斜纹夜蛾对阿维菌素抗性风险分析及其抗性生化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜纹夜蛾Spodoptera litura(Fabricius)是一种间歇性发生的世界性农业害虫,伴随农药的大量使用,斜纹夜蛾的抗药性问题越来越突出。阿维菌素是一种具有独特作用机制的神经毒剂,对环境友好、人畜安全。本文以斜纹夜蛾为材料,测定了斜纹夜蛾泰安种群对8种杀虫剂的抗性水平、评估了斜纹夜蛾对阿维菌素的抗性风险、比较了斜纹夜蛾不同种群解毒代谢酶的活性。
     1、用浸叶法分别测定斜纹夜蛾泰安种群对8种杀虫剂的抗性水平。斜纹夜蛾泰安种群对8种药剂产生的抗性倍数为:溴氰菊酯(138倍)>氯氰菊酯(97倍)>毒死蜱(15倍)>锐劲特(4.5倍)>除尽(3.2倍)>抑太保(3倍)>米满(1.9倍)>阿维菌素(1.4倍)。
     2、采用饲料浸毒法,用5.0mg/L阿维菌素对斜纹夜蛾进行抗性选育。在40~70%死亡率的选择压力下,经过饲养13代10次抗性筛选,得到斜纹夜蛾对阿维菌素的抗性为4.54倍。当抗性遗传h~2=0.0505,杀死率80%~90%时,预计抗性增长10倍需要14~18代。斜纹夜蛾对阿维菌素的抗性发展速度相对较慢,产生高水平抗性的风险相对较低。
     3、测定斜纹夜蛾泰安田间种群、阿维菌素选育种群(F_(13))及敏感种群羧酸酯酶、谷胱甘肽S-转移酶及多功能氧化酶的活性结果表明,斜纹夜蛾泰安种群和选育种群羧酸酯酶的活性分别是敏感种群的2.2和2.5倍,细胞色素P_(450)的含量分别是敏感种群的1.7和2.26倍,细胞色素P_(450) O-脱甲基酶活性分别是敏感种群的1.43和1.76倍,斜纹夜蛾泰安种群和选育种群谷胱甘肽S-转移酶活性分别是敏感种群的1.26和1.08倍。用阿维菌素处理后羧酸酯酶和多功能氧化酶活性明显提高,而谷胱甘肽S-转移酶活性变化不大。结果证明斜纹夜蛾对阿维菌素的低水平抗性与羧酸酯酶和多功能氧化酶有关,与谷胱甘肽S-转移酶无关。
The common cutworm, Spodoptera litura (Fabricius), is a worldwide distributed agricultural pest occuring intermittently. Frequent use of chemical insecticides controlling S. litura had led to the development of insecticide resistance. Avermectin is an environmental friendly and human-animal harmless neurotoxin with special toxicious action. In this paper, the insecticide resistance levels of a field population of S. litura, resisntance risk to avermectin and detoxification enzyme activities were studied. The main results are as follows:
     1. Resistance levels of a Tai’an field population of S. litura to 8 insecticiedes were determined using leaf-dipping method. The results showed that the resistance levels of the field population were: Deltamethrin (138-fold)> Cypermethrin (97-fold)> Chlorpyrifos (15-fold)> Fipronil (4.5-fold)> Chioefenapyr (3.2-fold)> Chlorfluazuron (3-fold)> Mimic (1.9-fold)> Abamectin (1.4-fold).
     2. Based on the bioassay results, 5.0 mg/L of avermectin as initial concentration was used to select first instar larvae of a susceptible population of S. litura by artificial diet dipping method. After 10 times of selection with avermectin during 13 continuous generations, the selection population obtained 4.54 folds of resistance compared with its unselected population. So we may infer from the above results that S. litura have low capability to develop resistance to avermectin. When realized heritability was 0.0505 and killing rate was 80% ~ 90%, S. litura developing l0 folds of resistance to avermectin will need 14 to 18 continuous generations.
     3. Activities of carboxylesterase (CarE), glutathione S-transferase (GSTs) and multi-function oxidase (MFO) of three different populations of S. litura were determined. The results showed that the CarE activities of Tai’an field population and the avermectin-selected population were 2.2 and 2.5 times high than that of unselected susceptible population. P_(450) contents and MFO O-demethylase activities.of the field and selected populations were 1.7, 1.43 times and 2.26, 1.76 times high than that of unselected susceptible population, respectively. GSTs activities of the field and selected population were 1.26 and 1.08 folds of the susceptible population. Activities of CarE and MFO O-demethylase of three populations also were significantly increased by abamectin treatments while GSTs activities were almost not affected. Above results demonstrated that low level of resistance of S. litura to avermectin was related to carboxylesterase and multi- function oxidase, and had no relation with glutathione S-transferase.
引文
1.丁晓丽,张洪进,杨燕涛.通州地区蔬菜斜纹夜蛾发生特点及综防技术.中国植保导刊, 2008, 3: 20~22.
    2.王广成,张忠明,高立明,陈丙坤等.阿维菌素的作用机理及其应用现状.植物医生. 2006, 19(1): 4~5.
    3.王慧,喻德跃,吴巧娟.大豆对斜纹夜蛾抗生性基因的微卫星标记(SSR)的研究.大豆科学, 2004, 2: 91~95.
    4.韦存虚,唐振华.昆虫P_(450)的诱导及其与抗药性的关系.农药译丛, 1999, 21(2): 26~29.
    5.田世尧.斜纹夜蛾防治研究概况.仲恺农业技术学院学报, 1995, 8(1):83~89
    6.刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理.昆虫学报, 2003, 46(3): 288~291.
    7.刘春贵,张春梅,储柏.斜纹夜蛾在扬州地区危害草坪的初报.昆虫知识,2001,
    38(3) :238.
    8.刘玮玮,慕卫,朱炳煜,刘峰.虫酰肼对甜菜夜蛾生长发育的影响及抗性选育.中国农业科学, 2008, 41(5): 1366~1372.
    9.孙善教,夏海生.棉田斜纹夜蛾重发原因及防治对策.安徽农业科学, 2004, 32(3): 477~478.
    10.何林,赵志模,邓新平等.朱砂叶螨对3种杀螨剂的抗性选育及抗性治理研究.中国农业科学, 2003 , 36 (4): 403~ 408.
    11.何玉仙,杨秀娟,翁启勇,等.小菜蛾对阿维菌素的抗性研究.福建农业学报, 2002, 17(3): 155~158.
    12.何永学,谢昌宏,韦应贤.浅析频振式杀虫灯对斜纹夜蛾等菜田害虫的诱杀效果.广西农学报, 2004, 4: 36~37.
    13.朱昌亮,吴观陵,张兆松.昆虫细胞色素P_(450)分子生物学研究进展.中国寄生虫学与寄生虫病杂志, 1999, 17(1): 46~49.
    14.朱家颖,叶敏,胡纯华等.印楝素对斜纹夜蛾生长发育的影响.江西农业学报, 2006, 18(4): 26~29.
    15.冷欣夫,邱星辉.我国昆虫毒理学五十年来的研究进展.昆虫知识, 2000, 37(1):24~28.
    16.严建新.仙游县斜纹夜蛾的发生与防治.福建农业科技, 2004, (5): 28~29.
    17.苏志坚,陈其津.斜纹夜蛾核多角体病毒与增效剂混配对斜纹夜蛾幼虫的防治效果.中国生物防治, 2001, 17(1): 23~25.
    18.苏智勇.利用斜纹夜蛾核多角体病毒防治斜纹夜蛾.植物保护学会会刊, 1993, 35(3): 227~234.
    19.沈智蓉,殷如龙,浦冠勤.斜纹夜蛾的生物防治研究.江苏蚕业.2007,(3).
    20.吴世昌,顾言真,王冬生.斜纹夜蛾的抗药性及其防治.上海农业学报, 1995, 11(2): 39~43.
    21.吴存兵,汤锋,吴君艳等.江淮地区斜纹夜蛾对杀虫剂的抗药性测定.安徽农业科学, 2006, 34 (20): 5281~5282.
    22.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗性遗传分析.昆虫学报,1995, 38(1): 20~23
    23.吴坤君,陈玉平,李明辉.温度对棉铃虫实验种群生长的影响.昆虫学报, 1980, 23(4): 358~363.
    24.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊醋抗性机理研究南京农业大学学报, 1995, 18(2): 63~68.
    25.吴益东,陈松,净新娟等.棉铃虫抗药性监测方法一浸叶法敏感毒力基线的建立及其应用.昆虫学报, 2001, 4(1): 65~16.
    26.吴青君,张文吉,张友军等.解毒酶系在小菜蛾对阿维菌素抗性中的作用.农药学学报, 2001, 3(3): 23~28.
    27.张业光.引种印楝国产种子的印楝素含量及杀虫活性初步研究.华南农业大学学报. 1992, 13(4): 63~68.
    28.张跃. 2003年棉花斜纹夜蛾大发生的原因及防治对策.安徽农业科学, 2004, 32(5): 915.
    29.张宗炳.防止昆虫抗药性的发生与发展.植物保护, 1986 ,12(6): 30~32.
    30.张盛才,代明江,王世刚.宁南县紫花苜蓿斜纹夜蛾大发生情况及防治研究.中国农技推广, 2006, (9): 43~44.
    31.张惠琴,俞爱英,陈冬莲等. 2003年仙居县斜纹夜蛾大发生.植保技术导刊, 2004, 2: 45
    32.张善明,彭建新,余泽华等.酶学分析在昆虫抗有机农药研究中的应用.湖北农学院学报, 2000, 20(3): 281~284.
    33.林祥文,沈晋良.棉铃虫对辛硫磷抗性的风险评估与预报.昆虫学报, 2001, 44(4): 462~468.
    34.周桃美.斜纹夜蛾对四类杀虫剂的抗药性监测.中华农业研究, 1984, 33
    35.周晓梅,黄炳球.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识, 2002, 39(2): 98~104.
    36.施文,姚卫平,刘道贵等.沿江江南斜纹夜蛾暴发原因分析及防治对策.安徽农学通报, 2003, 9(6): 106~107.
    37.威尔金逊C F.杀虫药剂的生物化学和生理学.北京:科学出版社,1985, 661.
    38.赵善欢.植物化学保护.北京:中国农业出版社, 2001, 1241~2451
    39.欧晓明,王永江,乔广行等.斜纹夜蛾抗性品系选育及其在肟醚类杀虫剂活性评价中的应用.江西农业学报, 2003, 15 (4): 31~35.
    40.郭世俭等.不同种类杀虫剂对斜纹夜蛾的药效评价,中国蔬菜, 1997(3): 1~3.
    41.秦厚国,朱雪晶,罗任华,等.斜纹夜蛾发生期预测预报的研究历期预测法.江西农业学报, 2006, 18(3): 116~118.
    42.秦厚国,叶正襄,丁建,黄水金,罗任华.温度对斜纹夜蛾发育、存活及繁殖的影响.中国生态农业学报,2002,10(3): 76~79.
    43.秦厚国等. 12种杀虫剂对斜纹夜蛾的防效比较.植物保护, 2002, 28(5): 49~51.
    44.唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内察增长率及其对抗性演化的影响.昆虫学报, 1990, 33(4): 385~329.
    45.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社, 2000.
    46.唐振华.我国昆虫抗药性研究的现状及展望.昆虫知识, 2000, 37(2): 97~103.
    47.唐振华.昆虫抗药性及其治理. 1993,北京:农业出版社.
    48.黄水金.斜纹夜蛾(Prodenia litura Fabricius)防治研究进展.江西农业学报,1998, 10(3): 65~69.
    49.盛全学,李建国.性诱剂防治斜纹夜蛾、甜菜夜蛾试验初报.湖北植保, 2006, 1: 29.
    50.章玉苹,黄炳球.吡虫啉的研究现状与进展.世界农药, 2000, 22(6): 23~28.
    51.喻子牛.苏云金芽孢杆菌制剂的生产和应用.北京:农业出版社, 1993.
    52.蒋杰贤,梁广文.四物种共存系统中天敌对斜纹夜蛾控制作用的分析.中国生物防治, 2001, 17 (3): 133~137.
    53.韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报, 1995, 38 (4): 402~405.
    54.程罗根,李凤良,韩招久,等.小菜蛾对杀虫双和杀螟单抗性的现实遗传力.昆虫学报, 2001, 44(3): 263~267.
    55.谢建军,胡美英.斜纹夜蛾的天敌及其生物防治.昆虫天敌, 1999, 21(2): 82~92.
    56.蒙显标,陈强,陆寿成.斜纹夜蛾在南宁市郊区暴发.植物保护, 1988, 14(6): 51.
    57.詹秋文,盖钧镒.大豆种质资源对斜纹夜蛾抗性的鉴定.应用与环境生物学报, 2000, 6(1): 18~23.
    58.蒲蛰龙.昆虫棱型多角体病毒及斜纹夜蛾病毒杀虫剂的应用.长江蔬菜, 1990, (6): 20~21.
    59.谭福杰.农业害虫抗药性测定方法.南京农业大学学报, 1987, 10(增): 108~122.
    60.裴晖,欧晓明,王永江等.灭蝇胺和阿维菌素对家蝇生长发育的影响研究.中华卫生杀虫药械, 2004, 10(1): 18~20.
    61.李瑞娟,王开运,姜兴印等.抗梅岭霉素和阿维菌素二斑叶螨种群生命力和繁殖力的研究.农药学学报, 2004, 6 (1): 81~84.
    62. Ahmad M, Gladwell RT, McCafery AR, Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand. Pestic. Biochem. Physiol., 1989, 35: 165~171.
    63. AikiY, Kozaki T, Mizuno H, Kono Y, Amino acid substitution in Ace Paralogous acetylcholinesterase accompanied by organopho- sphate resistance in the spider mite Tetranychus kanzawai, Pestic. Biochem. Physiol. 2005, 82: 154~161.
    64. Armes NJ, Wightman JA, Jadhav DR, et al. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pestic Sci., 1997, 50: 240~248.
    65. Arme NJ, Bond GS, Cooter RJ. 1992. The laboratory culture and deve1opment of Helicoverpa amigera., Natural Resources Institue Bulletin 57, Natural Resources Institue,chatham, UK, 1992, p22.
    66. Berge JB, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases andinsecticide resistance in insecsts. Phil. Trans. R. Soc. Lond. B. 1998, 353: 1701~1705.
    67. Bull DL, Whitten CJ. Factors influencing organophosphorus insecticides resistance in tobacco budworms. J. Agric. FoodChem. 1972, 20, 561.
    68. Busvine JR, Mechanism of resistance to insecticides in houseflies. Nature, 1951,168: 193~195.
    69. Casida JE, and Ruzo LO. Metabolic chemistry of Pyrethroid insecticides, Pestic.Sci, 1980, 11: 257~269.
    70. Daborn PJ, Yen JL, Bpgwitz MR. A single P450 a1lele associated with insedicide resistance in Drosophila, Science, 2002, 297: 2253~2256.
    71. Druce E Tabashnik. Evolution of resistance to Bacillus thuringiensis. Annual Review Entomol, 1994, 39: 47~49.
    72. Dunkov BC, Rodriguez-armaiz R, Pttendrigh B, et al. Cytochrome P450 gene clusters in Drosophila melanogaster. MolGen Genet, 1996, 251: 290~297.
    73. Fragoso DB, Guedes RNC., Rezende ST, Glutathiones S~trallsferase detocification as a potential pyrethioid resistance mechanims in the maize weevil Sitophilus zeamais., Entomologia Experimentalise et Applicata, 2003, 109: 21~29.
    74. Goff GL, Boundy S, Daborn PJ, et al. Microarry analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem. Mol. Biol, 2003, 33: 701~708.
    75. Guning RV, Easton CS, Balfe ME. Pyrethroid resistance mechanism in Australian Helicoverpa amigera.Pestic.Sci.1991,33: 473~490
    76. Gunning RV, Devonshire AL. and Moores GD. Metabolism of fenvalerate in pyrethroid~susceptible and–resistant in Austra1ian Helicoverpa amigera (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 1995, 51: 205~213
    77. Hawkes NJ, Janes RW, Hemingway J, Vontas J, Detection of resistance~associated Point mutations of organophosphate insens-iteve acetylcholinesterase in the o1ive fruit fly, Bactrocera oleae (Gmelin). Pestic. Biochem. Physiol., 2005, 81: 154~163.
    78. Hernandez R, Guerrero FD, George JE, Wagner GG. Allele frequency and gene expression of a putative carboxylesterase encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus., Insect Biocehm. Mol. Biol. 2002, 32:1009~1016.
    79. Huang SJ, Xu JF, Han ZJ. Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. International Journal of Pest Management. 2006, 52(3): 209~213.
    80. Janet H, Hilary R.. Insecticide resistance in insect vectors of human disease. Annual Review Entomol, 2000, 45: 371~391.
    81. Kasai S, Weerashinghe IS, Shono T. P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Acrh. Insect Biochem. Physiol. 1998, 37: 47~56.
    82. Kim YG, Cho JR, Lee JN, Kang SY, Han SC, Hong KJ, Insecticide resistance in the tobacco cutworm, Spodoptera litura (Fabircius) (Lepidoptera: Noctuidae), Journal of Asia Pacific Entmology. 1998, 1: 115~122.
    83. Koul O. Azadirachtin interaction with development of Spodoptera litura Fab. Indian J. Exp. Biol., 1985, 23(3): 160~163.
    84. Kranthi, KR, Jadhav, DR, Wanjari RR, et al. Carbamate and rganophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research, 2001, 91: 37~46.
    85. Kranthi KR, Jadhav DR, Kranthi S, et al. Insecticide resistance in five major insect pests of cotton in India [J]. Crop Protection, 2002, 21: 449~460.
    86. Kumari PV. On two new species of ectoparasites of freshwater fishes belonging to the genus Neoergasilus Yin. Pesticides, 1988, 22(12): 49~52.
    87. Lee SH, Clark M. Permethrin carboxylesterase functions as nonspecific sequestration proteins in the hemolymph of Colorado beetle. Pesticide. Biochemistry and Physiology.1998, 62: 51~63.
    88. Lee SH, Dunn JB, Clark JM, Soderlund DM. Molecular analysis of kdr~like resistance in a permethrin resistant strain of Colorado beetle. Pestic. Biochem. Physiol., 1999, 63: 63~75.
    89. .Li F, Han ZJ. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem. Mol. Biol., 2004, 34: 397~405.
    90. Miyashita K. Effect of constant and fluctuating temperature on development of Spodoptera litura. Appl. Entomol.Zool., 1971, 6(3): 105~111.
    91. Murugan K, Sivaramakrishnan S, Kumar N S, Jeyabalan D, Nathan S S. Insect Sci. and Its Appl., 1999, 19(2P3): 229~235.
    92. Murugesan, K & Swaran Dhingra. Variability in resistance pattern of varius groups of insecticides evaluated against Spodoptera litura (Fabricius) during a period spanning over three decades. Journal of Entomological Research, 1995, 19: 313~319.
    93. Nabeshima T, Mori A, KoZaki T, Iwata Y, Hidoh O, Harada S, An amino acid substitution attributable to insecticide~insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Cuelx tritaeniorphynchus, Biochem. Biophs. Res. Commun. 2004, 313: 794~801.
    94. Ono M, Swanson JJ, Field LM, Devonshire AL, Siegfried BD. Amplification and methylation of an esterase gene associated whit insecticide resistance in greenbugs Schizaphis graminum (Rondani) (Homoptera: Aphididiae). Inscet Biochemistry and Molecular Biology, 1999, 29: 1065~1073.
    95. Oppenooorth .J. van Asperen K. Al1e1ic genes in the housefly producing modified enzymes that cause organophosphate resistance, Science. 1960, 132: 298~299.
    96. Peter C et al. Residual toxicity of some insecticides on groundnut to the first and third instar larvae of Spodoptera litura Fab. Tropical Pest Management. 1988, 34(1): 24~26.
    97. Srivastava B. K., Joshi H.C.J. Occurrence of resistance to BHC in Prodenia litura Fab.(Lepidoptera: Nocluidae). Indian Entomol., 1965, 27: 102~104.
    98. Rao G, Dhingra S. Shift in the suscep tibility level of Spodoptera litura (Delhi and Guntur populations) to cypermethrin and fenvalerate. J . Entomol. Res., 1996, 20: 225~227.
    99. Rene Feyreisen. Insect P450 enzymes. Annual Review Entomology, 1999, 44: 507~33.
    100. Sathe, TV. New records of natural enemies of Spodoptera litura (Fab.) in Kolhapur, India [J]. Current Science, 1987, 56(20): 1083~1084.
    101. Scharf ME, Parimi S, Meinke LJ, Chandler LD, Siegfried BD, Expression andinduction of threefamily 4 ctyochrome P450 (CYP4) genes identified form insecticide resistant and susceptible western corn rootworms, Daibrotica virgifera virgifera. Insect Molecular Biology. 2001, 10: 139~146.76 Sharma R. N. Indian Perfumer, 1990, 34(3): 196~198.
    102. Shin CJ. Determination of 1arval stadium and effect of temperature on the development of Spodoptera litura. Memonis of Plant Pathology and Entomology, 1995, 35(3): 393~400.
    103. Small GJ. Hemingway J. Differential glycosy1ation produces heterogeneity in elevated esterase associated with insecticide resistance in the brown planthopper Nilaparvato lugens. Insect Biochem. MolBiol. 2000a, 30: 443~453.
    104. Soderlund D, Knipple D. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem.Mol.Biol., 2003, 33: 563~577.
    105. Tang FY., Yong D. The relationships among mixture function oxid, GST and phoxin resistance in Helicoverpa armigera. Pestcide Biochemistry Physiology, 2000, 68(2): 96~101.
    106. Tabashnik E. Resistance risk assessment: realized heritability of resistance to B acillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and colorado potato beetle (Coleopteran: Chrysomelidae). J Econ Entomol, 1992, 85(5): 1551~1559.
    107 Valles SM, Strong CA. A microsomal esterase involved in cypermethrin resistance in the German cockroach, Blattella germanica. Pestic Biochem. Physiol., 2001, 71: 56~67.
    108. Venkateswar P. Larval mosquito control through deployment of xiphidiocercariae. Indian J. Pulses Res., 1988, 1(2): 118~123.
    109. Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire A.L., Williamson M.S., Identification and characteri-zeation of mutation in the housefly (Musca domestic) acetyicho- liensetrase involved in insecticide resistance. Biochem. J. 2001, 359: 175~181.
    110. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomien A, Marquine M.. Raymond M. The unique mutation in ace~1 giving high insecticide resistance iseasily detected in mosquito vectors, Insect Mol. Biol. 2004, 13: 1~7
    111. Wright DJ, Iqhal M, Verkerk RHJ. Resistance to Bacillus thuringiensis and abamectin in the diamond back moth, Plutella xylostella: a major problem for integrated pest management. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent. 1995, 60(3B): 927~933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700