
    110. Moore RE, Cheuk C, Patterson GML. Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. J Am Chem Soc, 1984,106:6456-6457
    111. Moradas-Ferreira P, Costa V. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep. 2000,5:277-285
    112. Mulderij G,van Donk E, Roelofs JGM. Differential sensitivity of green algae to alletopathic substances from Chara. Hydrobiologia, 2003,491:261-271
    113. Multer HG. Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua. W.I. Coral Reefs, 1988,6:179-186
    114. Nan CR, Zhang HZ, Zhao GQ. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research, 2004,52:259-268
    115. Neale PJ. Utraviolet sun screensin Gymnodinium sanguineum (dinophyceae): MAAs protect against inhibition of photosynthesis. Phycol, 1998,34(6): 928-938
    116. Nedunchezhian N. Induction of heat short-like proteins in Vigna sinensis seeding growing under UV-B enhanced radiation. Physiol Plant, 1992, 85:503-506
    117. Neori A , Cohen I, Gordin H. Ulva Rigida biofilters for marine fishpond effluents II. Growth, yield and C: N ratio. Botanica Marina, 1991,34: 483-489
    118. Niyogi KK. Photoprotection revisited: genetic and molecular approaches, Annu. Rev. PlantPhysiol. Plant Mol Biol, 1999,50: 333-359
    119. Noorudeen AM. Kulandaivelu G On the possible site of inhibition of photosynthetic electron transport by ultraviolet-B (UV-B) radiation. Physiol Plant, 1982,55: 161-166
    120. Ohsawa N, Ogata Y, Okada N, et al..Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry, 2001,58:683-692
    121. Okada M, kitajima M, Butler WL. Inhibition of photosystem I and photosystem II in chloroplants by UV-radiation. Plant Cell Physiol, 1976,17:35-43
    122. Pandova LM, Shvika ME. The effects of aeration of zymmonasmobilis metabolism. Mikrobiologiya, 1985,54(1): 141-145
    123. Papke U, Gross EM, Francke W. Isolation, identification and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret). Tetrahedron Lett, 1997,38:379-382
    124. Patriquin DG. "Migration" of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications. Aquat Bot, 1975,1:163-189
    125. Pedersen MF, Borum J. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser, 1996,142: 261-272
    126. Perez E, Martin DE, Padilla M. Rate of production of APONINs by Nannochloris oculata. Biomed Lett, 1999,59:83-91
    127. Perez E, Sawyers WG Martin DF Identification of allelopathic substances produced by Ncmnochloris oculata that affect a red tide organism, Gymnodinium breve. Biomed Lett, 1997,56:7-14
    128. Pflugmacher S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystem. Environ. Toxicol, 2002,17,407-413
    129. Pianka ER. On r- and K-selection. American Naturalist, 1970,104:592-597
    130. Plumley FG Marine algal toxins: biochemistry, genetics, and molecular biology. Limnol Oceanogr, 1997,42:1252-1264
    131. Pratt DM. Competition between Skelatonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr, 1966,11:447-455
    132. Proctor VW. Some controlling factors in the distribution of Haematococcus plicvialis. Ecology, 1957,38: 457-462
    133. Pushparaj B, Petosi E, Juttner F. Toxicological analysis of the marine cyanobacterium Nodularia harveyana. JAppl Phycol, 1999,10: 527-530
    134. Rail C, Craige EW. Effects of UV-B and copper on photosynthetic activity of cynobacterium anabaena doliolum. Envion Exp Bot, 1995,35(2): 176-179
    135. Rail C. Algal responses to enhanced ultraviolet-B radiation. Proceeding of the India National Science Academy Part B. Biology Science, 1998,64(2): 125-127
    136. Renger G, Volker M, Eckert HJ. On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol, 1989,49(1): 97-105
    137. Renger G, Volker M, Eckert HJ. On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol, 1989,49(1): 97-105
    138. Rice EL. Allelopathy. Academic Press, Orlando, Florida. 1984
    139. Riegger L, Robinson D. Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar Ecol Prog Ser, 1997,160:13-25
    140. Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol, 2000,66: 578-587
    141. Robbere R. Environmental photobiology. The Science of photobiology. Plenum Press, New York: In KC smith, ed, 1989: 135-154
    142. Roberts RD, Zohary T, Waiser MJ, el al. Bacterial abundance, biomass and production in relation to phytoplankton biomass in the Levantine Basin of the southeastern Mediterranean Sea. Marine Ecology Progress Series, 1999, 137(1): 273-281
    143. Ryan KG UV radiation and photosynthetic production in Antarctic sea ice micro algae. J Photochem Photobiology B:Boil, 1993,40: 235-240
    144. Ryan KG McMinn A, Mitchell KA, et al. Mycosporine-like amino acids in Antarctic sea ice algae, and their response to UVB radiation. Zeitschrift fur Naturforschung, 2002, 57(5-6):471-477
    145. Schmidt LE, Hansen PJ. Allelopathy in the Prymnesiophyte Chrysochrom ulina polylepis: effect of cell concentration, growth phase and pH. Mar Ecol Prog Ser, 2001,216: 67-81
    146. Scotto J, Cotton G Urbach F, et al. Biological effective ultraviolet Radiation: surface measurements in the United States. 1974 to 1985. Science, 1994,91:735-740
    147. Sfriso A, Pavoni B. Macroalgae and phytoplankton competition in the central Venice lagoon. Environ Tech, 1994, 15: 1-14
    148. Sharma KP Allelopathic influence of algae on the growth of Eichhornia crassipes (Mart.) solms. Aquat Bot, 1985,22, 71-78
    149. Sies H. Strategies of antioxidant defense. Eur J Biochem, 1993,215: 213-219
    150. Sinha RP, Hader DP. Effects of ultraviolet-B radiation in three rice field cyanobacteria. J Plant Physiol, 1998,153:763-769
    151. Sinha RP, Singh N, Kumar A, et al. Effects of UV irradiation on cetain physiological and biochemical processes in cyanobacteria. J Photochem Photobiol B:Biol, 1996,32:107-113
    152. Smith DW, Home AJ. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) inmesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia,1988, 159: 259-268
    153. Smith RC, Prezelin BB, Baker KS, et al. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic water[J], Science, 1992,225:952-959
    154. Smith GD, Doan NT. Cyanobacterial metabolites with bioactivity against photosynthesis incyanobacteria, algae and higher plants. J Appl Phycol, 1999,11:337-344
    155. South GR. A note on two communities of seagrasses and rhizophytic algae in Bermuda. Bot Mar,1983,26,243-248
    156. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem, 1993,62:797-821
    157. Staples RC, Stahmann MA. Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology, 1964,54:760-764
    158. Stebbing ARD. Hormesis-the stimulation of growth by low levels of inhibitors. Sci Tol Environ, 1982,22:213-234
    159. Sugg LM, van Dolah FM. No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J Phycol,1999,35:93-103
    160. Sullivan JH, Teramura AH. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae. Am J Bot, 1988,75:225-230
    161. Svirski E, Beers S, Friedlander M. Gracilaria conferta and its epiphytes. 2. Interrelationship between the red seaweed and Ulvacf. lacluca. Hydrobiologia, 1993,260/261: 391-396
    162. Taylor FJR, Haigh R. The Ecology of Fish Killing Blooms of the Chloromonad Flagellate Heterosigma in the Strait of Georgia and Adjacent Water. In: Smayda TJ,Shimizu Y ed. Toxic Phytoplankton Blooms in the Sea. Amsterdam:Elsevier Scientific , 1993:699-703
    163. Teramura AH. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant, 1983,58:415-427
    164. Tevini M, Teramura AH. UV-B effects on terrestrial plants. Phyotochem Photobiol, 1989, 50:479-488
    165. Todorova AK, Juttner F Nostocyclamide-a new macrocyclic, thiazole-containing allelochemical from Nostocsp. 31 (Cyanobacteria). J Org Chem, 1995,60, 7891-7895
    166. Tsang EWT, Bowler C, Herouart D, el al. Differential regulation of superoxide dismutases in plants exposed to environmental stresses. Plant Cell, 1991,3 :783-792
    167. Twiner MJ, Chidiac P, Dixon SJ, et al. Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cell. Harmful Algae, 2005(4):789-800
    168. Twiner MJ, Dixon SJ, Trick CG Extracellular organics from specific cultures of Heterosigma akashiwo (Raphidophyceae) irreversibly alter respiratory activity in mammalian cells. Harmful Algae, 2004(3): 173-182
    169. Uchida T, Satorutoda Y, Matsuyama M, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory. J Exp Mar Biol Ecol, 1999,241:285-299
    170. van Donk E, van de Bund WJ. Impact of submerged macrophytes including charophytes on pinto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 2002,72:261-274
    171. Van TK, Grand LA, West SH. Effects of 298nm radiation on photosynthetic reactions of leaf discs and chloroplast preparations of some crop species. Environ Exp Bot, 1977,17:107-112
    172. Van Toai T, Bolles CS. Postanoxia injury in soybean (Glycine max L.) seedlings. Plant Physiol, 1991,97:588-592
    173. Vance BDP. Liberation of extracellular nitrogen by two nitrogen-fixing blue-green algae. Nature, 1963,200: 1020-1021
    174. Vass I, Sass L. UV-B-induced inhibition of photosystem II electron transport studies by EPR and Chlorophyll fluorescence Impairment of doner and acceptor side Component Biochemistry, 1996,35:8964-8973
    175. Vepritskii AA, Gromov BV, Titova NN, et al. Production of the antibiotic-algicide cyanobacterin LU-2 by the filamentous cyanobacterium Nostoc sp.. Mikrobiologiya Transl, 1990,60:21-25
    176. Vu CV, Allen LH, Garrard LA. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4. Crop Plant, 1982,55:11-16
    177. Ward G Appraisal of molecular genetic techniques in fisheries. In: Carvalho GR., Pitcher J.(eds.), Molecular genetics in fisheries, Chapman&Hall, London,1997:29-54
    178. Williams SL. Factors affecting seagrass recolonization. Estuaries, 1985,8,16
    179. Williams SL. Disturbance and recovery of a deepwater Caribbean seagrass bed. Mar Ecol Prog Ser, 1988,42:63-71
    180. Williams SL. Experimental studies of Caribbean seagrass bed development. Ecol Monogr, 1990,60,449-469
    181. Windust AJ, Wright JLC, McLachtan JL. The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-l,on the growth of microalgae. Mar Biol, 1996,126:19-25
    182. Wium-Andersen S, Anthoni U, Christophersen C. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 1982,39,187-190
    183. Xiong FS, Kopecky J, Nedbal L. The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorrophyta). Aquatic Botany, 1999,63:37-49
    184. Yu Q, Rengel Z. Drought and salinity differentially influence activities of superoxide dismutases in narrowleafed lupinus. Plant Science ,1999,142:1-11
    185. Zhang J, Kirkham MB. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 1994,35: 785-791
    186. Zieman JC. The ecology of the seagrasses of south Florida: a community profile. US Fish and Wildlife Services, Office of Biological Services, Washington, DC, FWS/OBS-82/25, 1982:158
    187.蔡恒江,唐学玺,张培玉.3种赤潮微藻对UV-B辐射处理的敏感性.海洋科学,2005,
    29(3):30-32
    188.蔡恒江,唐学玺,张培玉等.UV-B辐射对孔石莼生长及其生理生化特征的影响.科学技术与工程,2005,5(5):283-287
    189.蔡恒江,唐学玺,张培玉等.LIV-B辐射对青岛大扁藻生长及其某些生理特性的影响.海洋科学进展,2005,23(4):460-465
    190.丁振华,范建中.紫外辐射生物学与医学.人民军医出版社.2000,11
    191.冯国宁,安黎哲,冯虎元等.增强UV-B辐射对菜豆蛋白质代谢的影响.植物学报,1999,19(4):453-455
    192.高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应.海洋与湖沼,1994,25(3):259-265
    193.高素兰.营养盐和微量元素与黄骅赤潮的相关性.黄渤海海洋,1997,15(2):59-63
    194.何池全,叶居新.石菖蒲(A corus ta ta rinow ii)克藻效应的研究.生态学报,1999,19(5):754-758
    195.贺锋,陈辉蓉,吴振斌.植物间的相生相克效应.植物学通报,1999,16(1):19-27
    196.侯扶江,贲桂英,韩发等.浅析植物对太阳紫外线.B辐射的适应.生态学杂志,1997,16 (2):31-35
    197.姜祖辉,陈瑞盛,王俊.青岛潮间带底栖微藻生物量研究.海洋水产研究,2006,27(3):52-56
    198.李静.黄瓜感霜霉病菌叶中一些酶活性的变化.植物病理学报,1991,21(4):277-283
    199.李太武,苏秀蓉.中国对虾和日本对虾6种同工酶的比较研究.海洋学报,1997,19(2):85-88
    200.李永祺.海水养殖生态环境的保护与改善.济南:山东科学技术出版社,1999,74-126
    201.刘世枚,黎尚豪.两种蓝藻种群间的相互作用.植物学报,1991,33(2):110-117
    202.刘泳,王悠,唐学玺等.UV-B对两种海洋微藻生长的影响.海洋水产研究.2000,21(2):22-26
    203.刘振玉.谷胱甘肽的研究与应用.生命的化学,1995,15(1):19-21
    204.南春容,董双林,金秋.不同磷浓度及脉冲方式下孔石莼与亚新形扁藻间竞争的实验研究.青岛海洋大学学报.2003,33(1):29-35
    205.南春容,张智海,董双林孔石莼水溶性抽提液抑制3种海洋赤潮微藻的生长.环境科学学报,2004,24(4):702-706
    206.倪纯治.赤潮与海洋微生物.海洋环境科学,1988,7(2):40-43
    207.齐雨藻,黄长江,应浙鸿等.紫外光对有毒甲藻塔玛亚历山大藻的生态学效应.海洋与湖沼.1997,28(2):113-119
    208.浅田浩二.生物体内的活性氧清除系统一抗氧化酶.日本医学介绍,1994,15(7):293-294
    209.荣征星,刘慧中,鲍景奇等.小鼠全血中谷胱甘肽过氧化物酶活力的微量测定法.生物化学和生物物理进展,1994,2l(4):362-366
    210.苏秀榕,李太武,常少杰.孔石纯营养成分的研究,中国海洋药物,1997,61(1):33-35
    211.孙浩文,余叔文,杨善元等.凤眼莲根系分泌物中的克藻化合物.植物生理学报,1993,19(1):92-98
    212.孙浩文,俞子文,邰根福等.凤眼莲无菌苗培养及其克藻效应.植物生理学报,1990,16:30
    213.孙浩文,俞子文,余叔文.水葫芦对藻类的克制效应.植物生理学报,1993,14(3):294-300
    214.孙浩文,俞子文,余叔文.城市富营养水域的生物治理和风眼莲抑制藻类生长的机理.环境科学学报,1989,9:188
    215.孙儒泳,李庆芬,牛翠娟等.基础生态学.高等教育出版社,2002,119
    216.唐萍,吴国荣,陆长梅等.凤眼莲根系分泌物对栅藻结构及代谢的影响.环境科学学报.2000,20(3):355-359
    217.唐学玺,黄健,王艳玲等.UV-B辐射和蒽对三角褐指藻DNA伤害的相互作用.生态学报,2002,22(3):375-378
    218.唐学玺,杨震,王悠,等.紫外辐射诱发三角褐指藻自由基伤害的研究.海洋通报,19999,18 (4):93-96.
    219.王宝山.植物自由基与植物膜伤害.植物生理学通讯,1988,(2):12-16
    220.王吉桥,靳翠丽,张欣.不同密度的孔石莼与中国对虾的混养实验.水产学报,2001,25 (1):32-37
    221.王金辉,黄秀清,徐韧等.排列法检测围隔生态实验中加磷对浮游植物结构的影响.海洋环境科学,2001,20(1):32-54
    222.王立新,苏青,康彤彤等.小麦抗白粉病生化标记-过氧化物酶pI6.1酶带.华北农学报,1999,14(1):93~77
    223.王悠,杨震,唐学玺等.7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230
    224.王悠,俞志明,宋秀贤等.共培养体系中石莼和江蓠对赤潮异弯藻生长的影响.环境科学,2006,27(2):246-252
    225.谢应齐,郭世昌,王卫国等.昆明大气臭氧层的持续减少及其与太阳活动关系的研究,云南大学学报,1994,16(增刊):1-6
    226.颜天,周名江,傅萌等.赤潮异弯藻毒性及毒性来源的初步研究.海洋与湖沼,2003,34 (1):50-55
    227.晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响.植物生理学报,1996,22(4):373-378
    228.杨志敏,颜景义,郑有飞.紫外线辐射增加对大豆光合作用和生长的影响.生态学报,1996916(2):154-159
    229.于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应.中国水产科学,2002,9(2):157-160
    230.于娟,唐学玺,李永琪.紫外线.B辐射对海洋微藻的生长效应.海洋科学.2002,26(2):6-8
    231.曾韶西,王以柔.水稻幼苗的低温伤害与膜脂过氧化.植物学报,1987,29(5):506-512.
    232.张培玉,蔡恒江,肖慧等孔石莼与2种海洋微藻的胞外滤液交叉培养研究.海洋科学,2006,30(5):1-4
    233.张培玉,唐学玺,蔡恒江等.UV-B辐射增强对海洋大型藻与微型藻种群生长关系的影响.生态学报,2005,25(12);3335-3342
    234.张青田,董双林,胡桂坤等.不同氮源对微藻增殖的影响.海洋科学.2005,29(2):8-11
    235.郑天凌.微生物在碳的海洋生物地球化学循环中的作用.生态学杂志,1994,13(4):47-50
    236.周瑞莲,赵哈林,程国栋.高寒山区植物根抗氧化酶系统的季节变化与抗冷冻关系,生态学报,2001,21(6):868869
    237.周玉航,潘建明,叶瑛等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用.台湾海峡,2001,20(3):340-345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700